linux/drivers/i2c/busses/i2c-nomadik.c
Geert Uytterhoeven 5751eee5c6 i2c: nomadik: Add missing sentinel to match table
The OF match table is not NULL-terminated.
Fix this by adding a sentinel to nmk_i2c_eyeq_match_table[].

Fixes: a0d15cc47f ("i2c: nomadik: switch from of_device_is_compatible() to of_match_device()")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Théo Lebrun <theo.lebrun@bootlin.com>
Signed-off-by: Andi Shyti <andi.shyti@kernel.org>
2024-12-10 16:07:53 +01:00

1239 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2009 ST-Ericsson SA
* Copyright (C) 2009 STMicroelectronics
*
* I2C master mode controller driver, used in Nomadik 8815
* and Ux500 platforms.
*
* The Mobileye EyeQ5 and EyeQ6H platforms are also supported; they use
* the same Ux500/DB8500 IP block with two quirks:
* - The memory bus only supports 32-bit accesses.
* - (only EyeQ5) A register must be configured for the I2C speed mode;
* it is located in a shared register region called OLB.
*
* Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
* Author: Sachin Verma <sachin.verma@st.com>
*/
#include <linux/amba/bus.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define DRIVER_NAME "nmk-i2c"
/* I2C Controller register offsets */
#define I2C_CR (0x000)
#define I2C_SCR (0x004)
#define I2C_HSMCR (0x008)
#define I2C_MCR (0x00C)
#define I2C_TFR (0x010)
#define I2C_SR (0x014)
#define I2C_RFR (0x018)
#define I2C_TFTR (0x01C)
#define I2C_RFTR (0x020)
#define I2C_DMAR (0x024)
#define I2C_BRCR (0x028)
#define I2C_IMSCR (0x02C)
#define I2C_RISR (0x030)
#define I2C_MISR (0x034)
#define I2C_ICR (0x038)
/* Control registers */
#define I2C_CR_PE BIT(0) /* Peripheral Enable */
#define I2C_CR_OM GENMASK(2, 1) /* Operating mode */
#define I2C_CR_SAM BIT(3) /* Slave addressing mode */
#define I2C_CR_SM GENMASK(5, 4) /* Speed mode */
#define I2C_CR_SGCM BIT(6) /* Slave general call mode */
#define I2C_CR_FTX BIT(7) /* Flush Transmit */
#define I2C_CR_FRX BIT(8) /* Flush Receive */
#define I2C_CR_DMA_TX_EN BIT(9) /* DMA Tx enable */
#define I2C_CR_DMA_RX_EN BIT(10) /* DMA Rx Enable */
#define I2C_CR_DMA_SLE BIT(11) /* DMA sync. logic enable */
#define I2C_CR_LM BIT(12) /* Loopback mode */
#define I2C_CR_FON GENMASK(14, 13) /* Filtering on */
#define I2C_CR_FS GENMASK(16, 15) /* Force stop enable */
/* Slave control register (SCR) */
#define I2C_SCR_SLSU GENMASK(31, 16) /* Slave data setup time */
/* Master controller (MCR) register */
#define I2C_MCR_OP BIT(0) /* Operation */
#define I2C_MCR_A7 GENMASK(7, 1) /* 7-bit address */
#define I2C_MCR_EA10 GENMASK(10, 8) /* 10-bit Extended address */
#define I2C_MCR_SB BIT(11) /* Extended address */
#define I2C_MCR_AM GENMASK(13, 12) /* Address type */
#define I2C_MCR_STOP BIT(14) /* Stop condition */
#define I2C_MCR_LENGTH GENMASK(25, 15) /* Transaction length */
/* Status register (SR) */
#define I2C_SR_OP GENMASK(1, 0) /* Operation */
#define I2C_SR_STATUS GENMASK(3, 2) /* controller status */
#define I2C_SR_CAUSE GENMASK(6, 4) /* Abort cause */
#define I2C_SR_TYPE GENMASK(8, 7) /* Receive type */
#define I2C_SR_LENGTH GENMASK(19, 9) /* Transfer length */
/* Baud-rate counter register (BRCR) */
#define I2C_BRCR_BRCNT1 GENMASK(31, 16) /* Baud-rate counter 1 */
#define I2C_BRCR_BRCNT2 GENMASK(15, 0) /* Baud-rate counter 2 */
/* Interrupt mask set/clear (IMSCR) bits */
#define I2C_IT_TXFE BIT(0)
#define I2C_IT_TXFNE BIT(1)
#define I2C_IT_TXFF BIT(2)
#define I2C_IT_TXFOVR BIT(3)
#define I2C_IT_RXFE BIT(4)
#define I2C_IT_RXFNF BIT(5)
#define I2C_IT_RXFF BIT(6)
#define I2C_IT_RFSR BIT(16)
#define I2C_IT_RFSE BIT(17)
#define I2C_IT_WTSR BIT(18)
#define I2C_IT_MTD BIT(19)
#define I2C_IT_STD BIT(20)
#define I2C_IT_MAL BIT(24)
#define I2C_IT_BERR BIT(25)
#define I2C_IT_MTDWS BIT(28)
