linux/drivers/md/dm.c
Benjamin Coddington d5f01ace54 dm: add support for get_unique_id
This adds support to obtain a device's unique id through dm, similar to the
existing ioctl and persistent resevation handling.  We limit this to
single-target devices.

This enables knfsd to export pNFS SCSI luns that have been exported from
multipath devices.

Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-20 11:38:04 +01:00

3766 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm-core.h"
#include "dm-rq.h"
#include "dm-uevent.h"
#include "dm-ima.h"
#include <linux/bio-integrity.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/blkpg.h>
#include <linux/bio.h>
#include <linux/mempool.h>
#include <linux/dax.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/uio.h>
#include <linux/hdreg.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/pr.h>
#include <linux/refcount.h>
#include <linux/part_stat.h>
#include <linux/blk-crypto.h>
#include <linux/blk-crypto-profile.h>
#define DM_MSG_PREFIX "core"
/*
* Cookies are numeric values sent with CHANGE and REMOVE
* uevents while resuming, removing or renaming the device.
*/
#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
#define DM_COOKIE_LENGTH 24
/*
* For REQ_POLLED fs bio, this flag is set if we link mapped underlying
* dm_io into one list, and reuse bio->bi_private as the list head. Before
* ending this fs bio, we will recover its ->bi_private.
*/
#define REQ_DM_POLL_LIST REQ_DRV
static const char *_name = DM_NAME;
static unsigned int major;
static unsigned int _major;
static DEFINE_IDR(_minor_idr);
static DEFINE_SPINLOCK(_minor_lock);
static void do_deferred_remove(struct work_struct *w);
static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
static struct workqueue_struct *deferred_remove_workqueue;
atomic_t dm_global_event_nr = ATOMIC_INIT(0);
DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
void dm_issue_global_event(void)
{
atomic_inc(&dm_global_event_nr);
wake_up(&dm_global_eventq);
}
DEFINE_STATIC_KEY_FALSE(stats_enabled);
DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
DEFINE_STATIC_KEY_FALSE(zoned_enabled);
/*
* One of these is allocated (on-stack) per original bio.
*/
struct clone_info {
struct dm_table *map;
struct bio *bio;
struct dm_io *io;
sector_t sector;
unsigned int sector_count;
bool is_abnormal_io:1;
bool submit_as_polled:1;
};
static inline struct dm_target_io *clone_to_tio(struct bio *clone)
{
return container_of(clone, struct dm_target_io, clone);
}
void *dm_per_bio_data(struct bio *bio, size_t data_size)
{
if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
return (char *)bio - DM_IO_BIO_OFFSET - data_size;
}
EXPORT_SYMBOL_GPL(dm_per_bio_data);
struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
{
struct dm_io *io = (struct dm_io *)((char *)data + data_size);
if (io->magic == DM_IO_MAGIC)
return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
BUG_ON(io->magic != DM_TIO_MAGIC);
return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
}
EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
{
return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
}
EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
#define MINOR_ALLOCED ((void *)-1)
#define DM_NUMA_NODE NUMA_NO_NODE
static int dm_numa_node = DM_NUMA_NODE;
#define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
static int swap_bios = DEFAULT_SWAP_BIOS;
static int get_swap_bios(void)
{
int latch = READ_ONCE(swap_bios);
if (unlikely(latch <= 0))
latch = DEFAULT_SWAP_BIOS;
return latch;
}
struct table_device {
struct list_head list;
refcount_t count;
struct dm_dev dm_dev;
};
/*
* Bio-based DM's mempools' reserved IOs set by the user.
*/
#define RESERVED_BIO_BASED_IOS 16
static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
static int __dm_get_module_param_int(int *module_param, int min, int max)
{
int param = READ_ONCE(*module_param);
int modified_param = 0;
bool modified = true;
if (param < min)
modified_param = min;
else if (param > max)
modified_param = max;
else
modified = false;
if (modified) {
(void)cmpxchg(module_param, param, modified_param);
param = modified_param;
}
return param;
}
unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
{
unsigned int param = READ_ONCE(*module_param);
unsigned int modified_param = 0;
if (!param)
modified_param = def;
else if (param > max)
modified_param = max;
if (modified_param) {
(void)cmpxchg(module_param, param, modified_param);
param = modified_param;
}
return param;
}
unsigned int dm_get_reserved_bio_based_ios(void)
{
return __dm_get_module_param(&reserved_bio_based_ios,
RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
}
EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
static unsigned int dm_get_numa_node(void)
{
return __dm_get_module_param_int(&dm_numa_node,
DM_NUMA_NODE, num_online_nodes() - 1);
}
static int __init local_init(void)
{
int r;
r = dm_uevent_init();
if (r)
return r;
deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
if (!deferred_remove_workqueue) {
r = -ENOMEM;
goto out_uevent_exit;
}
_major = major;
r = register_blkdev(_major, _name);
if (r < 0)
goto out_free_workqueue;
if (!_major)
_major = r;
return 0;
out_free_workqueue:
destroy_workqueue(deferred_remove_workqueue);
out_uevent_exit:
dm_uevent_exit();
return r;
}
static void local_exit(void)
{
destroy_workqueue(deferred_remove_workqueue);
unregister_blkdev(_major, _name);
dm_uevent_exit();
_major = 0;
DMINFO("cleaned up");
}
static int (*_inits[])(void) __initdata = {
local_init,
dm_target_init,
dm_linear_init,
dm_stripe_init,
dm_io_init,
dm_kcopyd_init,
dm_interface_init,
dm_statistics_init,
};
static void (*_exits[])(void) = {
local_exit,
dm_target_exit,
dm_linear_exit,
dm_stripe_exit,
dm_io_exit,
dm_kcopyd_exit,
dm_interface_exit,
dm_statistics_exit,
};
static int __init dm_init(void)
{
const int count = ARRAY_SIZE(_inits);
int r, i;
#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
" Duplicate IMA measurements will not be recorded in the IMA log.");
#endif
for (i = 0; i < count; i++) {
r = _inits[i]();
if (r)
goto bad;
}
return 0;
bad:
while (i--)
_exits[i]();
return r;
}
static void __exit dm_exit(void)
{
int i = ARRAY_SIZE(_exits);
while (i--)
_exits[i]();
/*
* Should be empty by this point.
