/* * Copyright (C) 2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/clk.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/err.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pm_opp.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #define PU_SOC_VOLTAGE_NORMAL 1250000 #define PU_SOC_VOLTAGE_HIGH 1275000 #define FREQ_1P2_GHZ 1200000000 static struct regulator *arm_reg; static struct regulator *pu_reg; static struct regulator *soc_reg; static struct clk *arm_clk; static struct clk *pll1_sys_clk; static struct clk *pll1_sw_clk; static struct clk *step_clk; static struct clk *pll2_pfd2_396m_clk; static struct device *cpu_dev; static bool free_opp; static struct cpufreq_frequency_table *freq_table; static unsigned int transition_latency; static u32 *imx6_soc_volt; static u32 soc_opp_count; static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) { struct dev_pm_opp *opp; unsigned long freq_hz, volt, volt_old; unsigned int old_freq, new_freq; int ret; new_freq = freq_table[index].frequency; freq_hz = new_freq * 1000; old_freq = clk_get_rate(arm_clk) / 1000; rcu_read_lock(); opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); return PTR_ERR(opp); } volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); volt_old = regulator_get_voltage(arm_reg); dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", old_freq / 1000, volt_old / 1000, new_freq / 1000, volt / 1000); /* scaling up? scale voltage before frequency */ if (new_freq > old_freq) { if (!IS_ERR(pu_reg)) { ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); if (ret) { dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); return ret; } } ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); if (ret) { dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); return ret; } ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddarm up: %d\n", ret); return ret; } } /* * The setpoints are selected per PLL/PDF frequencies, so we need to * reprogram PLL for frequency scaling. The procedure of reprogramming * PLL1 is as below. * * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it * - Disable pll2_pfd2_396m_clk */ clk_set_parent(step_clk, pll2_pfd2_396m_clk); clk_set_parent(pll1_sw_clk, step_clk); if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { clk_set_rate(pll1_sys_clk, new_freq * 1000); clk_set_parent(pll1_sw_clk, pll1_sys_clk); } /* Ensure the arm clock divider is what we expect */ ret = clk_set_rate(arm_clk, new_freq * 1000); if (ret) { dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); regulator_set_voltage_tol(arm_reg, volt_old, 0); return ret; } /* scaling down? scale voltage after frequency */ if (new_freq < old_freq) { ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_warn(cpu_dev, "failed to scale vddarm down: %d\n", ret); ret = 0; } ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); if (ret) { dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); ret = 0; } if (!IS_ERR(pu_reg)) { ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); if (ret) { dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); ret = 0; } } } return 0; } static int imx6q_cpufreq_init(struct cpufreq_policy *policy) { policy->clk = arm_clk; return cpufreq_generic_init(policy, freq_table, transition_latency); } static struct cpufreq_driver imx6q_cpufreq_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = imx6q_set_target, .get = cpufreq_generic_get, .init = imx6q_cpufreq_init, .name = "imx6q-cpufreq", .attr = cpufreq_generic_attr, }; static int imx6q_cpufreq_probe(struct platform_device *pdev) { struct device_node *np; struct dev_pm_opp *opp; unsigned long min_volt, max_volt; int num, ret; const struct property *prop; const __be32 *val; u32 nr, i, j; cpu_dev = get_cpu_device(0); if (!cpu_dev) { pr_err("failed to get cpu0 device\n"); return -ENODEV; } np = of_node_get(cpu_dev->of_node); if (!np) { dev_err(cpu_dev, "failed to find cpu0 node\n"); return -ENOENT; } arm_clk = clk_get(cpu_dev, "arm"); pll1_sys_clk = clk_get(cpu_dev, "pll1_sys"); pll1_sw_clk = clk_get(cpu_dev, "pll1_sw"); step_clk = clk_get(cpu_dev, "step"); pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m"); if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { dev_err(cpu_dev, "failed to get clocks\n"); ret = -ENOENT; goto