/* * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo * * This file is derived from the powermac console "imstt" driver: * Copyright (C) 1997 Sigurdur Asgeirsson * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu) * Modified by Danilo Beuche 1998 * Some register values added by Damien Doligez, INRIA Rocquencourt * Various cleanups by Paul Mundt (lethal@chaoticdreams.org) * * This file was written by Ryan Nielsen (ran@krazynet.com) * Most of the frame buffer device stuff was copied from atyfb.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. */ #include <linux/config.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/tty.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/fb.h> #include <linux/init.h> #include <linux/pci.h> #include <asm/io.h> #include <asm/uaccess.h> #if defined(CONFIG_PPC) #include <linux/nvram.h> #include <asm/prom.h> #include <asm/pci-bridge.h> #include "macmodes.h" #endif #ifndef __powerpc__ #define eieio() /* Enforce In-order Execution of I/O */ #endif /* TwinTurbo (Cosmo) registers */ enum { S1SA = 0, /* 0x00 */ S2SA = 1, /* 0x04 */ SP = 2, /* 0x08 */ DSA = 3, /* 0x0C */ CNT = 4, /* 0x10 */ DP_OCTL = 5, /* 0x14 */ CLR = 6, /* 0x18 */ BI = 8, /* 0x20 */ MBC = 9, /* 0x24 */ BLTCTL = 10, /* 0x28 */ /* Scan Timing Generator Registers */ HES = 12, /* 0x30 */ HEB = 13, /* 0x34 */ HSB = 14, /* 0x38 */ HT = 15, /* 0x3C */ VES = 16, /* 0x40 */ VEB = 17, /* 0x44 */ VSB = 18, /* 0x48 */ VT = 19, /* 0x4C */ HCIV = 20, /* 0x50 */ VCIV = 21, /* 0x54 */ TCDR = 22, /* 0x58 */ VIL = 23, /* 0x5C */ STGCTL = 24, /* 0x60 */ /* Screen Refresh Generator Registers */ SSR = 25, /* 0x64 */ HRIR = 26, /* 0x68 */ SPR = 27, /* 0x6C */ CMR = 28, /* 0x70 */ SRGCTL = 29, /* 0x74 */ /* RAM Refresh Generator Registers */ RRCIV = 30, /* 0x78 */ RRSC = 31, /* 0x7C */ RRCR = 34, /* 0x88 */ /* System Registers */ GIOE = 32, /* 0x80 */ GIO = 33, /* 0x84 */ SCR = 35, /* 0x8C */ SSTATUS = 36, /* 0x90 */ PRC = 37, /* 0x94 */ #if 0 /* PCI Registers */ DVID = 0x00000000L, SC = 0x00000004L, CCR = 0x00000008L, OG = 0x0000000CL, BARM = 0x00000010L, BARER = 0x00000030L, #endif }; /* IBM 624 RAMDAC Direct Registers */ enum { PADDRW = 0x00, PDATA = 0x04, PPMASK = 0x08, PADDRR = 0x0c, PIDXLO = 0x10, PIDXHI = 0x14, PIDXDATA= 0x18, PIDXCTL = 0x1c }; /* IBM 624 RAMDAC Indirect Registers */ enum { CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */ SYNCCTL = 0x03, /* (0x00) Sync Control */ HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */ PWRMNGMT = 0x05, /* (0x00) Power Management */ DACOP = 0x06, /* (0x02) DAC Operation */ PALETCTL = 0x07, /* (0x00) Palette Control */ SYSCLKCTL = 0x08, /* (0x01) System Clock Control */ PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */ BPP8 = 0x0b, /* () 8 Bits/Pixel Control */ BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */ BPP24 = 0x0d, /* () 24 Bits/Pixel Control */ BPP32 = 0x0e, /* () 32 Bits/Pixel Control */ PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */ PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */ SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */ SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */ SYSCLKP = 0x17, /* () System Clock P */ SYSCLKC = 0x18, /* () System Clock C */ /* * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1) * c is charge pump bias which depends on the VCO frequency */ PIXM0 = 0x20, /* () Pixel M 0 */ PIXN0 = 0x21, /* () Pixel N 0 */ PIXP0 = 0x22, /* () Pixel P 0 */ PIXC0 = 0x23, /* () Pixel C 0 */ CURSCTL = 0x30, /* (0x00) Cursor Control */ CURSXLO = 0x31, /* () Cursor X position, low 8 bits */ CURSXHI = 0x32, /* () Cursor X position, high 8 bits */ CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */ CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */ CURSHOTX = 0x35, /* () Cursor Hot Spot X */ CURSHOTY = 0x36, /* () Cursor Hot Spot Y */ CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */ CURSACATTR = 0x38, /* () Advanced Cursor Attribute */ CURS1R = 0x40, /* () Cursor 1 Red */ CURS1G = 0x41, /* () Cursor 1 Green */ CURS1B = 0x42, /* () Cursor 1 Blue */ CURS2R = 0x43, /* () Cursor 2 Red */ CURS2G = 0x44, /* () Cursor 2 Green */ CURS2B = 0x45, /* () Cursor 2 Blue */ CURS3R = 0x46, /* () Cursor 3 Red */ CURS3G = 0x47, /* () Cursor 3 Green */ CURS3B = 0x48, /* () Cursor 3 Blue */ BORDR = 0x60, /* () Border Color Red */ BORDG = 0x61, /* () Border Color Green */ BORDB = 0x62, /* () Border Color Blue */ MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */ MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */ MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */ KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */ }; /* TI TVP 3030 RAMDAC Direct Registers */ enum { TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */ TVPPDATA = 0x04, /* 1 Palette Data RAM Data */ TVPPMASK = 0x08, /* 2 Pixel Read-Mask */ TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */ TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */ TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */ /* 6 reserved */ TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */ /* 8 reserved */ TVPDCCTL = 0x24, /* 9 Direct Cursor Control */ TVPIDATA = 0x28, /* 10 Index Data */ TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */ TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */ TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */ TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */ TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */ }; /* TI TVP 3030 RAMDAC Indirect Registers */ enum { TVPIRREV = 0x01, /* Silicon Revision [RO] */ TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */ TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */ TVPIRLAC = 0x0f, /* Latch Control (0x06) */ TVPIRTCC = 0x18, /* True Color Control (0x80) */ TVPIRMXC = 0x19, /* Multiplex Control (0x98) */ TVPIRCLS = 0x1a, /* Clock Selection (0x07) */ TVPIRPPG = 0x1c, /* Palette Page (0x00) */ TVPIRGEC = 0x1d, /* General Control (0x00) */ TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */ TVPIRPLA = 0x2c, /* PLL Address */ TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */ TVPIRMPD = 0x2e, /* Memory Clock PLL Data */ TVPIRLPD = 0x2f, /* Loop Clock PLL Data */ TVPIRCKL = 0x30, /* Color-Key Overlay Low */ TVPIRCKH = 0x31, /* Color-Key Overlay High */ TVPIRCRL = 0x32, /* Color-Key Red Low */ TVPIRCRH = 0x33, /* Color-Key Red High */ TVPIRCGL = 0x34, /* Color-Key Green Low */ TVPIRCGH = 0x35, /* Color-Key Green High */ TVPIRCBL = 0x36, /* Color-Key Blue Low */ TVPIRCBH = 0x37, /* Color-Key Blue High */ TVPIRCKC = 0x38, /* Color-Key Control (0x00) */ TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */ TVPIRSEN = 0x3a, /* Sense Test (0x00) */ TVPIRTMD = 0x3b, /* Test Mode Data */ TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */ TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */ TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */ TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */ TVPIRRES = 0xff /* Software Reset [WO] */ }; struct initvalues { __u8 addr, value; }; static struct initvalues ibm_initregs[] __devinitdata = { { CLKCTL, 0x21 }, { SYNCCTL, 0x00 }, { HSYNCPOS, 0x00 }, { PWRMNGMT, 0x00 }, { DACOP, 0x02 }, { PALETCTL, 0x00 }, { SYSCLKCTL, 0x01 }, /* * Note that colors in X are correct only if all video data is * passed through the palette in the DAC. That is, "indirect * color" must be configured. This is the case for the IBM DAC * used in the 2MB and 4MB cards, at least. */ { BPP8, 0x00 }, { BPP16, 0x01 }, { BPP24, 0x00 }, { BPP32, 0x00 }, { PIXCTL1, 0x05 }, { PIXCTL2, 0x00 }, { SYSCLKN, 0x08 }, { SYSCLKM, 0x4f }, { SYSCLKP, 0x00 }, { SYSCLKC, 0x00 }, { CURSCTL, 0x00 }, { CURSACCTL, 0x01 }, { CURSACATTR, 0xa8 }, { CURS1R, 0xff }, { CURS1G, 0xff }, { CURS1B, 0xff }, { CURS2R, 0xff }, { CURS2G, 0xff }, { CURS2B, 0xff }, { CURS3R, 0xff }, { CURS3G, 0xff }, { CURS3B, 0xff }, { BORDR, 0xff }, { BORDG, 0xff }, { BORDB, 0xff }, { MISCTL1, 0x01 }, { MISCTL2, 0x45 }, { MISCTL3, 0x00 }, { KEYCTL, 0x00 } }; static struct initvalues tvp_initregs[] __devinitdata = { { TVPIRICC, 0x00 }, { TVPIRBRC, 0xe4 }, { TVPIRLAC, 0x06 }, { TVPIRTCC, 0x80 }, { TVPIRMXC, 0x4d }, { TVPIRCLS, 0x05 }, { TVPIRPPG, 0x00 }, { TVPIRGEC, 0x00 }, { TVPIRMIC, 0x08 }, { TVPIRCKL, 0xff }, { TVPIRCKH, 0xff }, { TVPIRCRL, 0xff }, { TVPIRCRH, 0xff }, { TVPIRCGL, 0xff }, { TVPIRCGH, 0xff }, { TVPIRCBL, 0xff }, { TVPIRCBH, 0xff }, { TVPIRCKC, 0x00 }, { TVPIRPLA, 0x00 }, { TVPIRPPD, 0xc0 }, { TVPIRPPD, 0xd5 }, { TVPIRPPD, 0xea }, { TVPIRPLA, 0x00 }, { TVPIRMPD, 0xb9 }, { TVPIRMPD, 0x3a }, { TVPIRMPD, 0xb1 }, { TVPIRPLA, 0x00 }, { TVPIRLPD, 0xc1 }, { TVPIRLPD, 0x3d }, { TVPIRLPD, 0xf3 }, }; struct imstt_regvals { __u32 pitch; __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil; __u8 pclk_m, pclk_n, pclk_p; /* Values of the tvp which change depending on colormode x resolution */ __u8 mlc[3]; /* Memory Loop Config 0x39 */ __u8 lckl_p[3]; /* P value of LCKL PLL */ }; struct imstt_par { struct imstt_regvals init; __u32 __iomem *dc_regs; unsigned long cmap_regs_phys; __u8 *cmap_regs; __u32 ramdac; }; enum { IBM = 0, TVP = 1 }; #define USE_NV_MODES 1 #define INIT_BPP 8 #define INIT_XRES 640 #define INIT_YRES 480 static int inverse = 0; static char fontname[40] __initdata = { 0 }; #if defined(CONFIG_PPC) static signed char init_vmode __devinitdata = -1, init_cmode __devinitdata = -1; #endif static struct imstt_regvals tvp_reg_init_2 = { 512, 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196, 0xec, 0x2a, 0xf3, { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 } }; static struct imstt_regvals tvp_reg_init_6 = { 640, 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a, 0xef, 0x2e, 0xb2, { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 } }; static struct imstt_regvals tvp_reg_init_12 = { 800, 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270, 0xf6, 0x2e, 0xf2, { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 } }; static struct imstt_regvals tvp_reg_init_13 = { 832, 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000, 0xfe, 0x3e, 0xf1, { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 } }; static struct imstt_regvals tvp_reg_init_17 = { 1024, 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000, 0xfc, 0x3a, 0xf1, { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 } }; static struct imstt_regvals tvp_reg_init_18 = { 1152, 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000, 0xfd, 0x3a, 0xf1, { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 } }; static struct imstt_regvals tvp_reg_init_19 = { 1280, 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7, 0xf7, 0x36, 0xf0, { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 } }; static struct imstt_regvals tvp_reg_init_20 = { 1280, 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000, 0xf0, 0x2d, 0xf0, { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 } }; /* * PCI driver prototypes */ static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent); static void imsttfb_remove(struct pci_dev *pdev); /* * Register access */ static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex) { #ifdef __powerpc__ return in_le32(base + regindex); #else return readl(base + regindex); #endif } static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val) { #ifdef __powerpc__ out_le32(base + regindex, val); #else writel(val, base + regindex); #endif } static __u32 getclkMHz(struct imstt_par *par) { __u32 clk_m, clk_n, clk_p; clk_m = par->init.pclk_m; clk_n = par->init.pclk_n; clk_p = par->init.pclk_p; return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1)); } static void setclkMHz(struct imstt_par *par, __u32 MHz) { __u32 clk_m, clk_n, clk_p, x, stage, spilled; clk_m = clk_n = clk_p = 0; stage = spilled = 0; for (;;) { switch (stage) { case 0: clk_m++; break; case 1: clk_n++; break; } x = 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1)); if (x == MHz) break; if (x > MHz) { spilled = 1; stage = 1; } else if (spilled && x < MHz) { stage = 0; } } par->init.pclk_m = clk_m; par->init.pclk_n = clk_n; par->init.pclk_p = clk_p; } static struct imstt_regvals * compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres) { struct imstt_regvals *init = &par->init; __u32 MHz, hes, heb, veb, htp, vtp; switch (xres) { case 640: hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2; MHz = 30 /* .25 */ ; break; case 832: hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3; MHz = 57 /* .27_ */ ; break; case 1024: hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3; MHz = 80; break; case 1152: hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3; MHz = 101 /* .6_ */ ; break; case 1280: hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1; MHz = yres == 960 ? 126 : 135; break; case 1600: hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3; MHz = 200; break; default: return NULL; } setclkMHz(par, MHz); init->hes = hes; init->heb = heb; init->hsb = init->heb + (xres >> 3); init->ht = init->hsb + htp; init->ves = 0x0003; init->veb = veb; init->vsb = init->veb + yres; init->vt = init->vsb + vtp; init->vil = init->vsb; init->pitch = xres; return init; } static struct imstt_regvals * compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres) { struct imstt_regvals *init; switch (xres) { case 512: init = &tvp_reg_init_2; break; case 640: init = &tvp_reg_init_6; break; case 800: init = &tvp_reg_init_12; break; case 832: init = &tvp_reg_init_13; break; case 1024: init = &tvp_reg_init_17; break; case 1152: init = &tvp_reg_init_18; break; case 1280: init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20; break; default: return NULL; } par->init = *init; return init; } static struct imstt_regvals * compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres) { if (par->ramdac == IBM) return compute_imstt_regvals_ibm(par, xres, yres); else return compute_imstt_regvals_tvp(par, xres, yres); } static void set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp) { struct imstt_regvals *init = &par->init; __u8 pformat = (bpp >> 3) + 2; par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = PIXM0; eieio(); par->cmap_regs[PIDXDATA] = init->pclk_m;eieio(); par->cmap_regs[PIDXLO] = PIXN0; eieio(); par->cmap_regs[PIDXDATA] = init->pclk_n;eieio(); par->cmap_regs[PIDXLO] = PIXP0; eieio(); par->cmap_regs[PIDXDATA] = init->pclk_p;eieio(); par->cmap_regs[PIDXLO] = PIXC0; eieio(); par->cmap_regs[PIDXDATA] = 0x02; eieio(); par->cmap_regs[PIDXLO] = PIXFMT; eieio(); par->cmap_regs[PIDXDATA] = pformat; eieio(); } static void set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp) { struct imstt_regvals *init = &par->init; __u8 tcc, mxc, lckl_n, mic; __u8 mlc, lckl_p; switch (bpp) { default: case 8: tcc = 0x80; mxc = 0x4d; lckl_n = 0xc1; mlc = init->mlc[0]; lckl_p = init->lckl_p[0]; break; case 16: tcc = 0x44; mxc = 0x55; lckl_n = 0xe1; mlc = init->mlc[1]; lckl_p = init->lckl_p[1]; break; case 24: tcc = 0x5e; mxc = 0x5d; lckl_n = 0xf1; mlc = init->mlc[2]; lckl_p = init->lckl_p[2]; break; case 32: tcc = 0x46; mxc = 0x5d; lckl_n = 0xf1; mlc = init->mlc[2]; lckl_p = init->lckl_p[2]; break; } mic = 0x08; par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); par->cmap_regs[TVPIDATA] = 