*/
idr_destroy(&_minor_idr);
}
/*
* Block device functions
*/
int dm_deleting_md(struct mapped_device *md)
{
return test_bit(DMF_DELETING, &md->flags);
}
static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
{
struct mapped_device *md;
spin_lock(&_minor_lock);
md = disk->private_data;
if (!md)
goto out;
if (test_bit(DMF_FREEING, &md->flags) ||
dm_deleting_md(md)) {
md = NULL;
goto out;
}
dm_get(md);
atomic_inc(&md->open_count);
out:
spin_unlock(&_minor_lock);
return md ? 0 : -ENXIO;
}
static void dm_blk_close(struct gendisk *disk)
{
struct mapped_device *md;
spin_lock(&_minor_lock);
md = disk->private_data;
if (WARN_ON(!md))
goto out;
if (atomic_dec_and_test(&md->open_count) &&
(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
queue_work(deferred_remove_workqueue, &deferred_remove_work);
dm_put(md);
out:
spin_unlock(&_minor_lock);
}
int dm_open_count(struct mapped_device *md)
{
return atomic_read(&md->open_count);
}
/*
* Guarantees nothing is using the device before it's deleted.
*/
int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
{
int r = 0;
spin_lock(&_minor_lock);
if (dm_open_count(md)) {
r = -EBUSY;
if (mark_deferred)
set_bit(DMF_DEFERRED_REMOVE, &md->flags);
} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
r = -EEXIST;
else
set_bit(DMF_DELETING, &md->flags);
spin_unlock(&_minor_lock);
return r;
}
int dm_cancel_deferred_remove(struct mapped_device *md)
{
int r = 0;
spin_lock(&_minor_lock);
if (test_bit(DMF_DELETING, &md->flags))
r = -EBUSY;
else
clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
spin_unlock(&_minor_lock);
return r;
}
static void do_deferred_remove(struct work_struct *w)
{
dm_deferred_remove();
}
static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct mapped_device *md = bdev->bd_disk->private_data;
return dm_get_geometry(md, geo);
}
static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
struct block_device **bdev)
{
struct dm_target *ti;
struct dm_table *map;
int r;
retry:
r = -ENOTTY;
map = dm_get_live_table(md, srcu_idx);
if (!map || !dm_table_get_size(map))
return r;
/* We only support devices that have a single target */
if (map->num_targets != 1)
return r;
ti = dm_table_get_target(map, 0);
if (!ti->type->prepare_ioctl)
return r;
if (dm_suspended_md(md))
return -EAGAIN;
r = ti->type->prepare_ioctl(ti, bdev);
if (r == -ENOTCONN && !fatal_signal_pending(current)) {
dm_put_live_table(md, *srcu_idx);
fsleep(10000);
goto retry;
}
return r;
}
static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
{
dm_put_live_table(md, srcu_idx);
}
static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long arg)
{
struct mapped_device *md = bdev->bd_disk->private_data;
int r, srcu_idx;
r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
if (r < 0)
goto out;
if (r > 0) {
/*
* Target determined this ioctl is being issued against a
* subset of the parent bdev; require extra privileges.
*/
if (!capable(CAP_SYS_RAWIO)) {
DMDEBUG_LIMIT(
"%s: sending ioctl %x to DM device without required privilege.",
current->comm, cmd);
r = -ENOIOCTLCMD;
goto out;
}
}
if (!bdev->bd_disk->fops->ioctl)
r = -ENOTTY;
else
r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
out:
dm_unprepare_ioctl(md, srcu_idx);
return r;
}
u64 dm_start_time_ns_from_clone(struct bio *bio)
{
return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
}
EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
static inline bool bio_is_flush_with_data(struct bio *bio)
{
return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
}
static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
{
/*
* If REQ_PREFLUSH set, don't account payload, it will be
* submitted (and accounted) after this flush completes.
*/
if (bio_is_flush_with_data(bio))
return 0;
if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
return io->sectors;
return bio_sectors(bio);
}
static void dm_io_acct(struct dm_io *io, bool end)
{
struct bio *bio = io->orig_bio;
if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
if (!end)
bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
io->start_time);
else
bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
dm_io_sectors(io, bio),
io->start_time);
}
if (static_branch_unlikely(&stats_enabled) &&
unlikely(dm_stats_used(&io->md->stats))) {
sector_t sector;
if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
sector = bio_end_sector(bio) - io->sector_offset;
else
sector = bio->bi_iter.bi_sector;
dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
sector, dm_io_sectors(io, bio),
end, io->start_time, &io->stats_aux);
}
}
static void __dm_start_io_acct(struct dm_io *io)
{
dm_io_acct(io, false);
}
static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
{
/*
* Ensure IO accounting is only ever started once.