/* some bits in ICR are reserved */
#define I2C_CLEAR_ALL_INTS 0x131f007f
/* maximum threshold value */
#define MAX_I2C_FIFO_THRESHOLD 15
enum i2c_freq_mode {
I2C_FREQ_MODE_STANDARD, /* up to 100 Kb/s */
I2C_FREQ_MODE_FAST, /* up to 400 Kb/s */
I2C_FREQ_MODE_HIGH_SPEED, /* up to 3.4 Mb/s */
I2C_FREQ_MODE_FAST_PLUS, /* up to 1 Mb/s */
};
/* Mobileye EyeQ5 offset into a shared register region (called OLB) */
#define NMK_I2C_EYEQ5_OLB_IOCR2 0x0B8
enum i2c_eyeq5_speed {
I2C_EYEQ5_SPEED_FAST,
I2C_EYEQ5_SPEED_FAST_PLUS,
I2C_EYEQ5_SPEED_HIGH_SPEED,
};
/**
* struct i2c_vendor_data - per-vendor variations
* @has_mtdws: variant has the MTDWS bit
* @fifodepth: variant FIFO depth
*/
struct i2c_vendor_data {
bool has_mtdws;
u32 fifodepth;
};
enum i2c_status {
I2C_NOP,
I2C_ON_GOING,
I2C_OK,
I2C_ABORT
};
/* operation */
enum i2c_operation {
I2C_NO_OPERATION = 0xff,
I2C_WRITE = 0x00,
I2C_READ = 0x01
};
enum i2c_operating_mode {
I2C_OM_SLAVE,
I2C_OM_MASTER,
I2C_OM_MASTER_OR_SLAVE,
};
/**
* struct i2c_nmk_client - client specific data
* @slave_adr: 7-bit slave address
* @count: no. bytes to be transferred
* @buffer: client data buffer
* @xfer_bytes: bytes transferred till now
* @operation: current I2C operation
*/
struct i2c_nmk_client {
unsigned short slave_adr;
unsigned long count;
unsigned char *buffer;
unsigned long xfer_bytes;
enum i2c_operation operation;
};
/**
* struct nmk_i2c_dev - private data structure of the controller.
* @vendor: vendor data for this variant.
* @adev: parent amba device.
* @adap: corresponding I2C adapter.
* @irq: interrupt line for the controller.
* @virtbase: virtual io memory area.
* @clk: hardware i2c block clock.
* @cli: holder of client specific data.
* @clk_freq: clock frequency for the operation mode
* @tft: Tx FIFO Threshold in bytes
* @rft: Rx FIFO Threshold in bytes
* @timeout_usecs: Slave response timeout
* @sm: speed mode
* @stop: stop condition.
* @xfer_wq: xfer done wait queue.
* @xfer_done: xfer done boolean.
* @result: controller propogated result.
* @has_32b_bus: controller is on a bus that only supports 32-bit accesses.
*/
struct nmk_i2c_dev {
struct i2c_vendor_data *vendor;
struct amba_device *adev;
struct i2c_adapter adap;
int irq;
void __iomem *virtbase;
struct clk *clk;
struct i2c_nmk_client cli;
u32 clk_freq;
unsigned char tft;
unsigned char rft;
u32 timeout_usecs;
enum i2c_freq_mode sm;
int stop;
struct wait_queue_head xfer_wq;
bool xfer_done;
int result;
bool has_32b_bus;
};
/* controller's abort causes */
static const char *abort_causes[] = {
"no ack received after address transmission",
"no ack received during data phase",
"ack received after xmission of master code",
"master lost arbitration",
"slave restarts",
"slave reset",
"overflow, maxsize is 2047 bytes",
};
static inline void i2c_set_bit(void __iomem *reg, u32 mask)
{
writel(readl(reg) | mask, reg);
}
static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
{
writel(readl(reg) & ~mask, reg);
}
static inline u8 nmk_i2c_readb(const struct nmk_i2c_dev *priv,
unsigned long reg)
{
if (priv->has_32b_bus)
return readl(priv->virtbase + reg);
else
return readb(priv->virtbase + reg);
}
static inline void nmk_i2c_writeb(const struct nmk_i2c_dev *priv, u32 val,
unsigned long reg)
{
if (priv->has_32b_bus)
writel(val, priv->virtbase + reg);
else
writeb(val, priv->virtbase + reg);
}
/**
* flush_i2c_fifo() - This function flushes the I2C FIFO
* @priv: private data of I2C Driver
*
* This function flushes the I2C Tx and Rx FIFOs. It returns
* 0 on successful flushing of FIFO
*/
static int flush_i2c_fifo(struct nmk_i2c_dev *priv)
{
#define LOOP_ATTEMPTS 10
ktime_t timeout;
int i;
/*
* flush the transmit and receive FIFO. The flushing
* operation takes several cycles before to be completed.