0x00; eieio(); par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio(); par->cmap_regs[TVPIDATA] = init->pclk_m; eieio(); par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio(); par->cmap_regs[TVPIDATA] = init->pclk_n; eieio(); par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio(); par->cmap_regs[TVPIDATA] = init->pclk_p; eieio(); par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio(); par->cmap_regs[TVPIDATA] = tcc; eieio(); par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio(); par->cmap_regs[TVPIDATA] = mxc; eieio(); par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio(); par->cmap_regs[TVPIDATA] = mic; eieio(); par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); par->cmap_regs[TVPIDATA] = 0x00; eieio(); par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio(); par->cmap_regs[TVPIDATA] = lckl_n; eieio(); par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); par->cmap_regs[TVPIDATA] = 0x15; eieio(); par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio(); par->cmap_regs[TVPIDATA] = mlc; eieio(); par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); par->cmap_regs[TVPIDATA] = 0x2a; eieio(); par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio(); par->cmap_regs[TVPIDATA] = lckl_p; eieio(); } static void set_imstt_regvals (struct fb_info *info, u_int bpp) { struct imstt_par *par = (struct imstt_par *) info->par; struct imstt_regvals *init = &par->init; __u32 ctl, pitch, byteswap, scr; if (par->ramdac == IBM) set_imstt_regvals_ibm(par, bpp); else set_imstt_regvals_tvp(par, bpp); /* * From what I (jsk) can gather poking around with MacsBug, * bits 8 and 9 in the SCR register control endianness * correction (byte swapping). These bits must be set according * to the color depth as follows: * Color depth Bit 9 Bit 8 * ========== ===== ===== * 8bpp 0 0 * 16bpp 0 1 * 32bpp 1 1 */ switch (bpp) { default: case 8: ctl = 0x17b1; pitch = init->pitch >> 2; byteswap = 0x000; break; case 16: ctl = 0x17b3; pitch = init->pitch >> 1; byteswap = 0x100; break; case 24: ctl = 0x17b9; pitch = init->pitch - (init->pitch >> 2); byteswap = 0x200; break; case 32: ctl = 0x17b5; pitch = init->pitch; byteswap = 0x300; break; } if (par->ramdac == TVP) ctl -= 0x30; write_reg_le32(par->dc_regs, HES, init->hes); write_reg_le32(par->dc_regs, HEB, init->heb); write_reg_le32(par->dc_regs, HSB, init->hsb); write_reg_le32(par->dc_regs, HT, init->ht); write_reg_le32(par->dc_regs, VES, init->ves); write_reg_le32(par->dc_regs, VEB, init->veb); write_reg_le32(par->dc_regs, VSB, init->vsb); write_reg_le32(par->dc_regs, VT, init->vt); write_reg_le32(par->dc_regs, VIL, init->vil); write_reg_le32(par->dc_regs, HCIV, 1); write_reg_le32(par->dc_regs, VCIV, 1); write_reg_le32(par->dc_regs, TCDR, 4); write_reg_le32(par->dc_regs, RRCIV, 1); write_reg_le32(par->dc_regs, RRSC, 0x980); write_reg_le32(par->dc_regs, RRCR, 0x11); if (par->ramdac == IBM) { write_reg_le32(par->dc_regs, HRIR, 0x0100); write_reg_le32(par->dc_regs, CMR, 0x00ff); write_reg_le32(par->dc_regs, SRGCTL, 0x0073); } else { write_reg_le32(par->dc_regs, HRIR, 0x0200); write_reg_le32(par->dc_regs, CMR, 0x01ff); write_reg_le32(par->dc_regs, SRGCTL, 0x0003); } switch (info->fix.smem_len) { case 0x200000: scr = 0x059d | byteswap; break; /* case 0x400000: case 0x800000: */ default: pitch >>= 1; scr = 0x150dd | byteswap; break; } write_reg_le32(par->dc_regs, SCR, scr); write_reg_le32(par->dc_regs, SPR, pitch); write_reg_le32(par->dc_regs, STGCTL, ctl); } static inline void set_offset (struct fb_var_screeninfo *var, struct fb_info *info) { struct imstt_par *par = (struct imstt_par *) info->par; __u32 off = var->yoffset * (info->fix.line_length >> 3) + ((var->xoffset * (var->bits_per_pixel >> 3)) >> 3); write_reg_le32(par->dc_regs, SSR, off); } static inline void set_555 (struct imstt_par *par) { if (par->ramdac == IBM) { par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = BPP16; eieio(); par->cmap_regs[PIDXDATA] = 0x01; eieio(); } else { par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio(); par->cmap_regs[TVPIDATA] = 0x44; eieio(); } } static inline void set_565 (struct imstt_par *par) { if (par->ramdac == IBM) { par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = BPP16; eieio(); par->cmap_regs[PIDXDATA] = 0x03; eieio(); } else { par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio(); par->cmap_regs[TVPIDATA] = 0x45; eieio(); } } static int imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16 && var->bits_per_pixel != 24 && var->bits_per_pixel != 32) || var->xres_virtual < var->xres || var->yres_virtual < var->yres || var->nonstd || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED) return -EINVAL; if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len) return -EINVAL; switch (var->bits_per_pixel) { case 8: var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 0; break; case 16: /* RGB 555 or 565 */ if (var->green.length != 6) var->red.offset = 10; var->red.length = 5; var->green.offset = 5; if (var->green.length != 6) var->green.length = 5; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = 0; var->transp.length = 0; break; case 24: /* RGB 888 */ var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 0; break; case 32: /* RGBA 8888 */ var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 24; var->transp.length = 8; break; } if (var->yres == var->yres_virtual) { __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2)); var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual; if (var->yres_virtual < var->yres) var->yres_virtual = var->yres; } var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; var->transp.msb_right = 0; var->height = -1; var->width = -1; var->vmode = FB_VMODE_NONINTERLACED; var->left_margin = var->right_margin = 16; var->upper_margin = var->lower_margin = 16; var->hsync_len = var->vsync_len = 8; return 0; } static int imsttfb_set_par(struct fb_info *info) { struct imstt_par *par = (struct imstt_par *) info->par; if (!compute_imstt_regvals(par, info->var.xres, info->var.yres)) return -EINVAL; if (info->var.green.length == 6) set_565(par); else set_555(par); set_imstt_regvals(info, info->var.bits_per_pixel); info->var.pixclock = 1000000 / getclkMHz(par); return 0; } static int imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info) { struct imstt_par *par = (struct imstt_par *) info->par; u_int bpp = info->var.bits_per_pixel; if (regno > 255) return 1; red >>= 8; green >>= 8; blue >>= 8; /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */ if (0 && bpp == 16) /* screws up X */ par->cmap_regs[PADDRW] = regno << 3; else par->cmap_regs[PADDRW] = regno; eieio(); par->cmap_regs[PDATA] = red; eieio(); par->cmap_regs[PDATA] = green; eieio(); par->cmap_regs[PDATA] = blue; eieio(); if (regno < 16) switch (bpp) { case 16: ((u16 *)info->pseudo_palette)[regno] = (regno << (info->var.green.length == 5 ? 10 : 11)) | (regno << 5) | regno; break; case 24: ((u32 *)info->pseudo_palette)[regno] = (regno << 16) | (regno << 8) | regno; break; case 32: { int i = (regno << 8) | regno; ((u32 *)info->pseudo_palette)[regno] = (i << 16) | i; break; } } return 0; } static int imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { if (var->xoffset + info->var.xres > info->var.xres_virtual || var->yoffset + info->var.yres > info->var.yres_virtual) return -EINVAL; info->var.xoffset = var->xoffset; info->var.yoffset = var->yoffset; set_offset(var, info); return 0; } static int imsttfb_blank(int blank, struct fb_info *info) { struct imstt_par *par = (struct imstt_par *) info->par; __u32 ctrl; ctrl = read_reg_le32(par->dc_regs, STGCTL); if (blank > 0) { switch (blank) { case FB_BLANK_NORMAL: case FB_BLANK_POWERDOWN: ctrl &= ~0x00000380; if (par->ramdac == IBM) { par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = MISCTL2; eieio(); par->cmap_regs[PIDXDATA] = 0x55; eieio(); par->cmap_regs[PIDXLO] = MISCTL1; eieio(); par->cmap_regs[PIDXDATA] = 0x11; eieio(); par->cmap_regs[PIDXLO] = SYNCCTL; eieio(); par->cmap_regs[PIDXDATA] = 0x0f; eieio(); par->cmap_regs[PIDXLO] = PWRMNGMT; eieio(); par->cmap_regs[PIDXDATA] = 0x1f; eieio(); par->cmap_regs[PIDXLO] = CLKCTL; eieio(); par->cmap_regs[PIDXDATA] = 0xc0; } break; case FB_BLANK_VSYNC_SUSPEND: ctrl &= ~0x00000020; break; case FB_BLANK_HSYNC_SUSPEND: ctrl &= ~0x00000010; break; } } else { if (par->ramdac == IBM) { ctrl |= 0x000017b0; par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = CLKCTL; eieio(); par->cmap_regs[PIDXDATA] = 0x01; eieio(); par->cmap_regs[PIDXLO] = PWRMNGMT; eieio(); par->cmap_regs[PIDXDATA] = 0x00; eieio(); par->cmap_regs[PIDXLO] = SYNCCTL; eieio(); par->cmap_regs[PIDXDATA] = 0x00; eieio(); par->cmap_regs[PIDXLO] = MISCTL1; eieio(); par->cmap_regs[PIDXDATA] = 0x01; eieio(); par->cmap_regs[PIDXLO] = MISCTL2; eieio(); par->cmap_regs[PIDXDATA] = 0x45; eieio(); } else ctrl |= 0x00001780; } write_reg_le32(par->dc_regs, STGCTL, ctrl); return 0; } static void imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) { struct imstt_par *par = (struct imstt_par *) info->par; __u32 Bpp, line_pitch, bgc, dx, dy, width, height; bgc = rect->color; bgc |= (bgc << 8); bgc |= (bgc << 16); Bpp = info->var.bits_per_pixel >> 3, line_pitch = info->fix.line_length; dy = rect->dy * line_pitch; dx = rect->dx * Bpp; height = rect->height; height--; width = rect->width * Bpp; width--; if (rect->rop == ROP_COPY) { while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); write_reg_le32(par->dc_regs, DSA, dy + dx); write_reg_le32(par->dc_regs, CNT, (height << 16) | width); write_reg_le32(par->dc_regs, DP_OCTL, line_pitch); write_reg_le32(par->dc_regs, BI, 0xffffffff); write_reg_le32(par->dc_regs, MBC, 0xffffffff); write_reg_le32(par->dc_regs, CLR, bgc); write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */ while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40); } else { while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); write_reg_le32(par->dc_regs, DSA, dy + dx); write_reg_le32(par->dc_regs, S1SA, dy + dx); write_reg_le32(par->dc_regs, CNT, (height << 