// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2016 * * Author: Gerald Baeza * * Inspired by timer-stm32.c from Maxime Coquelin * pwm-atmel.c from Bo Shen */ #include #include #include #include #include #include #include #define CCMR_CHANNEL_SHIFT 8 #define CCMR_CHANNEL_MASK 0xFF #define MAX_BREAKINPUT 2 struct stm32_breakinput { u32 index; u32 level; u32 filter; }; struct stm32_pwm { struct mutex lock; /* protect pwm config/enable */ struct clk *clk; struct regmap *regmap; u32 max_arr; bool have_complementary_output; struct stm32_breakinput breakinputs[MAX_BREAKINPUT]; unsigned int num_breakinputs; u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */ }; static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static u32 active_channels(struct stm32_pwm *dev) { u32 ccer; regmap_read(dev->regmap, TIM_CCER, &ccer); return ccer & TIM_CCER_CCXE; } struct stm32_pwm_waveform { u32 ccer; u32 psc; u32 arr; u32 ccr; }; static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_waveform *wf, void *_wfhw) { struct stm32_pwm_waveform *wfhw = _wfhw; struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned int ch = pwm->hwpwm; unsigned long rate; u64 ccr, duty; int ret; if (wf->period_length_ns == 0) { *wfhw = (struct stm32_pwm_waveform){ .ccer = 0, }; return 0; } ret = clk_enable(priv->clk); if (ret) return ret; wfhw->ccer = TIM_CCER_CCxE(ch + 1); if (priv->have_complementary_output) wfhw->ccer |= TIM_CCER_CCxNE(ch + 1); rate = clk_get_rate(priv->clk); if (active_channels(priv) & ~(1 << ch * 4)) { u64 arr; /* * Other channels are already enabled, so the configured PSC and * ARR must be used for this channel, too. */ ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); if (ret) goto out; ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); if (ret) goto out; /* * calculate the best value for ARR for the given PSC, refuse if * the resulting period gets bigger than the requested one. */ arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, (u64)NSEC_PER_SEC * (wfhw->psc + 1)); if (arr <= wfhw->arr) { /* * requested period is small than the currently * configured and unchangable period, report back the smallest * possible period, i.e. the current state; Initialize * ccr to anything valid. */ wfhw->ccr = 0; ret = 1; goto out; } } else { /* * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so * the calculations here won't overflow. * First we need to find the minimal value for prescaler such that * * period_ns * clkrate * ------------------------------ < max_arr + 1 * NSEC_PER_SEC * (prescaler + 1) * * This equation is equivalent to * * period_ns * clkrate * ---------------------------- < prescaler + 1 * NSEC_PER_SEC * (max_arr + 1) * * Using integer division and knowing that the right hand side is * integer, this is further equivalent to * * (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler */ u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate, (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1)); u64 arr; wfhw->psc = min_t(u64, psc, MAX_TIM_PSC); arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, (u64)NSEC_PER_SEC * (wfhw->psc + 1)); if (!arr) { /* * requested period is too small, report back the smallest * possible period, i.e. ARR = 0. The only valid CCR * value is then zero, too. */ wfhw->arr = 0; wfhw->ccr = 0; ret = 1; goto out; } /* * ARR is limited intentionally to values less than * priv->max_arr to allow 100% duty cycle. */ wfhw->arr = min_t(u64, arr, priv->max_arr) - 1; } duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate, (u64)NSEC_PER_SEC * (wfhw->psc + 1)); duty = min_t(u64, duty, wfhw->arr + 1); if (wf->duty_length_ns && wf->duty_offset_ns && wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) { wfhw->ccer |= TIM_CCER_CCxP(ch + 1); if (priv->have_complementary_output) wfhw->ccer |= TIM_CCER_CCxNP(ch + 1); ccr = wfhw->arr + 1 - duty; } else { ccr = duty; } wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1); dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n", pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr); out: clk_disable(priv->clk); return ret; } /* * This should be moved to lib/math/div64.c. Currently there are some changes * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles. */ static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c) { u64 res = mul_u64_u64_div_u64(a, b, c); /* Those multiplications might overflow but it doesn't matter */ u64 rem = a * b - c * res; if (rem) res += 1; return res; } static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, const void *_wfhw, struct pwm_waveform *wf) { const struct stm32_pwm_waveform *wfhw = _wfhw; struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned int ch = pwm->hwpwm; if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { unsigned long rate = clk_get_rate(priv->clk); u64 ccr_ns; /* The result doesn't overflow for rate >= 15259 */ wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1), NSEC_PER_SEC, rate); ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr, NSEC_PER_SEC, rate); if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) { wf->duty_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr), NSEC_PER_SEC, rate); wf->duty_offset_ns = ccr_ns; } else { wf->duty_length_ns = ccr_ns; wf->duty_offset_ns = 0; } dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n", pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); } else { *wf = (struct pwm_waveform){ .period_length_ns = 0, }; } return 0; } static int stm32_pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *_wfhw) { struct stm32_pwm_waveform *wfhw = _wfhw; struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned int ch = pwm->hwpwm; int ret; ret = clk_enable(priv->clk); if (ret) return ret; ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer); if (ret) goto out; if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); if (ret) goto out; ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); if (ret) goto out; if (wfhw->arr == U32_MAX) wfhw->arr -= 1; ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr); if (ret) goto out; if (wfhw->ccr > wfhw->arr + 1) wfhw->ccr = wfhw->arr + 1; } out: clk_disable(priv->clk); return ret; } static int stm32_pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *_wfhw) { const struct stm32_pwm_waveform *wfhw = _wfhw; struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned int ch = pwm->hwpwm; int ret; ret = clk_enable(priv->clk); if (ret) return ret; if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { u32 ccer, mask; unsigned int shift; u32 ccmr; ret = regmap_read(priv->regmap, TIM_CCER, &ccer); if (ret) goto out; /* If there are other channels enabled, don't update PSC and ARR */ if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) { u32 psc, arr; ret = regmap_read(priv->regmap, TIM_PSC, &psc); if (ret) goto out; if (psc != wfhw->psc) { ret = -EBUSY; goto out; } ret = regmap_read(priv->regmap, TIM_ARR, &arr); if (ret) goto out; if (arr != wfhw->arr) { ret = -EBUSY; goto out; } } else { ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc); if (ret) goto out; ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr); if (ret) goto out; ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE); if (ret) goto out; } /* set polarity */ mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1); ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer); if (ret) goto out; ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr); if (ret) goto out; /* Configure output mode */ shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; mask = CCMR_CHANNEL_MASK << shift; if (ch < 2) ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); else ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); if (ret) goto out; ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE); if (ret) goto out; if (!(ccer & TIM_CCER_CCxE(ch + 1))) { mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1); ret = clk_enable(priv->clk); if (ret) goto out; ccer = (ccer & ~mask) | (wfhw->ccer & mask); regmap_write(priv->regmap, TIM_CCER, ccer); /* Make sure that registers are updated */ regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); /* Enable controller */ regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); } } else { /* disable channel */ u32 mask, ccer; mask = TIM_CCER_CCxE(ch + 1); if (priv->have_complementary_output) mask |= TIM_CCER_CCxNE(ch + 1); ret = regmap_read(priv->regmap, TIM_CCER, &ccer); if (ret) goto out; if (ccer & mask) { ccer = ccer & ~mask; ret = regmap_write(priv->regmap, TIM_CCER, ccer); if (ret) goto out; if (!(ccer & TIM_CCER_CCXE)) { /* When all channels are disabled, we can disable the controller */ ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); if (ret) goto out; } clk_disable(priv->clk); } } out: clk_disable(priv->clk); return ret; } #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) /* * Capture using PWM input mode: * ___ ___ * TI[1, 2, 3 or 4]: ........._| |________| * ^0 ^1 ^2 * . . . * . . XXXXX * . . XXXXX | * . XXXXX . | * XXXXX . . | * COUNTER: ______XXXXX . . . |_XXX * start^ . . . ^stop * . . . . * v v . v * v * CCR1/CCR3: tx..........t0...........t2 * CCR2/CCR4: tx..............t1......... * * DMA burst transfer: | | * v v * DMA buffer: { t0, tx } { t2, t1 } * DMA done: ^ * * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care) * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1) * * DMA done, compute: * - Period = t2 - t0 * - Duty cycle = t1 - t0 */ static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm, unsigned long tmo_ms, u32 *raw_prd, u32 *raw_dty) { struct stm32_pwm *priv = to_stm32_pwm_dev(chip); struct device *parent = pwmchip_parent(chip)->parent; enum stm32_timers_dmas dma_id; u32 ccen, ccr; int ret; /* Ensure registers have been updated, enable counter and capture */ regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; regmap_set_bits(priv->regmap, TIM_CCER, ccen); /* * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event. * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 } * or { CCR3, CCR4 }, { CCR3, CCR4 } */ ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2, 2, tmo_ms); if (ret) goto stop; /* Period: t2 - t0 (take care of counter overflow) */ if (priv->capture[0] <= priv->capture[2]) *raw_prd = priv->capture[2] - priv->capture[0]; else *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2]; /* Duty cycle capture requires at least two capture units */ if (pwm->chip->npwm < 2) *raw_dty = 0; else if (priv->capture[0] <= priv->capture[3]) *raw_dty = priv->capture[3] - priv->capture[0]; else *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3]; if (*raw_dty > *raw_prd) { /* * Race beetween PWM input and DMA: it may happen * falling edge triggers new capture on TI2/4 before DMA * had a chance to read CCR2/4. It means capture[1] * contains period + duty_cycle. So, subtract period. */ *raw_dty -= *raw_prd; } stop: regmap_clear_bits(priv->regmap, TIM_CCER, ccen); regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); return ret; } static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_capture *result, unsigned long tmo_ms) { struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned long long prd, div, dty; unsigned long rate; unsigned int psc = 0, icpsc, scale; u32 raw_prd = 0, raw_dty = 0; int ret = 0; mutex_lock(&priv->lock); if (active_channels(priv)) { ret = -EBUSY; goto unlock; } ret = clk_enable(priv->clk); if (ret) { dev_err(pwmchip_parent(chip), "failed to enable counter clock\n"); goto unlock; } rate = clk_get_rate(priv->clk); if (!rate) { ret = -EINVAL; goto clk_dis; } /* prescaler: fit timeout window provided by upper layer */ div = (unsigned long long)rate * (unsigned long long)tmo_ms; do_div(div, MSEC_PER_SEC); prd = div; while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) { psc++; div = prd; do_div(div, psc + 1); } regmap_write(priv->regmap, TIM_ARR, priv->max_arr); regmap_write(priv->regmap, TIM_PSC, psc); /* Reset input selector to its default input and disable slave mode */ regmap_write(priv->regmap, TIM_TISEL, 0x0); regmap_write(priv->regmap, TIM_SMCR, 0x0); /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ regmap_update_bits(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ? TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 : TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1); /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */ regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ? TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? TIM_CCER_CC2P : TIM_CCER_CC4P); ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); if (ret) goto stop; /* * Got a capture. Try to improve accuracy at high rates: * - decrease counter clock prescaler, scale up to max rate. * - use input prescaler, capture once every /2 /4 or /8 edges. */ if (raw_prd) { u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */ scale = max_arr / min(max_arr, raw_prd); } else { scale = priv->max_arr; /* below resolution, use max scale */ } if (psc && scale > 1) { /* 2nd measure with new scale */ psc /= scale; regmap_write(priv->regmap, TIM_PSC, psc); ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); if (ret) goto stop; } /* Compute intermediate period not to exceed timeout at low rates */ prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; do_div(prd, rate); for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) { /* input prescaler: also keep arbitrary margin */ if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1)) break; if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2)) break; } if (!icpsc) goto done; /* Last chance to improve period accuracy, using input prescaler */ regmap_update_bits(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC, FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); if (ret) goto stop; if (raw_dty >= (raw_prd >> icpsc)) { /* * We may fall here using input prescaler, when input * capture starts on high side (before falling edge). * Example with icpsc to capture on each 4 events: * * start 1st capture 2nd capture * v v v * ___ _____ _____ _____ _____ ____ * TI1..4 |__| |__| |__| |__| |__| * v v . . . . . v v * icpsc1/3: . 0 . 1 . 2 . 3 . 0 * icpsc2/4: 0 1 2 3 0 * v v v v * CCR1/3 ......t0..............................t2 * CCR2/4 ..t1..............................t1'... * . . . * Capture0: .<----------------------------->. * Capture1: .<-------------------------->. . * . . . * Period: .<------> . . * Low side: .<>. * * Result: * - Period = Capture0 / icpsc * - Duty = Period - Low side = Period - (Capture0 - Capture1) */ raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty); } done: prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc); dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC; result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate); stop: regmap_write(priv->regmap, TIM_CCER, 0); regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0); regmap_write(priv->regmap, TIM_PSC, 0); clk_dis: clk_disable(priv->clk); unlock: mutex_unlock(&priv->lock); return ret; } static const struct pwm_ops stm32pwm_ops = { .sizeof_wfhw = sizeof(struct stm32_pwm_waveform), .round_waveform_tohw = stm32_pwm_round_waveform_tohw, .round_waveform_fromhw = stm32_pwm_round_waveform_fromhw, .read_waveform = stm32_pwm_read_waveform, .write_waveform = stm32_pwm_write_waveform, .