* On the completion, the I2C internal logic clears these
* bits, until then no one must access Tx, Rx FIFO and
* should poll on these bits waiting for the completion.
*/
writel((I2C_CR_FTX | I2C_CR_FRX), priv->virtbase + I2C_CR);
for (i = 0; i < LOOP_ATTEMPTS; i++) {
timeout = ktime_add_us(ktime_get(), priv->timeout_usecs);
while (ktime_after(timeout, ktime_get())) {
if ((readl(priv->virtbase + I2C_CR) &
(I2C_CR_FTX | I2C_CR_FRX)) == 0)
return 0;
}
}
dev_err(&priv->adev->dev,
"flushing operation timed out giving up after %d attempts",
LOOP_ATTEMPTS);
return -ETIMEDOUT;
}
/**
* disable_all_interrupts() - Disable all interrupts of this I2c Bus
* @priv: private data of I2C Driver
*/
static void disable_all_interrupts(struct nmk_i2c_dev *priv)
{
writel(0, priv->virtbase + I2C_IMSCR);
}
/**
* clear_all_interrupts() - Clear all interrupts of I2C Controller
* @priv: private data of I2C Driver
*/
static void clear_all_interrupts(struct nmk_i2c_dev *priv)
{
writel(I2C_CLEAR_ALL_INTS, priv->virtbase + I2C_ICR);
}
/**
* init_hw() - initialize the I2C hardware
* @priv: private data of I2C Driver
*/
static int init_hw(struct nmk_i2c_dev *priv)
{
int stat;
stat = flush_i2c_fifo(priv);
if (stat)
goto exit;
/* disable the controller */
i2c_clr_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
disable_all_interrupts(priv);
clear_all_interrupts(priv);
priv->cli.operation = I2C_NO_OPERATION;
exit:
return stat;
}
/* enable peripheral, master mode operation */
#define DEFAULT_I2C_REG_CR (FIELD_PREP(I2C_CR_OM, I2C_OM_MASTER) | I2C_CR_PE)
/* grab top three bits from extended I2C addresses */
#define ADR_3MSB_BITS GENMASK(9, 7)
/**
* load_i2c_mcr_reg() - load the MCR register
* @priv: private data of controller
* @flags: message flags
*/
static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *priv, u16 flags)
{
u32 mcr = 0;
unsigned short slave_adr_3msb_bits;
mcr |= FIELD_PREP(I2C_MCR_A7, priv->cli.slave_adr);
if (unlikely(flags & I2C_M_TEN)) {
/* 10-bit address transaction */
mcr |= FIELD_PREP(I2C_MCR_AM, 2);
/*
* Get the top 3 bits.
* EA10 represents extended address in MCR. This includes
* the extension (MSB bits) of the 7 bit address loaded
* in A7
*/
slave_adr_3msb_bits = FIELD_GET(ADR_3MSB_BITS,
priv->cli.slave_adr);
mcr |= FIELD_PREP(I2C_MCR_EA10, slave_adr_3msb_bits);
} else {
/* 7-bit address transaction */
mcr |= FIELD_PREP(I2C_MCR_AM, 1);
}
/* start byte procedure not applied */
mcr |= FIELD_PREP(I2C_MCR_SB, 0);
/* check the operation, master read/write? */
if (priv->cli.operation == I2C_WRITE)
mcr |= FIELD_PREP(I2C_MCR_OP, I2C_WRITE);
else
mcr |= FIELD_PREP(I2C_MCR_OP, I2C_READ);
/* stop or repeated start? */
if (priv->stop)
mcr |= FIELD_PREP(I2C_MCR_STOP, 1);
else
mcr &= ~FIELD_PREP(I2C_MCR_STOP, 1);
mcr |= FIELD_PREP(I2C_MCR_LENGTH, priv->cli.count);
return mcr;
}
/**
* setup_i2c_controller() - setup the controller
* @priv: private data of controller
*/
static void setup_i2c_controller(struct nmk_i2c_dev *priv)
{
u32 brcr;
u32 i2c_clk, div;
u32 ns;
u16 slsu;
writel(0x0, priv->virtbase + I2C_CR);
writel(0x0, priv->virtbase + I2C_HSMCR);
writel(0x0, priv->virtbase + I2C_TFTR);
writel(0x0, priv->virtbase + I2C_RFTR);
writel(0x0, priv->virtbase + I2C_DMAR);
i2c_clk = clk_get_rate(priv->clk);
/*
* set the slsu:
*
* slsu defines the data setup time after SCL clock
* stretching in terms of i2c clk cycles + 1 (zero means
* "wait one cycle"), the needed setup time for the three
* modes are 250ns, 100ns, 10ns respectively.