*/
if (dm_io_flagged(io, DM_IO_ACCOUNTED))
return;
/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
dm_io_set_flag(io, DM_IO_ACCOUNTED);
} else {
unsigned long flags;
/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
spin_lock_irqsave(&io->lock, flags);
if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
spin_unlock_irqrestore(&io->lock, flags);
return;
}
dm_io_set_flag(io, DM_IO_ACCOUNTED);
spin_unlock_irqrestore(&io->lock, flags);
}
__dm_start_io_acct(io);
}
static void dm_end_io_acct(struct dm_io *io)
{
dm_io_acct(io, true);
}
static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
{
struct dm_io *io;
struct dm_target_io *tio;
struct bio *clone;
clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
if (unlikely(!clone))
return NULL;
tio = clone_to_tio(clone);
tio->flags = 0;
dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
tio->io = NULL;
io = container_of(tio, struct dm_io, tio);
io->magic = DM_IO_MAGIC;
io->status = BLK_STS_OK;
/* one ref is for submission, the other is for completion */
atomic_set(&io->io_count, 2);
this_cpu_inc(*md->pending_io);
io->orig_bio = bio;
io->md = md;
spin_lock_init(&io->lock);
io->start_time = jiffies;
io->flags = 0;
if (blk_queue_io_stat(md->queue))
dm_io_set_flag(io, DM_IO_BLK_STAT);
if (static_branch_unlikely(&stats_enabled) &&
unlikely(dm_stats_used(&md->stats)))
dm_stats_record_start(&md->stats, &io->stats_aux);
return io;
}
static void free_io(struct dm_io *io)
{
bio_put(&io->tio.clone);
}
static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
{
struct mapped_device *md = ci->io->md;
struct dm_target_io *tio;
struct bio *clone;
if (!ci->io->tio.io) {
/* the dm_target_io embedded in ci->io is available */
tio = &ci->io->tio;
/* alloc_io() already initialized embedded clone */
clone = &tio->clone;
} else {
clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
&md->mempools->bs);
if (!clone)
return NULL;
/* REQ_DM_POLL_LIST shouldn't be inherited */
clone->bi_opf &= ~REQ_DM_POLL_LIST;
tio = clone_to_tio(clone);
tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
}
tio->magic = DM_TIO_MAGIC;
tio->io = ci->io;
tio->ti = ti;
tio->target_bio_nr = target_bio_nr;
tio->len_ptr = len;
tio->old_sector = 0;
/* Set default bdev, but target must bio_set_dev() before issuing IO */
clone->bi_bdev = md->disk->part0;
if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
bio_set_dev(clone, md->disk->part0);
if (len) {
clone->bi_iter.bi_size = to_bytes(*len);
if (bio_integrity(clone))
bio_integrity_trim(clone);
}
return clone;
}
static void free_tio(struct bio *clone)
{
if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
return;
bio_put(clone);
}
/*
* Add the bio to the list of deferred io.
*/
static void queue_io(struct mapped_device *md, struct bio *bio)
{
unsigned long flags;
spin_lock_irqsave(&md->deferred_lock, flags);
bio_list_add(&md->deferred, bio);
spin_unlock_irqrestore(&md->deferred_lock, flags);
queue_work(md->wq, &md->work);
}
/*
* Everyone (including functions in this file), should use this
* function to access the md->map field, and make sure they call
* dm_put_live_table() when finished.
*/
struct dm_table *dm_get_live_table(struct mapped_device *md,
int *srcu_idx) __acquires(md->io_barrier)
{
*srcu_idx = srcu_read_lock(&md->io_barrier);
return srcu_dereference(md->map, &md->io_barrier);
}
void dm_put_live_table(struct mapped_device *md,
int srcu_idx) __releases(md->io_barrier)
{
srcu_read_unlock(&md->io_barrier, srcu_idx);
}
void dm_sync_table(struct mapped_device *md)
{
synchronize_srcu(&md->io_barrier);
synchronize_rcu_expedited();
}
/*
* A fast alternative to dm_get_live_table/dm_put_live_table.
* The caller must not block between these two functions.
*/
static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
{
rcu_read_lock();
return rcu_dereference(md->map);
}
static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
{
rcu_read_unlock();
}
static char *_dm_claim_ptr = "I belong to device-mapper";
/*
* Open a table device so we can use it as a map destination.
*/
static struct table_device *open_table_device(struct mapped_device *md,
dev_t dev, blk_mode_t mode)
{
struct table_device *td;
struct file *bdev_file;
struct block_device *bdev;
u64 part_off;
int r;
td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
if (!td)
return ERR_PTR(-ENOMEM);
refcount_set(&td->count, 1);
bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
if (IS_ERR(bdev_file)) {
r = PTR_ERR(bdev_file);
goto out_free_td;
}
bdev = file_bdev(bdev_file);
/*
* We can be called before the dm disk is added. In that case we can't
* register the holder relation here. It will be done once add_disk was
* called.