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, }; static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, const struct stm32_breakinput *bi) { u32 shift = TIM_BDTR_BKF_SHIFT(bi->index); u32 bke = TIM_BDTR_BKE(bi->index); u32 bkp = TIM_BDTR_BKP(bi->index); u32 bkf = TIM_BDTR_BKF(bi->index); u32 mask = bkf | bkp | bke; u32 bdtr; bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke; if (bi->level) bdtr |= bkp; regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); regmap_read(priv->regmap, TIM_BDTR, &bdtr); return (bdtr & bke) ? 0 : -EINVAL; } static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv) { unsigned int i; int ret; for (i = 0; i < priv->num_breakinputs; i++) { ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]); if (ret < 0) return ret; } return 0; } static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv, struct device_node *np) { int nb, ret, array_size; unsigned int i; nb = of_property_count_elems_of_size(np, "st,breakinput", sizeof(struct stm32_breakinput)); /* * Because "st,breakinput" parameter is optional do not make probe * failed if it doesn't exist. */ if (nb <= 0) return 0; if (nb > MAX_BREAKINPUT) return -EINVAL; priv->num_breakinputs = nb; array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); ret = of_property_read_u32_array(np, "st,breakinput", (u32 *)priv->breakinputs, array_size); if (ret) return ret; for (i = 0; i < priv->num_breakinputs; i++) { if (priv->breakinputs[i].index > 1 || priv->breakinputs[i].level > 1 || priv->breakinputs[i].filter > 15) return -EINVAL; } return stm32_pwm_apply_breakinputs(priv); } static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) { u32 ccer; /* * If complementary bit doesn't exist writing 1 will have no * effect so we can detect it. */ regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); regmap_read(priv->regmap, TIM_CCER, &ccer); regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); priv->have_complementary_output = (ccer != 0); } static unsigned int stm32_pwm_detect_channels(struct regmap *regmap, unsigned int *num_enabled) { u32 ccer, ccer_backup; /* * If channels enable bits don't exist writing 1 will have no * effect so we can detect and count them. */ regmap_read(regmap, TIM_CCER, &ccer_backup); regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE); regmap_read(regmap, TIM_CCER, &ccer); regmap_write(regmap, TIM_CCER, ccer_backup); *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE); return hweight32(ccer & TIM_CCER_CCXE); } static int stm32_pwm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); struct pwm_chip *chip; struct stm32_pwm *priv; unsigned int npwm, num_enabled; unsigned int i; int ret; npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled); chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv)); if (IS_ERR(chip)) return PTR_ERR(chip); priv = to_stm32_pwm_dev(chip); mutex_init(&priv->lock); priv->regmap = ddata->regmap; priv->clk = ddata->clk; priv->max_arr = ddata->max_arr; if (!priv->regmap || !priv->clk) return dev_err_probe(dev, -EINVAL, "Failed to get %s\n", priv->regmap ? "clk" : "regmap"); ret = stm32_pwm_probe_breakinputs(priv, np); if (ret) return dev_err_probe(dev, ret, "Failed to configure breakinputs\n"); stm32_pwm_detect_complementary(priv); ret = devm_clk_rate_exclusive_get(dev, priv->clk); if (ret) return dev_err_probe(dev, ret, "Failed to lock clock\n"); /* * With the clk running with not more than 1 GHz the calculations in * .apply() won't overflow. */ if (clk_get_rate(priv->clk) > 1000000000) return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n", clk_get_rate(priv->clk)); chip->ops = &stm32pwm_ops; /* Initialize clock refcount to number of enabled PWM channels. */ for (i = 0; i < num_enabled; i++) clk_enable(priv->clk); ret = devm_pwmchip_add(dev, chip); if (ret < 0) return dev_err_probe(dev, ret, "Failed to register pwmchip\n"); platform_set_drvdata(pdev, chip); return 0; } static int stm32_pwm_suspend(struct device *dev) { struct pwm_chip *chip = dev_get_drvdata(dev); struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned int i; u32 ccer, mask; /* Look for active channels */ ccer = active_channels(priv); for (i = 0; i < chip->npwm; i++) { mask = TIM_CCER_CCxE(i + 1); if (ccer & mask) { dev_err(dev, "PWM %u still in use by consumer %s\n", i, chip->pwms[i].label); return -EBUSY; } } return pinctrl_pm_select_sleep_state(dev); } static int stm32_pwm_resume(struct device *dev) { struct pwm_chip *chip = dev_get_drvdata(dev); struct stm32_pwm *priv = to_stm32_pwm_dev(chip); int ret; ret = pinctrl_pm_select_default_state(dev); if (ret) return ret; /* restore breakinput registers that may have been lost in low power */ return stm32_pwm_apply_breakinputs(priv); } static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); static const struct of_device_id stm32_pwm_of_match[] = { { .compatible = "st,stm32-pwm", }, { /* end node */ }, }; MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); static struct platform_driver stm32_pwm_driver = { .probe = stm32_pwm_probe, .driver = { .name = "stm32-pwm", .of_match_table = stm32_pwm_of_match, .pm = pm_ptr(&stm32_pwm_pm_ops), }, }; module_platform_driver(stm32_pwm_driver); MODULE_ALIAS("platform:stm32-pwm"); MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver"); MODULE_LICENSE("GPL v2");