16) | width); write_reg_le32(par->dc_regs, DP_OCTL, line_pitch); write_reg_le32(par->dc_regs, SP, line_pitch); write_reg_le32(par->dc_regs, BLTCTL, 0x40005); while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40); } } static void imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area) { struct imstt_par *par = (struct imstt_par *) info->par; __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl; __u32 cnt, bltctl, sx, sy, dx, dy, height, width; Bpp = info->var.bits_per_pixel >> 3, sx = area->sx * Bpp; sy = area->sy; dx = area->dx * Bpp; dy = area->dy; height = area->height; height--; width = area->width * Bpp; width--; line_pitch = info->fix.line_length; bltctl = 0x05; sp = line_pitch << 16; cnt = height << 16; if (sy < dy) { sy += height; dy += height; sp |= -(line_pitch) & 0xffff; dp_octl = -(line_pitch) & 0xffff; } else { sp |= line_pitch; dp_octl = line_pitch; } if (sx < dx) { sx += width; dx += width; bltctl |= 0x80; cnt |= -(width) & 0xffff; } else { cnt |= width; } fb_offset_old = sy * line_pitch + sx; fb_offset_new = dy * line_pitch + dx; while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); write_reg_le32(par->dc_regs, S1SA, fb_offset_old); write_reg_le32(par->dc_regs, SP, sp); write_reg_le32(par->dc_regs, DSA, fb_offset_new); write_reg_le32(par->dc_regs, CNT, cnt); write_reg_le32(par->dc_regs, DP_OCTL, dp_octl); write_reg_le32(par->dc_regs, BLTCTL, bltctl); while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40); } #if 0 static int imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc) { u_int x, y; if (width > 32 || height > 32) return -EINVAL; if (par->ramdac == IBM) { par->cmap_regs[PIDXHI] = 1; eieio(); for (x = 0; x < 0x100; x++) { par->cmap_regs[PIDXLO] = x; eieio(); par->cmap_regs[PIDXDATA] = 0x00; eieio(); } par->cmap_regs[PIDXHI] = 1; eieio(); for (y = 0; y < height; y++) for (x = 0; x < width >> 2; x++) { par->cmap_regs[PIDXLO] = x + y * 8; eieio(); par->cmap_regs[PIDXDATA] = 0xff; eieio(); } par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = CURS1R; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS1G; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS1B; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS2R; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS2G; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS2B; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS3R; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS3G; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); par->cmap_regs[PIDXLO] = CURS3B; eieio(); par->cmap_regs[PIDXDATA] = fgc; eieio(); } else { par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); par->cmap_regs[TVPIDATA] &= 0x03; eieio(); par->cmap_regs[TVPADDRW] = 0; eieio(); for (x = 0; x < 0x200; x++) { par->cmap_regs[TVPCRDAT] = 0x00; eieio(); } for (x = 0; x < 0x200; x++) { par->cmap_regs[TVPCRDAT] = 0xff; eieio(); } par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); par->cmap_regs[TVPIDATA] &= 0x03; eieio(); for (y = 0; y < height; y++) for (x = 0; x < width >> 3; x++) { par->cmap_regs[TVPADDRW] = x + y * 8; eieio(); par->cmap_regs[TVPCRDAT] = 0xff; eieio(); } par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); par->cmap_regs[TVPIDATA] |= 0x08; eieio(); for (y = 0; y < height; y++) for (x = 0; x < width >> 3; x++) { par->cmap_regs[TVPADDRW] = x + y * 8; eieio(); par->cmap_regs[TVPCRDAT] = 0xff; eieio(); } par->cmap_regs[TVPCADRW] = 0x00; eieio(); for (x = 0; x < 12; x++) par->cmap_regs[TVPCDATA] = fgc; eieio(); } return 1; } static void imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on) { if (par->ramdac == IBM) { par->cmap_regs[PIDXHI] = 0; eieio(); if (!on) { par->cmap_regs[PIDXLO] = CURSCTL; eieio(); par->cmap_regs[PIDXDATA] = 0x00; eieio(); } else { par->cmap_regs[PIDXLO] = CURSXHI; eieio(); par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio(); par->cmap_regs[PIDXLO] = CURSXLO; eieio(); par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio(); par->cmap_regs[PIDXLO] = CURSYHI; eieio(); par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio(); par->cmap_regs[PIDXLO] = CURSYLO; eieio(); par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio(); par->cmap_regs[PIDXLO] = CURSCTL; eieio(); par->cmap_regs[PIDXDATA] = 0x02; eieio(); } } else { if (!on) { par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); par->cmap_regs[TVPIDATA] = 0x00; eieio(); } else { __u16 x = d->dx + 0x40, y = d->dy + 0x40; par->cmap_regs[TVPCXPOH] = x >> 8; eieio(); par->cmap_regs[TVPCXPOL] = x & 0xff; eieio(); par->cmap_regs[TVPCYPOH] = y >> 8; eieio(); par->cmap_regs[TVPCYPOL] = y & 0xff; eieio(); par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); par->cmap_regs[TVPIDATA] = 0x02; eieio(); } } } static int imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor) { struct imstt_par *par = (struct imstt_par *) info->par; u32 flags = cursor->set, fg, bg, xx, yy; if (cursor->dest == NULL && cursor->rop == ROP_XOR) return 1; imstt_set_cursor(info, cursor, 0); if (flags & FB_CUR_SETPOS) { xx = cursor->image.dx - info->var.xoffset; yy = cursor->image.dy - info->var.yoffset; } if (flags & FB_CUR_SETSIZE) { } if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) { int fg_idx = cursor->image.fg_color; int width = (cursor->image.width+7)/8; u8 *dat = (u8 *) cursor->image.data; u8 *dst = (u8 *) cursor->dest; u8 *msk = (u8 *) cursor->mask; switch (cursor->rop) { case ROP_XOR: for (i = 0; i < cursor->image.height; i++) { for (j = 0; j < width; j++) { d_idx = i * MAX_CURS/8 + j; data[d_idx] = byte_rev[dat[s_idx] ^ dst[s_idx]]; mask[d_idx] = byte_rev[msk[s_idx]]; s_idx++; } } break; case ROP_COPY: default: for (i = 0; i < cursor->image.height; i++) { for (j = 0; j < width; j++) { d_idx = i * MAX_CURS/8 + j; data[d_idx] = byte_rev[dat[s_idx]]; mask[d_idx] = byte_rev[msk[s_idx]]; s_idx++; } } break; } fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) | ((info->cmap.green[fg_idx] & 0xf8) << 2) | ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15; imsttfb_load_cursor_image(par, xx, yy, fgc); } if (cursor->enable) imstt_set_cursor(info, cursor, 1); return 0; } #endif #define FBIMSTT_SETREG 0x545401 #define FBIMSTT_GETREG 0x545402 #define FBIMSTT_SETCMAPREG 0x545403 #define FBIMSTT_GETCMAPREG 0x545404 #define FBIMSTT_SETIDXREG 0x545405 #define FBIMSTT_GETIDXREG 0x545406 static int imsttfb_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long arg, struct fb_info *info) { struct imstt_par *par = (struct imstt_par *) info->par; void __user *argp = (void __user *)arg; __u32 reg[2]; __u8 idx[2]; switch (cmd) { case FBIMSTT_SETREG: if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) return -EFAULT; write_reg_le32(par->dc_regs, reg[0], reg[1]); return 0; case FBIMSTT_GETREG: if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) return -EFAULT; reg[1] = read_reg_le32(par->dc_regs, reg[0]); if (copy_to_user((void __user *)(arg + 4), ®[1], 4)) return -EFAULT; return 0; case FBIMSTT_SETCMAPREG: if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) return -EFAULT; write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]); return 0; case FBIMSTT_GETCMAPREG: if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) return -EFAULT; reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]); if (copy_to_user((void __user *)(arg + 4), ®[1], 4)) return -EFAULT; return 0; case FBIMSTT_SETIDXREG: if (copy_from_user(idx, argp, 2)) return -EFAULT; par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = idx[0]; eieio(); par->cmap_regs[PIDXDATA] = idx[1]; eieio(); return 0; case FBIMSTT_GETIDXREG: if (copy_from_user(idx, argp, 1)) return -EFAULT; par->cmap_regs[PIDXHI] = 0; eieio(); par->cmap_regs[PIDXLO] = idx[0]; eieio(); idx[1] = par->cmap_regs[PIDXDATA]; if (copy_to_user((void __user *)(arg + 1), &idx[1], 1)) return -EFAULT; return 0; default: return -ENOIOCTLCMD; } } static struct pci_device_id imsttfb_pci_tbl[] = { { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128, PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM }, { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP }, { 0, } }; MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl); static struct pci_driver imsttfb_pci_driver = { .name = "imsttfb", .id_table = imsttfb_pci_tbl, .probe = imsttfb_probe, .remove = __devexit_p(imsttfb_remove), }; static struct fb_ops imsttfb_ops = { .owner = THIS_MODULE, .fb_check_var = imsttfb_check_var, .fb_set_par = imsttfb_set_par, .fb_setcolreg = imsttfb_setcolreg, .fb_pan_display = imsttfb_pan_display, .fb_blank = imsttfb_blank, .fb_fillrect = imsttfb_fillrect, .fb_copyarea = imsttfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_cursor = soft_cursor, .fb_ioctl = imsttfb_ioctl, }; static void __devinit init_imstt(struct fb_info *info) { struct imstt_par *par = (struct imstt_par *) info->par; __u32 i, tmp, *ip, *end; tmp = read_reg_le32(par->dc_regs, PRC); if (par->ramdac == IBM) info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000; else info->fix.smem_len = 0x800000; ip = (__u32 *)info->screen_base; end = (__u32 *)(info->screen_base + info->fix.smem_len); while (ip < end) *ip++ = 0; /* initialize the card */ tmp = read_reg_le32(par->dc_regs, STGCTL); write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1); write_reg_le32(par->dc_regs, SSR, 0); /* set default values for DAC registers */ if (par->ramdac == IBM) { par->cmap_regs[PPMASK] = 0xff; eieio(); par->cmap_regs[PIDXHI] = 0; eieio(); for (i = 0; i < sizeof(ibm_initregs) / sizeof(*ibm_initregs); i++) { par->cmap_regs[PIDXLO] = ibm_initregs[i].addr; eieio(); par->cmap_regs[PIDXDATA] = ibm_initregs[i].value; eieio(); } } else { for (i = 0; i < sizeof(tvp_initregs) / sizeof(*tvp_initregs); i++) { par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr; eieio(); par->cmap_regs[TVPIDATA] = tvp_initregs[i].value; eieio(); } } #if USE_NV_MODES && defined(CONFIG_PPC) { int vmode = init_vmode, cmode = init_cmode; if (vmode == -1) { vmode = nvram_read_byte(NV_VMODE); if (vmode <= 0 || vmode > VMODE_MAX) vmode = VMODE_640_480_67; } if (cmode == -1) { cmode = nvram_read_byte(NV_CMODE); if (cmode < CMODE_8 || cmode > CMODE_32) cmode = CMODE_8; } if (mac_vmode_to_var(vmode, cmode, &info->var)) { info->var.xres = info->var.xres_virtual = INIT_XRES; info->var.yres = info->var.yres_virtual = INIT_YRES; info->var.bits_per_pixel = INIT_BPP; } } #else info->var.xres = info->var.xres_virtual = INIT_XRES; info->var.yres = info->var.yres_virtual = INIT_YRES; info->var.bits_per_pixel = INIT_BPP; #endif if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) { printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel); kfree(info); return; } sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP"); info->fix.mmio_len = 0x1000; info->fix.accel = FB_ACCEL_IMS_TWINTURBO; info->fix.type = FB_TYPE_PACKED_PIXELS; info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR; info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3); info->fix.xpanstep = 8; info->fix.ypanstep = 1; info->fix.ywrapstep = 0; info->var.accel_flags = FB_ACCELF_TEXT; // if (par->ramdac == IBM) // imstt_cursor_init(info); if (info->var.green.length == 6) set_565(par); else set_555(par); set_imstt_regvals(info, info->var.bits_per_pixel); info->var.pixclock = 1000000 / getclkMHz(par); info->fbops = &imsttfb_ops; info->flags = FBINFO_DEFAULT | FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT | FBINFO_HWACCEL_YPAN; fb_alloc_cmap(&info->cmap, 0, 0); if (register_framebuffer(info) < 0) { kfree(info); return; } tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8; printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n", info->node, info->fix.id, info->fix.smem_len >> 20, tmp); } static int __devinit imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned long addr, size; struct imstt_par *par; struct fb_info *info; #ifdef CONFIG_PPC_OF struct device_node *dp; dp = pci_device_to_OF_node(pdev); if(dp) printk(KERN_INFO "%s: OF name %s\n",__FUNCTION__, dp->name); else printk(KERN_ERR "imsttfb: no OF node for pci device\n"); #endif /* CONFIG_PPC_OF */ size = sizeof(struct fb_info) + sizeof(struct imstt_par) + sizeof(u32) * 16; info = kmalloc(size, GFP_KERNEL); if (!info) { printk(KERN_ERR "imsttfb: Can't allocate memory\n"); return -ENOMEM; } memset(info, 0, size); par = (struct imstt_par *) (info + 1); addr = pci_resource_start (pdev, 0); size = pci_resource_len (pdev, 0); if (!request_mem_region(addr, size, "imsttfb")) { printk(KERN_ERR "imsttfb: Can't reserve memory region\n"); kfree(info); return -ENODEV; } switch (pdev->device) { case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */ par->ramdac = IBM; #ifdef CONFIG_PPC_OF if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) || (strcmp(dp->name, "IMS,tt128mb8A") == 0))) par->ramdac = TVP; #endif /* CONFIG_PPC_OF */ break; case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */ par->ramdac = TVP; break; default: printk(KERN_INFO "imsttfb: Device 0x%x unknown, " "contact maintainer.\n", pdev->device); return -ENODEV; } info->fix.smem_start = addr; info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ? 0x400000 : 0x800000); info->fix.mmio_start = addr + 0x800000; par->dc_regs = ioremap(addr + 0x800000, 0x1000); par->cmap_regs_phys = addr + 0x840000; par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000); info->par = par; info->pseudo_palette = (void *) (par + 1); info->device = &pdev->dev; init_imstt(info); pci_set_drvdata(pdev, info); return 0; } static void __devexit imsttfb_remove(struct pci_dev *pdev) { struct fb_info *info = pci_get_drvdata(pdev); struct imstt_par *par = (struct imstt_par *) info->par; int size = pci_resource_len(pdev, 0); unregister_framebuffer(info); iounmap(par->cmap_regs); iounmap(par->dc_regs); iounmap(info->screen_base); release_mem_region(info->fix.smem_start, size); kfree(info); } #ifndef MODULE static int __init imsttfb_setup(char *options) { char *this_opt; if (!options || !*options) return 0; while ((this_opt = strsep(&options, ",")) != NULL) { if (!strncmp(this_opt, "font:", 5)) { char *p; int i; p = this_opt + 5; for (i = 0; i < sizeof(fontname) - 1; i++) if (!*p || *p == ' ' || *p == ',') break; memcpy(fontname, this_opt + 5, i); fontname[i] = 0; } else if (!strncmp(this_opt, "inverse", 7)) { inverse = 1; fb_invert_cmaps(); } #if defined(CONFIG_PPC) else if (!strncmp(this_opt, "vmode:", 6)) { int vmode = simple_strtoul(this_opt+6, NULL, 0); if (vmode > 0 && vmode <= VMODE_MAX) init_vmode = vmode; } else if (!strncmp(this_opt, "cmode:", 6)) { int cmode = simple_strtoul(this_opt+6, NULL, 0); switch (cmode) { case CMODE_8: case 8: init_cmode = CMODE_8; break; case CMODE_16: case 15: case 16: init_cmode = CMODE_16; break; case CMODE_32: case 24: case 32: init_cmode = CMODE_32; break; } } #endif } return 0; } #endif /* MODULE */ static int __init imsttfb_init(void) { #ifndef MODULE char *option = NULL; if (fb_get_options("imsttfb", &option)) return -ENODEV; imsttfb_setup(option); #endif return pci_register_driver(&imsttfb_pci_driver); } static void __exit imsttfb_exit(void) { pci_unregister_driver(&imsttfb_pci_driver); } MODULE_LICENSE("GPL"); module_init(imsttfb_init); module_exit(imsttfb_exit);