*/
if (md->disk->slave_dir) {
r = bd_link_disk_holder(bdev, md->disk);
if (r)
goto out_blkdev_put;
}
td->dm_dev.mode = mode;
td->dm_dev.bdev = bdev;
td->dm_dev.bdev_file = bdev_file;
td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
NULL, NULL);
format_dev_t(td->dm_dev.name, dev);
list_add(&td->list, &md->table_devices);
return td;
out_blkdev_put:
__fput_sync(bdev_file);
out_free_td:
kfree(td);
return ERR_PTR(r);
}
/*
* Close a table device that we've been using.
*/
static void close_table_device(struct table_device *td, struct mapped_device *md)
{
if (md->disk->slave_dir)
bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
fput(td->dm_dev.bdev_file);
else
__fput_sync(td->dm_dev.bdev_file);
put_dax(td->dm_dev.dax_dev);
list_del(&td->list);
kfree(td);
}
static struct table_device *find_table_device(struct list_head *l, dev_t dev,
blk_mode_t mode)
{
struct table_device *td;
list_for_each_entry(td, l, list)
if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
return td;
return NULL;
}
int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
struct dm_dev **result)
{
struct table_device *td;
mutex_lock(&md->table_devices_lock);
td = find_table_device(&md->table_devices, dev, mode);
if (!td) {
td = open_table_device(md, dev, mode);
if (IS_ERR(td)) {
mutex_unlock(&md->table_devices_lock);
return PTR_ERR(td);
}
} else {
refcount_inc(&td->count);
}
mutex_unlock(&md->table_devices_lock);
*result = &td->dm_dev;
return 0;
}
void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
{
struct table_device *td = container_of(d, struct table_device, dm_dev);
mutex_lock(&md->table_devices_lock);
if (refcount_dec_and_test(&td->count))
close_table_device(td, md);
mutex_unlock(&md->table_devices_lock);
}
/*
* Get the geometry associated with a dm device
*/
int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
{
*geo = md->geometry;
return 0;
}
/*
* Set the geometry of a device.
*/
int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
{
sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
if (geo->start > sz) {
DMERR("Start sector is beyond the geometry limits.");
return -EINVAL;
}
md->geometry = *geo;
return 0;
}
static int __noflush_suspending(struct mapped_device *md)
{
return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
}
static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
{
struct mapped_device *md = io->md;
if (first_stage) {
struct dm_io *next = md->requeue_list;
md->requeue_list = io;
io->next = next;
} else {
bio_list_add_head(&md->deferred, io->orig_bio);
}
}
static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
{
if (first_stage)
queue_work(md->wq, &md->requeue_work);
else
queue_work(md->wq, &md->work);
}
/*
* Return true if the dm_io's original bio is requeued.
* io->status is updated with error if requeue disallowed.
*/
static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
{
struct bio *bio = io->orig_bio;
bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
(bio->bi_opf & REQ_POLLED));
struct mapped_device *md = io->md;
bool requeued = false;
if (handle_requeue || handle_polled_eagain) {
unsigned long flags;
if (bio->bi_opf & REQ_POLLED) {
/*
* Upper layer won't help us poll split bio
* (io->orig_bio may only reflect a subset of the
* pre-split original) so clear REQ_POLLED.
*/
bio_clear_polled(bio);
}
/*
* Target requested pushing back the I/O or
* polled IO hit BLK_STS_AGAIN.
*/
spin_lock_irqsave(&md->deferred_lock, flags);
if ((__noflush_suspending(md) &&
!WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
handle_polled_eagain || first_stage) {
dm_requeue_add_io(io, first_stage);
requeued = true;
} else {
/*
* noflush suspend was interrupted or this is
* a write to a zoned target.
*/
io->status = BLK_STS_IOERR;
}
spin_unlock_irqrestore(&md->deferred_lock, flags);
}
if (requeued)
dm_kick_requeue(md, first_stage);
return requeued;
}
static void __dm_io_complete(struct dm_io *io, bool first_stage)
{
struct bio *bio = io->orig_bio;
struct mapped_device *md = io->md;
blk_status_t io_error;
bool requeued;
requeued = dm_handle_requeue(io, first_stage);
if (requeued && first_stage)
return;
io_error = io->status;
if (dm_io_flagged(io, DM_IO_ACCOUNTED))
dm_end_io_acct(io);
else if (!io_error) {
/*
* Must handle target that DM_MAPIO_SUBMITTED only to
* then bio_endio() rather than dm_submit_bio_remap()
*/
__dm_start_io_acct(io);
dm_end_io_acct(io);
}
free_io(io);
smp_wmb();
this_cpu_dec(*md->pending_io);
/* nudge anyone waiting on suspend queue */
if (unlikely(wq_has_sleeper(&md->wait)))
wake_up(&md->wait);
/* Return early if the original bio was requeued */
if (requeued)
return;
if (bio_is_flush_with_data(bio)) {
/*
* Preflush done for flush with data, reissue
* without REQ_PREFLUSH.