put_clk; } arm_reg = regulator_get(cpu_dev, "arm"); pu_reg = regulator_get_optional(cpu_dev, "pu"); soc_reg = regulator_get(cpu_dev, "soc"); if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { dev_err(cpu_dev, "failed to get regulators\n"); ret = -ENOENT; goto put_reg; } /* * We expect an OPP table supplied by platform. * Just, incase the platform did not supply the OPP * table, it will try to get it. */ num = dev_pm_opp_get_opp_count(cpu_dev); if (num < 0) { ret = of_init_opp_table(cpu_dev); if (ret < 0) { dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); goto put_reg; } /* Because we have added the OPPs here, we must free them */ free_opp = true; num = dev_pm_opp_get_opp_count(cpu_dev); if (num < 0) { ret = num; dev_err(cpu_dev, "no OPP table is found: %d\n", ret); goto out_free_opp; } } ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); if (ret) { dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); goto put_reg; } /* Make imx6_soc_volt array's size same as arm opp number */ imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL); if (imx6_soc_volt == NULL) { ret = -ENOMEM; goto free_freq_table; } prop = of_find_property(np, "fsl,soc-operating-points", NULL); if (!prop || !prop->value) goto soc_opp_out; /* * Each OPP is a set of tuples consisting of frequency and * voltage like <freq-kHz vol-uV>. */ nr = prop->length / sizeof(u32); if (nr % 2 || (nr / 2) < num) goto soc_opp_out; for (j = 0; j < num; j++) { val = prop->value; for (i = 0; i < nr / 2; i++) { unsigned long freq = be32_to_cpup(val++); unsigned long volt = be32_to_cpup(val++); if (freq_table[j].frequency == freq) { imx6_soc_volt[soc_opp_count++] = volt; break; } } } soc_opp_out: /* use fixed soc opp volt if no valid soc opp info found in dtb */ if (soc_opp_count != num) { dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); for (j = 0; j < num; j++) imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; } if (of_property_read_u32(np, "clock-latency", &transition_latency)) transition_latency = CPUFREQ_ETERNAL; /* * Calculate the ramp time for max voltage change in the * VDDSOC and VDDPU regulators. */ ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); if (ret > 0) transition_latency += ret * 1000; if (!IS_ERR(pu_reg)) { ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); if (ret > 0) transition_latency += ret * 1000; } /* * OPP is maintained in order of increasing frequency, and * freq_table initialised from OPP is therefore sorted in the * same order. */ rcu_read_lock(); opp = dev_pm_opp_find_freq_exact(cpu_dev, freq_table[0].frequency * 1000, true); min_volt = dev_pm_opp_get_voltage(opp); opp = dev_pm_opp_find_freq_exact(cpu_dev, freq_table[--num].frequency * 1000, true); max_volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); if (ret > 0) transition_latency += ret * 1000; ret = cpufreq_register_driver(&imx6q_cpufreq_driver); if (ret) { dev_err(cpu_dev, "failed register driver: %d\n", ret); goto free_freq_table; } of_node_put(np); return 0; free_freq_table: dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); out_free_opp: if (free_opp) of_free_opp_table(cpu_dev); put_reg: if (!IS_ERR(arm_reg)) regulator_put(arm_reg); if (!IS_ERR(pu_reg)) regulator_put(pu_reg); if (!IS_ERR(soc_reg)) regulator_put(soc_reg); put_clk: if (!IS_ERR(arm_clk)) clk_put(arm_clk); if (!IS_ERR(pll1_sys_clk)) clk_put(pll1_sys_clk); if (!IS_ERR(pll1_sw_clk)) clk_put(pll1_sw_clk); if (!IS_ERR(step_clk)) clk_put(step_clk); if (!IS_ERR(pll2_pfd2_396m_clk)) clk_put(pll2_pfd2_396m_clk); of_node_put(np); return ret; } static int imx6q_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&imx6q_cpufreq_driver); dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); if (free_opp) of_free_opp_table(cpu_dev); regulator_put(arm_reg); if (!IS_ERR(pu_reg)) regulator_put(pu_reg); regulator_put(soc_reg); clk_put(arm_clk); clk_put(pll1_sys_clk); clk_put(pll1_sw_clk); clk_put(step_clk); clk_put(pll2_pfd2_396m_clk); return 0; } static struct platform_driver imx6q_cpufreq_platdrv = { .driver = { .name = "imx6q-cpufreq", }, .probe = imx6q_cpufreq_probe, .remove = imx6q_cpufreq_remove, }; module_platform_driver(imx6q_cpufreq_platdrv); MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); MODULE_LICENSE("GPL");