*
* As the time for one cycle T in nanoseconds is
* T = (1/f) * 1000000000 =>
* slsu = cycles / (1000000000 / f) + 1
*/
ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
switch (priv->sm) {
case I2C_FREQ_MODE_FAST:
case I2C_FREQ_MODE_FAST_PLUS:
slsu = DIV_ROUND_UP(100, ns); /* Fast */
break;
case I2C_FREQ_MODE_HIGH_SPEED:
slsu = DIV_ROUND_UP(10, ns); /* High */
break;
case I2C_FREQ_MODE_STANDARD:
default:
slsu = DIV_ROUND_UP(250, ns); /* Standard */
break;
}
slsu += 1;
dev_dbg(&priv->adev->dev, "calculated SLSU = %04x\n", slsu);
writel(FIELD_PREP(I2C_SCR_SLSU, slsu), priv->virtbase + I2C_SCR);
/*
* The spec says, in case of std. mode the divider is
* 2 whereas it is 3 for fast and fastplus mode of
* operation.
*/
div = (priv->clk_freq > I2C_MAX_STANDARD_MODE_FREQ) ? 3 : 2;
/*
* generate the mask for baud rate counters. The controller
* has two baud rate counters. One is used for High speed
* operation, and the other is for std, fast mode, fast mode
* plus operation.
*
* BRCR is a clock divider amount. Pick highest value that
* leads to rate strictly below target. Eg when asking for
* 400kHz you want a bus rate <=400kHz (and not >=400kHz).
*/
brcr = DIV_ROUND_UP(i2c_clk, priv->clk_freq * div);
if (priv->sm == I2C_FREQ_MODE_HIGH_SPEED)
brcr = FIELD_PREP(I2C_BRCR_BRCNT1, brcr);
else
brcr = FIELD_PREP(I2C_BRCR_BRCNT2, brcr);
/* set the baud rate counter register */
writel(brcr, priv->virtbase + I2C_BRCR);
/* set the speed mode */
writel(FIELD_PREP(I2C_CR_SM, priv->sm), priv->virtbase + I2C_CR);
/* set the Tx and Rx FIFO threshold */
writel(priv->tft, priv->virtbase + I2C_TFTR);
writel(priv->rft, priv->virtbase + I2C_RFTR);
}
static bool nmk_i2c_wait_xfer_done(struct nmk_i2c_dev *priv)
{
if (priv->timeout_usecs < jiffies_to_usecs(1)) {
unsigned long timeout_usecs = priv->timeout_usecs;
ktime_t timeout = ktime_set(0, timeout_usecs * NSEC_PER_USEC);
wait_event_hrtimeout(priv->xfer_wq, priv->xfer_done, timeout);
} else {
unsigned long timeout = usecs_to_jiffies(priv->timeout_usecs);
wait_event_timeout(priv->xfer_wq, priv->xfer_done, timeout);
}
return priv->xfer_done;
}
/**
* read_i2c() - Read from I2C client device
* @priv: private data of I2C Driver
* @flags: message flags
*
* This function reads from i2c client device when controller is in
* master mode. There is a completion timeout. If there is no transfer
* before timeout error is returned.
*/
static int read_i2c(struct nmk_i2c_dev *priv, u16 flags)
{
u32 mcr, irq_mask;
int status = 0;
bool xfer_done;
mcr = load_i2c_mcr_reg(priv, flags);
writel(mcr, priv->virtbase + I2C_MCR);
/* load the current CR value */
writel(readl(priv->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
priv->virtbase + I2C_CR);
/* enable the controller */
i2c_set_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
init_waitqueue_head(&priv->xfer_wq);
priv->xfer_done = false;
/* enable interrupts by setting the mask */
irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
I2C_IT_MAL | I2C_IT_BERR);
if (priv->stop || !priv->vendor->has_mtdws)
irq_mask |= I2C_IT_MTD;
else
irq_mask |= I2C_IT_MTDWS;
irq_mask &= I2C_CLEAR_ALL_INTS;
writel(readl(priv->virtbase + I2C_IMSCR) | irq_mask,
priv->virtbase + I2C_IMSCR);
xfer_done = nmk_i2c_wait_xfer_done(priv);
if (!xfer_done)
status = -ETIMEDOUT;
return status;
}
static void fill_tx_fifo(struct nmk_i2c_dev *priv, int no_bytes)
{
int count;
for (count = (no_bytes - 2);
(count > 0) &&
(priv->cli.count != 0);
count--) {
/* write to the Tx FIFO */
nmk_i2c_writeb(priv, *priv->cli.buffer, I2C_TFR);
priv->cli.buffer++;
priv->cli.count--;
priv->cli.xfer_bytes++;
}
}
/**
* write_i2c() - Write data to I2C client.