*/
bio->bi_opf &= ~REQ_PREFLUSH;
queue_io(md, bio);
} else {
/* done with normal IO or empty flush */
if (io_error)
bio->bi_status = io_error;
bio_endio(bio);
}
}
static void dm_wq_requeue_work(struct work_struct *work)
{
struct mapped_device *md = container_of(work, struct mapped_device,
requeue_work);
unsigned long flags;
struct dm_io *io;
/* reuse deferred lock to simplify dm_handle_requeue */
spin_lock_irqsave(&md->deferred_lock, flags);
io = md->requeue_list;
md->requeue_list = NULL;
spin_unlock_irqrestore(&md->deferred_lock, flags);
while (io) {
struct dm_io *next = io->next;
dm_io_rewind(io, &md->disk->bio_split);
io->next = NULL;
__dm_io_complete(io, false);
io = next;
cond_resched();
}
}
/*
* Two staged requeue:
*
* 1) io->orig_bio points to the real original bio, and the part mapped to
* this io must be requeued, instead of other parts of the original bio.
*
* 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
*/
static void dm_io_complete(struct dm_io *io)
{
bool first_requeue;
/*
* Only dm_io that has been split needs two stage requeue, otherwise
* we may run into long bio clone chain during suspend and OOM could
* be triggered.
*
* Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
* also aren't handled via the first stage requeue.
*/
if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
first_requeue = true;
else
first_requeue = false;
__dm_io_complete(io, first_requeue);
}
/*
* Decrements the number of outstanding ios that a bio has been
* cloned into, completing the original io if necc.
*/
static inline void __dm_io_dec_pending(struct dm_io *io)
{
if (atomic_dec_and_test(&io->io_count))
dm_io_complete(io);
}
static void dm_io_set_error(struct dm_io *io, blk_status_t error)
{
unsigned long flags;
/* Push-back supersedes any I/O errors */
spin_lock_irqsave(&io->lock, flags);
if (!(io->status == BLK_STS_DM_REQUEUE &&
__noflush_suspending(io->md))) {
io->status = error;
}
spin_unlock_irqrestore(&io->lock, flags);
}
static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
{
if (unlikely(error))
dm_io_set_error(io, error);
__dm_io_dec_pending(io);
}
/*
* The queue_limits are only valid as long as you have a reference
* count on 'md'. But _not_ imposing verification to avoid atomic_read(),
*/
static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
{
return &md->queue->limits;
}
void disable_discard(struct mapped_device *md)
{
struct queue_limits *limits = dm_get_queue_limits(md);
/* device doesn't really support DISCARD, disable it */
limits->max_hw_discard_sectors = 0;
}
void disable_write_zeroes(struct mapped_device *md)
{
struct queue_limits *limits = dm_get_queue_limits(md);
/* device doesn't really support WRITE ZEROES, disable it */
limits->max_write_zeroes_sectors = 0;
}
static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
{
return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
}
static void clone_endio(struct bio *bio)
{
blk_status_t error = bio->bi_status;
struct dm_target_io *tio = clone_to_tio(bio);
struct dm_target *ti = tio->ti;
dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
struct dm_io *io = tio->io;
struct mapped_device *md = io->md;
if (unlikely(error == BLK_STS_TARGET)) {
if (bio_op(bio) == REQ_OP_DISCARD &&
!bdev_max_discard_sectors(bio->bi_bdev))
disable_discard(md);
else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
!bdev_write_zeroes_sectors(bio->bi_bdev))
disable_write_zeroes(md);
}
if (static_branch_unlikely(&zoned_enabled) &&
unlikely(bdev_is_zoned(bio->bi_bdev)))
dm_zone_endio(io, bio);
if (endio) {
int r = endio(ti, bio, &error);
switch (r) {
case DM_ENDIO_REQUEUE:
if (static_branch_unlikely(&zoned_enabled)) {
/*
* Requeuing writes to a sequential zone of a zoned
* target will break the sequential write pattern:
* fail such IO.
*/
if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
error = BLK_STS_IOERR;
else
error = BLK_STS_DM_REQUEUE;
} else
error = BLK_STS_DM_REQUEUE;
fallthrough;
case DM_ENDIO_DONE:
break;
case DM_ENDIO_INCOMPLETE:
/* The target will handle the io */
return;
default:
DMCRIT("unimplemented target endio return value: %d", r);
BUG();
}
}
if (static_branch_unlikely(&swap_bios_enabled) &&
likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
up(&md->swap_bios_semaphore);
free_tio(bio);
dm_io_dec_pending(io, error);
}
/*
* Return maximum size of I/O possible at the supplied sector up to the current
* target boundary.
*/
static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
sector_t target_offset)
{
return ti->len - target_offset;
}
static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
unsigned int max_granularity,
unsigned int max_sectors)
{
sector_t target_offset = dm_target_offset(ti, sector);
sector_t len = max_io_len_target_boundary(ti, target_offset);
/*
* Does the target need to split IO even further?
* - varied (per target) IO splitting is a tenet of DM; this
* explains why stacked chunk_sectors based splitting via
* bio_split_to_limits() isn't possible here.