* @priv: private data of I2C Driver
* @flags: message flags
*
* This function writes data to I2C client
*/
static int write_i2c(struct nmk_i2c_dev *priv, u16 flags)
{
u32 mcr, irq_mask;
u32 status = 0;
bool xfer_done;
mcr = load_i2c_mcr_reg(priv, flags);
writel(mcr, priv->virtbase + I2C_MCR);
/* load the current CR value */
writel(readl(priv->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
priv->virtbase + I2C_CR);
/* enable the controller */
i2c_set_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
init_waitqueue_head(&priv->xfer_wq);
priv->xfer_done = false;
/* enable interrupts by settings the masks */
irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
/* Fill the TX FIFO with transmit data */
fill_tx_fifo(priv, MAX_I2C_FIFO_THRESHOLD);
if (priv->cli.count != 0)
irq_mask |= I2C_IT_TXFNE;
/*
* check if we want to transfer a single or multiple bytes, if so
* set the MTDWS bit (Master Transaction Done Without Stop)
* to start repeated start operation
*/
if (priv->stop || !priv->vendor->has_mtdws)
irq_mask |= I2C_IT_MTD;
else
irq_mask |= I2C_IT_MTDWS;
irq_mask &= I2C_CLEAR_ALL_INTS;
writel(readl(priv->virtbase + I2C_IMSCR) | irq_mask,
priv->virtbase + I2C_IMSCR);
xfer_done = nmk_i2c_wait_xfer_done(priv);
if (!xfer_done) {
/* Controller timed out */
dev_err(&priv->adev->dev, "write to slave 0x%x timed out\n",
priv->cli.slave_adr);
status = -ETIMEDOUT;
}
return status;
}
/**
* nmk_i2c_xfer_one() - transmit a single I2C message
* @priv: device with a message encoded into it
* @flags: message flags
*/
static int nmk_i2c_xfer_one(struct nmk_i2c_dev *priv, u16 flags)
{
int status;
if (flags & I2C_M_RD) {
/* read operation */
priv->cli.operation = I2C_READ;
status = read_i2c(priv, flags);
} else {
/* write operation */
priv->cli.operation = I2C_WRITE;
status = write_i2c(priv, flags);
}
if (status || priv->result) {
u32 i2c_sr;
u32 cause;
i2c_sr = readl(priv->virtbase + I2C_SR);
if (FIELD_GET(I2C_SR_STATUS, i2c_sr) == I2C_ABORT) {
cause = FIELD_GET(I2C_SR_CAUSE, i2c_sr);
dev_err(&priv->adev->dev, "%s\n",
cause >= ARRAY_SIZE(abort_causes) ?
"unknown reason" :
abort_causes[cause]);
}
init_hw(priv);
status = status ? status : priv->result;
}
return status;
}
/**
* nmk_i2c_xfer() - I2C transfer function used by kernel framework
* @i2c_adap: Adapter pointer to the controller
* @msgs: Pointer to data to be written.
* @num_msgs: Number of messages to be executed
*
* This is the function called by the generic kernel i2c_transfer()
* or i2c_smbus...() API calls. Note that this code is protected by the
* semaphore set in the kernel i2c_transfer() function.
*
* NOTE:
* READ TRANSFER : We impose a restriction of the first message to be the
* index message for any read transaction.
* - a no index is coded as '0',
* - 2byte big endian index is coded as '3'
* !!! msg[0].buf holds the actual index.
* This is compatible with generic messages of smbus emulator
* that send a one byte index.
* eg. a I2C transation to read 2 bytes from index 0
* idx = 0;
* msg[0].addr = client->addr;
* msg[0].flags = 0x0;
* msg[0].len = 1;
* msg[0].buf = &idx;
*
* msg[1].addr = client->addr;
* msg[1].flags = I2C_M_RD;
* msg[1].len = 2;
* msg[1].buf = rd_buff
* i2c_transfer(adap, msg, 2);
*
* WRITE TRANSFER : The I2C standard interface interprets all data as payload.
* If you want to emulate an SMBUS write transaction put the
* index as first byte(or first and second) in the payload.
* eg. a I2C transation to write 2 bytes from index 1
* wr_buff[0] = 0x1;
* wr_buff[1] = 0x23;
* wr_buff[2] = 0x46;
* msg[0].flags = 0x0;
* msg[0].len = 3;
* msg[0].buf = wr_buff;
* i2c_transfer(adap, msg, 1);
*
* To read or write a block of data (multiple bytes) using SMBUS emulation
* please use the i2c_smbus_read_i2c_block_data()
* or i2c_smbus_write_i2c_block_data() API
*/
static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg msgs[], int num_msgs)
{
int status = 0;
int i;
struct nmk_i2c_dev *priv = i2c_get_adapdata(i2c_adap);
int j;
pm_runtime_get_sync(&priv->adev->dev);
/* Attempt three times to send the message queue */
for (j = 0; j < 3; j++) {
/* setup the i2c controller */
setup_i2c_controller(priv);
for (i = 0; i < num_msgs; i++) {
priv->cli.slave_adr = msgs[i].addr;
priv->cli.buffer = msgs[i].buf;
priv->cli.count = msgs[i].len;
priv->stop = (i < (num_msgs - 1)) ? 0 : 1;
priv->result = 0;
status = nmk_i2c_xfer_one(priv, msgs[i].flags);
if (status != 0)
break;
}
if (status == 0)
break;
}
pm_runtime_put_sync(&priv->adev->dev);
/* return the no. messages processed */
if (status)
return status;
else
return num_msgs;
}
/**
* disable_interrupts() - disable the interrupts
* @priv: private data of controller
* @irq: interrupt number
*/
static int disable_interrupts(struct nmk_i2c_dev *priv, u32 irq)
{
irq &= I2C_CLEAR_ALL_INTS;
writel(readl(priv->virtbase + I2C_IMSCR) & ~irq,
priv->virtbase + I2C_IMSCR);
return 0;
}
/**
* i2c_irq_handler() - interrupt routine
* @irq: interrupt number
* @arg: data passed to the handler
*
* This is the interrupt handler for the i2c driver. Currently
* it handles the major interrupts like Rx & Tx FIFO management
* interrupts, master transaction interrupts, arbitration and
* bus error interrupts. The rest of the interrupts are treated as
* unhandled.
*/
static irqreturn_t i2c_irq_handler(int irq, void *arg)
{
struct nmk_i2c_dev *priv = arg;
struct device *dev = &priv->adev->dev;
u32 tft, rft;
u32 count;
u32 misr, src;
/* load Tx FIFO and Rx FIFO threshold values */
tft = readl(priv->virtbase + I2C_TFTR);
rft = readl(priv->virtbase + I2C_RFTR);
/* read interrupt status register */
misr = readl(priv->virtbase + I2C_MISR);
src = __ffs(misr);
switch (BIT(src)) {
/* Transmit FIFO nearly empty interrupt */
case I2C_IT_TXFNE:
{
if (priv->cli.operation == I2C_READ) {
/*
* in read operation why do we care for writing?
* so disable the Transmit FIFO interrupt
*/
disable_interrupts(priv, I2C_IT_TXFNE);
} else {
fill_tx_fifo(priv, (MAX_I2C_FIFO_THRESHOLD - tft));
/*
* if done, close the transfer by disabling the
* corresponding TXFNE interrupt
*/
if (priv->cli.count == 0)
disable_interrupts(priv, I2C_IT_TXFNE);
}
}
break;
/*
* Rx FIFO nearly full interrupt.
* This is set when the numer of entries in Rx FIFO is
* greater or equal than the threshold value programmed
* in RFT
*/
case I2C_IT_RXFNF:
for (count = rft; count > 0; count--) {
/* Read the Rx FIFO */
*priv->cli.buffer = nmk_i2c_readb(priv, I2C_RFR);
priv->cli.buffer++;
}
priv->cli.count -= rft;
priv->cli.xfer_bytes += rft;
break;
/* Rx FIFO full */
case I2C_IT_RXFF:
for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
*priv->cli.buffer = nmk_i2c_readb(priv, I2C_RFR);
priv->cli.buffer++;
}
priv->cli.count -= MAX_I2C_FIFO_THRESHOLD;
priv->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
break;
/* Master Transaction Done with/without stop */
case I2C_IT_MTD:
case I2C_IT_MTDWS:
if (priv->cli.operation == I2C_READ) {
while (!(readl(priv->virtbase + I2C_RISR)
& I2C_IT_RXFE)) {
if (priv->cli.count == 0)
break;
*priv->cli.buffer =
nmk_i2c_readb(priv, I2C_RFR);
priv->cli.buffer++;
priv->cli.count--;
priv->cli.xfer_bytes++;
}
}
disable_all_interrupts(priv);
clear_all_interrupts(priv);
if (priv->cli.count) {
priv->result = -EIO;
dev_err(dev, "%lu bytes still remain to be xfered\n",
priv->cli.count);
init_hw(priv);
}
priv->xfer_done = true;
wake_up(&priv->xfer_wq);
break;
/* Master Arbitration lost interrupt */
case I2C_IT_MAL:
priv->result = -EIO;
init_hw(priv);
i2c_set_bit(priv->virtbase + I2C_ICR, I2C_IT_MAL);
priv->xfer_done = true;
wake_up(&priv->xfer_wq);
break;
/*
* Bus Error interrupt.
* This happens when an unexpected start/stop condition occurs
* during the transaction.
*/
case I2C_IT_BERR:
{
u32 sr;
sr = readl(priv->virtbase + I2C_SR);
priv->result = -EIO;
if (FIELD_GET(I2C_SR_STATUS, sr) == I2C_ABORT)
init_hw(priv);
i2c_set_bit(priv->virtbase + I2C_ICR, I2C_IT_BERR);
priv->xfer_done = true;
wake_up(&priv->xfer_wq);
}
break;
/*
* Tx FIFO overrun interrupt.