*/
if (!max_granularity)
return len;
return min_t(sector_t, len,
min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
blk_boundary_sectors_left(target_offset, max_granularity)));
}
static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
{
return __max_io_len(ti, sector, ti->max_io_len, 0);
}
int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
{
if (len > UINT_MAX) {
DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
(unsigned long long)len, UINT_MAX);
ti->error = "Maximum size of target IO is too large";
return -EINVAL;
}
ti->max_io_len = (uint32_t) len;
return 0;
}
EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
sector_t sector, int *srcu_idx)
__acquires(md->io_barrier)
{
struct dm_table *map;
struct dm_target *ti;
map = dm_get_live_table(md, srcu_idx);
if (!map)
return NULL;
ti = dm_table_find_target(map, sector);
if (!ti)
return NULL;
return ti;
}
static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
long nr_pages, enum dax_access_mode mode, void **kaddr,
pfn_t *pfn)
{
struct mapped_device *md = dax_get_private(dax_dev);
sector_t sector = pgoff * PAGE_SECTORS;
struct dm_target *ti;
long len, ret = -EIO;
int srcu_idx;
ti = dm_dax_get_live_target(md, sector, &srcu_idx);
if (!ti)
goto out;
if (!ti->type->direct_access)
goto out;
len = max_io_len(ti, sector) / PAGE_SECTORS;
if (len < 1)
goto out;
nr_pages = min(len, nr_pages);
ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
out:
dm_put_live_table(md, srcu_idx);
return ret;
}
static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
size_t nr_pages)
{
struct mapped_device *md = dax_get_private(dax_dev);
sector_t sector = pgoff * PAGE_SECTORS;
struct dm_target *ti;
int ret = -EIO;
int srcu_idx;
ti = dm_dax_get_live_target(md, sector, &srcu_idx);
if (!ti)
goto out;
if (WARN_ON(!ti->type->dax_zero_page_range)) {
/*
* ->zero_page_range() is mandatory dax operation. If we are
* here, something is wrong.
*/
goto out;
}
ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
out:
dm_put_live_table(md, srcu_idx);
return ret;
}
static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
void *addr, size_t bytes, struct iov_iter *i)
{
struct mapped_device *md = dax_get_private(dax_dev);
sector_t sector = pgoff * PAGE_SECTORS;
struct dm_target *ti;
int srcu_idx;
long ret = 0;
ti = dm_dax_get_live_target(md, sector, &srcu_idx);
if (!ti || !ti->type->dax_recovery_write)
goto out;
ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
out:
dm_put_live_table(md, srcu_idx);
return ret;
}
/*
* A target may call dm_accept_partial_bio only from the map routine. It is
* allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
* operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
* __send_duplicate_bios().
*
* dm_accept_partial_bio informs the dm that the target only wants to process
* additional n_sectors sectors of the bio and the rest of the data should be
* sent in a next bio.
*
* A diagram that explains the arithmetics:
* +--------------------+---------------+-------+
* | 1 | 2 | 3 |
* +--------------------+---------------+-------+
*
* <-------------- *tio->len_ptr --------------->
* <----- bio_sectors ----->
* <-- n_sectors -->
*
* Region 1 was already iterated over with bio_advance or similar function.
* (it may be empty if the target doesn't use bio_advance)
* Region 2 is the remaining bio size that the target wants to process.
* (it may be empty if region 1 is non-empty, although there is no reason
* to make it empty)
* The target requires that region 3 is to be sent in the next bio.
*
* If the target wants to receive multiple copies of the bio (via num_*bios, etc),
* the partially processed part (the sum of regions 1+2) must be the same for all
* copies of the bio.
*/
void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
{
struct dm_target_io *tio = clone_to_tio(bio);
struct dm_io *io = tio->io;
unsigned int bio_sectors = bio_sectors(bio);
BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
BUG_ON(op_is_zone_mgmt(bio_op(bio)));
BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
BUG_ON(bio_sectors > *tio->len_ptr);
BUG_ON(n_sectors > bio_sectors);
*tio->len_ptr -= bio_sectors - n_sectors;
bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
/*
* __split_and_process_bio() may have already saved mapped part
* for accounting but it is being reduced so update accordingly.
*/
dm_io_set_flag(io, DM_IO_WAS_SPLIT);
io->sectors = n_sectors;
io->sector_offset = bio_sectors(io->orig_bio);
}
EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
/*
* @clone: clone bio that DM core passed to target's .map function
* @tgt_clone: clone of @clone bio that target needs submitted
*
* Targets should use this interface to submit bios they take
* ownership of when returning DM_MAPIO_SUBMITTED.
*
* Target should also enable ti->accounts_remapped_io
*/
void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
{
struct dm_target_io *tio = clone_to_tio(clone);
struct dm_io *io = tio->io;
/* establish bio that will get submitted */
if (!tgt_clone)
tgt_clone = clone;
/*
* Account io->origin_bio to DM dev on behalf of target
* that took ownership of IO with DM_MAPIO_SUBMITTED.
*/
dm_start_io_acct(io, clone);
trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
tio->old_sector);
submit_bio_noacct(tgt_clone);
}
EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
{
mutex_lock(&md->swap_bios_lock);
while (latch < md->swap_bios) {
cond_resched();
down(&md->swap_bios_semaphore);
md->swap_bios--;
}
while (latch > md->swap_bios) {
cond_resched();
up(&md->swap_bios_semaphore);
md->swap_bios++;
}
mutex_unlock(&md->swap_bios_lock);
}
static void __map_bio(struct bio *clone)
{
struct dm_target_io *tio = clone_to_tio(clone);
struct dm_target *ti = tio->ti;
struct dm_io *io = tio->io;
struct mapped_device *md = io->md;
int r;
clone->bi_end_io = clone_endio;
/*
* Map the clone.