* This is set when a write operation in Tx FIFO is performed and
* the Tx FIFO is full.
*/
case I2C_IT_TXFOVR:
priv->result = -EIO;
init_hw(priv);
dev_err(dev, "Tx Fifo Over run\n");
priv->xfer_done = true;
wake_up(&priv->xfer_wq);
break;
/* unhandled interrupts by this driver - TODO*/
case I2C_IT_TXFE:
case I2C_IT_TXFF:
case I2C_IT_RXFE:
case I2C_IT_RFSR:
case I2C_IT_RFSE:
case I2C_IT_WTSR:
case I2C_IT_STD:
dev_err(dev, "unhandled Interrupt\n");
break;
default:
dev_err(dev, "spurious Interrupt..\n");
break;
}
return IRQ_HANDLED;
}
static int nmk_i2c_suspend_late(struct device *dev)
{
int ret;
ret = pm_runtime_force_suspend(dev);
if (ret)
return ret;
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int nmk_i2c_resume_early(struct device *dev)
{
return pm_runtime_force_resume(dev);
}
static int nmk_i2c_runtime_suspend(struct device *dev)
{
struct amba_device *adev = to_amba_device(dev);
struct nmk_i2c_dev *priv = amba_get_drvdata(adev);
clk_disable_unprepare(priv->clk);
pinctrl_pm_select_idle_state(dev);
return 0;
}
static int nmk_i2c_runtime_resume(struct device *dev)
{
struct amba_device *adev = to_amba_device(dev);
struct nmk_i2c_dev *priv = amba_get_drvdata(adev);
int ret;
ret = clk_prepare_enable(priv->clk);
if (ret) {
dev_err(dev, "can't prepare_enable clock\n");
return ret;
}
pinctrl_pm_select_default_state(dev);
ret = init_hw(priv);
if (ret) {
clk_disable_unprepare(priv->clk);
pinctrl_pm_select_idle_state(dev);
}
return ret;
}
static const struct dev_pm_ops nmk_i2c_pm = {
LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
RUNTIME_PM_OPS(nmk_i2c_runtime_suspend, nmk_i2c_runtime_resume, NULL)
};
static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
}
static const struct i2c_algorithm nmk_i2c_algo = {
.master_xfer = nmk_i2c_xfer,
.functionality = nmk_i2c_functionality
};
static void nmk_i2c_of_probe(struct device_node *np,
struct nmk_i2c_dev *priv)
{
u32 timeout_usecs;
/* Default to 100 kHz if no frequency is given in the node */
if (of_property_read_u32(np, "clock-frequency", &priv->clk_freq))
priv->clk_freq = I2C_MAX_STANDARD_MODE_FREQ;
if (priv->clk_freq <= I2C_MAX_STANDARD_MODE_FREQ)
priv->sm = I2C_FREQ_MODE_STANDARD;
else if (priv->clk_freq <= I2C_MAX_FAST_MODE_FREQ)
priv->sm = I2C_FREQ_MODE_FAST;
else if (priv->clk_freq <= I2C_MAX_FAST_MODE_PLUS_FREQ)
priv->sm = I2C_FREQ_MODE_FAST_PLUS;
else
priv->sm = I2C_FREQ_MODE_HIGH_SPEED;
priv->tft = 1; /* Tx FIFO threshold */
priv->rft = 8; /* Rx FIFO threshold */
/* Slave response timeout */
if (!of_property_read_u32(np, "i2c-transfer-timeout-us", &timeout_usecs))
priv->timeout_usecs = timeout_usecs;
else
priv->timeout_usecs = 200 * USEC_PER_MSEC;
}
static const unsigned int nmk_i2c_eyeq5_masks[] = {
GENMASK(5, 4),
GENMASK(7, 6),
GENMASK(9, 8),
GENMASK(11, 10),
GENMASK(13, 12),
};
static int nmk_i2c_eyeq5_probe(struct nmk_i2c_dev *priv)
{
struct device *dev = &priv->adev->dev;
struct device_node *np = dev->of_node;
unsigned int mask, speed_mode;
struct regmap *olb;
unsigned int id;
olb = syscon_regmap_lookup_by_phandle_args(np, "mobileye,olb", 1, &id);
if (IS_ERR(olb))
return PTR_ERR(olb);
if (id >= ARRAY_SIZE(nmk_i2c_eyeq5_masks))
return -ENOENT;
if (priv->clk_freq <= 400000)
speed_mode = I2C_EYEQ5_SPEED_FAST;
else if (priv->clk_freq <= 1000000)
speed_mode = I2C_EYEQ5_SPEED_FAST_PLUS;
else
speed_mode = I2C_EYEQ5_SPEED_HIGH_SPEED;
mask = nmk_i2c_eyeq5_masks[id];
regmap_update_bits(olb, NMK_I2C_EYEQ5_OLB_IOCR2,
mask, speed_mode << __fls(mask));
return 0;
}
#define NMK_I2C_EYEQ_FLAG_32B_BUS BIT(0)
#define NMK_I2C_EYEQ_FLAG_IS_EYEQ5 BIT(1)
static const struct of_device_id nmk_i2c_eyeq_match_table[] = {
{
.compatible = "mobileye,eyeq5-i2c",
.data = (void *)(NMK_I2C_EYEQ_FLAG_32B_BUS | NMK_I2C_EYEQ_FLAG_IS_EYEQ5),
},
{
.compatible = "mobileye,eyeq6h-i2c",
.data = (void *)NMK_I2C_EYEQ_FLAG_32B_BUS,
},
{ /* sentinel */ }
};
static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
{
struct i2c_vendor_data *vendor = id->data;
u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
struct device_node *np = adev->dev.of_node;
const struct of_device_id *match;
struct device *dev = &adev->dev;
unsigned long match_flags = 0;
struct nmk_i2c_dev *priv;
struct i2c_adapter *adap;
int ret = 0;
/*
* We do not want to attach a .of_match_table to our amba driver.