*/
tio->old_sector = clone->bi_iter.bi_sector;
if (static_branch_unlikely(&swap_bios_enabled) &&
unlikely(swap_bios_limit(ti, clone))) {
int latch = get_swap_bios();
if (unlikely(latch != md->swap_bios))
__set_swap_bios_limit(md, latch);
down(&md->swap_bios_semaphore);
}
if (likely(ti->type->map == linear_map))
r = linear_map(ti, clone);
else if (ti->type->map == stripe_map)
r = stripe_map(ti, clone);
else
r = ti->type->map(ti, clone);
switch (r) {
case DM_MAPIO_SUBMITTED:
/* target has assumed ownership of this io */
if (!ti->accounts_remapped_io)
dm_start_io_acct(io, clone);
break;
case DM_MAPIO_REMAPPED:
dm_submit_bio_remap(clone, NULL);
break;
case DM_MAPIO_KILL:
case DM_MAPIO_REQUEUE:
if (static_branch_unlikely(&swap_bios_enabled) &&
unlikely(swap_bios_limit(ti, clone)))
up(&md->swap_bios_semaphore);
free_tio(clone);
if (r == DM_MAPIO_KILL)
dm_io_dec_pending(io, BLK_STS_IOERR);
else
dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
break;
default:
DMCRIT("unimplemented target map return value: %d", r);
BUG();
}
}
static void setup_split_accounting(struct clone_info *ci, unsigned int len)
{
struct dm_io *io = ci->io;
if (ci->sector_count > len) {
/*
* Split needed, save the mapped part for accounting.
* NOTE: dm_accept_partial_bio() will update accordingly.
*/
dm_io_set_flag(io, DM_IO_WAS_SPLIT);
io->sectors = len;
io->sector_offset = bio_sectors(ci->bio);
}
}
static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
struct dm_target *ti, unsigned int num_bios,
unsigned *len, gfp_t gfp_flag)
{
struct bio *bio;
int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
for (; try < 2; try++) {
int bio_nr;
if (try && num_bios > 1)
mutex_lock(&ci->io->md->table_devices_lock);
for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
bio = alloc_tio(ci, ti, bio_nr, len,
try ? GFP_NOIO : GFP_NOWAIT);
if (!bio)
break;
bio_list_add(blist, bio);
}
if (try && num_bios > 1)
mutex_unlock(&ci->io->md->table_devices_lock);
if (bio_nr == num_bios)
return;
while ((bio = bio_list_pop(blist)))
free_tio(bio);
}
}
static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
unsigned int num_bios, unsigned int *len,
gfp_t gfp_flag)
{
struct bio_list blist = BIO_EMPTY_LIST;
struct bio *clone;
unsigned int ret = 0;
if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
return 0;
/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
if (len)
setup_split_accounting(ci, *len);
/*
* Using alloc_multiple_bios(), even if num_bios is 1, to consistently
* support allocating using GFP_NOWAIT with GFP_NOIO fallback.
*/
alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
while ((clone = bio_list_pop(&blist))) {
if (num_bios > 1)
dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
__map_bio(clone);
ret += 1;
}
return ret;
}
static void __send_empty_flush(struct clone_info *ci)
{
struct dm_table *t = ci->map;
struct bio flush_bio;
/*
* Use an on-stack bio for this, it's safe since we don't
* need to reference it after submit. It's just used as
* the basis for the clone(s).
*/
bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
ci->bio = &flush_bio;
ci->sector_count = 0;
ci->io->tio.clone.bi_iter.bi_size = 0;
if (!t->flush_bypasses_map) {
for (unsigned int i = 0; i < t->num_targets; i++) {
unsigned int bios;
struct dm_target *ti = dm_table_get_target(t, i);
if (unlikely(ti->num_flush_bios == 0))
continue;
atomic_add(ti->num_flush_bios, &ci->io->io_count);
bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
NULL, GFP_NOWAIT);
atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
}
} else {
/*
* Note that there's no need to grab t->devices_lock here
* because the targets that support flush optimization don't
* modify the list of devices.
*/
struct list_head *devices = dm_table_get_devices(t);
unsigned int len = 0;
struct dm_dev_internal *dd;
list_for_each_entry(dd, devices, list) {
struct bio *clone;
/*
* Note that the structure dm_target_io is not
* associated with any target (because the device may be
* used by multiple targets), so we set tio->ti = NULL.
* We must check for NULL in the I/O processing path, to
* avoid NULL pointer dereference.