* Do not convert to device_get_match_data().
*/
match = of_match_device(nmk_i2c_eyeq_match_table, dev);
if (match)
match_flags = (unsigned long)match->data;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->vendor = vendor;
priv->adev = adev;
priv->has_32b_bus = match_flags & NMK_I2C_EYEQ_FLAG_32B_BUS;
nmk_i2c_of_probe(np, priv);
if (match_flags & NMK_I2C_EYEQ_FLAG_IS_EYEQ5) {
ret = nmk_i2c_eyeq5_probe(priv);
if (ret)
return dev_err_probe(dev, ret, "failed OLB lookup\n");
}
if (priv->tft > max_fifo_threshold) {
dev_warn(dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
priv->tft, max_fifo_threshold);
priv->tft = max_fifo_threshold;
}
if (priv->rft > max_fifo_threshold) {
dev_warn(dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
priv->rft, max_fifo_threshold);
priv->rft = max_fifo_threshold;
}
amba_set_drvdata(adev, priv);
priv->virtbase = devm_ioremap(dev, adev->res.start,
resource_size(&adev->res));
if (!priv->virtbase)
return -ENOMEM;
priv->irq = adev->irq[0];
ret = devm_request_irq(dev, priv->irq, i2c_irq_handler, 0,
DRIVER_NAME, priv);
if (ret)
return dev_err_probe(dev, ret,
"cannot claim the irq %d\n", priv->irq);
priv->clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(priv->clk))
return dev_err_probe(dev, PTR_ERR(priv->clk),
"could enable i2c clock\n");
init_hw(priv);
adap = &priv->adap;
adap->dev.of_node = np;
adap->dev.parent = dev;
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_DEPRECATED;
adap->algo = &nmk_i2c_algo;
adap->timeout = usecs_to_jiffies(priv->timeout_usecs);
snprintf(adap->name, sizeof(adap->name),
"Nomadik I2C at %pR", &adev->res);
i2c_set_adapdata(adap, priv);
dev_info(dev,
"initialize %s on virtual base %p\n",
adap->name, priv->virtbase);
ret = i2c_add_adapter(adap);
if (ret)
return ret;
pm_runtime_put(dev);
return 0;
}
static void nmk_i2c_remove(struct amba_device *adev)
{
struct nmk_i2c_dev *priv = amba_get_drvdata(adev);
i2c_del_adapter(&priv->adap);
flush_i2c_fifo(priv);
disable_all_interrupts(priv);
clear_all_interrupts(priv);
/* disable the controller */
i2c_clr_bit(priv->virtbase + I2C_CR, I2C_CR_PE);
}
static struct i2c_vendor_data vendor_stn8815 = {
.has_mtdws = false,
.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
};
static struct i2c_vendor_data vendor_db8500 = {
.has_mtdws = true,
.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
};
static const struct amba_id nmk_i2c_ids[] = {
{
.id = 0x00180024,
.mask = 0x00ffffff,
.data = &vendor_stn8815,
},
{
.id = 0x00380024,
.mask = 0x00ffffff,
.data = &vendor_db8500,
},
{},
};
MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
static struct amba_driver nmk_i2c_driver = {
.drv = {
.name = DRIVER_NAME,
.pm = pm_ptr(&nmk_i2c_pm),
},
.id_table = nmk_i2c_ids,
.probe = nmk_i2c_probe,
.remove = nmk_i2c_remove,
};
static int __init nmk_i2c_init(void)
{
return amba_driver_register(&nmk_i2c_driver);
}
static void __exit nmk_i2c_exit(void)
{
amba_driver_unregister(&nmk_i2c_driver);
}
subsys_initcall(nmk_i2c_init);
module_exit(nmk_i2c_exit);
MODULE_AUTHOR("Sachin Verma");
MODULE_AUTHOR("Srinidhi KASAGAR");
MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
MODULE_LICENSE("GPL");