*/
clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
atomic_add(1, &ci->io->io_count);
bio_set_dev(clone, dd->dm_dev->bdev);
clone->bi_end_io = clone_endio;
dm_submit_bio_remap(clone, NULL);
}
}
/*
* alloc_io() takes one extra reference for submission, so the
* reference won't reach 0 without the following subtraction
*/
atomic_sub(1, &ci->io->io_count);
bio_uninit(ci->bio);
}
static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
unsigned int num_bios, unsigned int max_granularity,
unsigned int max_sectors)
{
unsigned int len, bios;
len = min_t(sector_t, ci->sector_count,
__max_io_len(ti, ci->sector, max_granularity, max_sectors));
atomic_add(num_bios, &ci->io->io_count);
bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
/*
* alloc_io() takes one extra reference for submission, so the
* reference won't reach 0 without the following (+1) subtraction
*/
atomic_sub(num_bios - bios + 1, &ci->io->io_count);
ci->sector += len;
ci->sector_count -= len;
}
static bool is_abnormal_io(struct bio *bio)
{
switch (bio_op(bio)) {
case REQ_OP_READ:
case REQ_OP_WRITE:
case REQ_OP_FLUSH:
return false;
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
case REQ_OP_WRITE_ZEROES:
case REQ_OP_ZONE_RESET_ALL:
return true;
default:
return false;
}
}
static blk_status_t __process_abnormal_io(struct clone_info *ci,
struct dm_target *ti)
{
unsigned int num_bios = 0;
unsigned int max_granularity = 0;
unsigned int max_sectors = 0;
struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
switch (bio_op(ci->bio)) {
case REQ_OP_DISCARD:
num_bios = ti->num_discard_bios;
max_sectors = limits->max_discard_sectors;
if (ti->max_discard_granularity)
max_granularity = max_sectors;
break;
case REQ_OP_SECURE_ERASE:
num_bios = ti->num_secure_erase_bios;
max_sectors = limits->max_secure_erase_sectors;
break;
case REQ_OP_WRITE_ZEROES:
num_bios = ti->num_write_zeroes_bios;
max_sectors = limits->max_write_zeroes_sectors;
break;
default:
break;
}
/*
* Even though the device advertised support for this type of
* request, that does not mean every target supports it, and
* reconfiguration might also have changed that since the
* check was performed.
*/
if (unlikely(!num_bios))
return BLK_STS_NOTSUPP;
__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
return BLK_STS_OK;
}
/*
* Reuse ->bi_private as dm_io list head for storing all dm_io instances
* associated with this bio, and this bio's bi_private needs to be
* stored in dm_io->data before the reuse.
*
* bio->bi_private is owned by fs or upper layer, so block layer won't
* touch it after splitting. Meantime it won't be changed by anyone after
* bio is submitted. So this reuse is safe.
*/
static inline struct dm_io **dm_poll_list_head(struct bio *bio)
{
return (struct dm_io **)&bio->bi_private;
}
static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
{
struct dm_io **head = dm_poll_list_head(bio);
if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
bio->bi_opf |= REQ_DM_POLL_LIST;
/*
* Save .bi_private into dm_io, so that we can reuse
* .bi_private as dm_io list head for storing dm_io list
*/
io->data = bio->bi_private;
/* tell block layer to poll for completion */
bio->bi_cookie = ~BLK_QC_T_NONE;
io->next = NULL;
} else {
/*
* bio recursed due to split, reuse original poll list,
* and save bio->bi_private too.
*/
io->data = (*head)->data;
io->next = *head;
}
*head = io;
}
/*
* Select the correct strategy for processing a non-flush bio.
*/
static blk_status_t __split_and_process_bio(struct clone_info *ci)
{
struct bio *clone;
struct dm_target *ti;
unsigned int len;
ti = dm_table_find_target(ci->map, ci->sector);
if (unlikely(!ti))
return BLK_STS_IOERR;
if (unlikely(ci->is_abnormal_io))
return __process_abnormal_io(ci, ti);
/*
* Only support bio polling for normal IO, and the target io is
* exactly inside the dm_io instance (verified in dm_poll_dm_io)
*/
ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
setup_split_accounting(ci, len);
if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
if (unlikely(!dm_target_supports_nowait(ti->type)))
return BLK_STS_NOTSUPP;
clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
if (unlikely(!clone))
return BLK_STS_AGAIN;
} else {
clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
}
__map_bio(clone);
ci->sector += len;
ci->sector_count -= len;
return BLK_STS_OK;
}
static void init_clone_info(struct clone_info *ci, struct dm_io *io,
struct dm_table *map, struct bio *bio, bool is_abnormal)
{
ci->map = map;
ci->io = io;
ci->bio = bio;
ci->is_abnormal_io = is_abnormal;
ci->submit_as_polled = false;
ci->sector = bio->bi_iter.bi_sector;
ci->sector_count = bio_sectors(bio);
/* Shouldn't happen but sector_count was being set to 0 so... */
if (static_branch_unlikely(&zoned_enabled) &&
WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
ci->sector_count = 0;
}
#ifdef CONFIG_BLK_DEV_ZONED
static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
struct bio *bio)
{
/*
* For mapped device that need zone append emulation, we must
* split any large BIO that straddles zone boundaries.
*/
return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
}
static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
{
return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
}
static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
struct dm_target *ti)
{
struct bio_list blist = BIO_EMPTY_LIST;
struct mapped_device *md = ci->io->md;
unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
unsigned long *need_reset;
unsigned int i, nr_zones, nr_reset;
unsigned int num_bios = 0;
blk_status_t sts = BLK_STS_OK;
sector_t sector = ti->begin;
struct bio *clone;
int ret;
nr_zones = ti->len >> ilog2(zone_sectors);
need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
if (!need_reset)
return BLK_STS_RESOURCE;
ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
nr_zones, need_reset);
if (ret) {
sts = BLK_STS_IOERR;
goto free_bitmap;
}
/* If we have no zone to reset, we are done. */
nr_reset = bitmap_weight(need_reset, nr_zones);
if (!nr_reset)
goto free_bitmap;
atomic_add(nr_zones, &ci->io->io_count);
for (i = 0; i < nr_zones; i++) {
if (!test_bit(i, need_reset)) {
sector += zone_sectors;
continue;
}
if (bio_list_empty(&blist)) {
/* This may take a while, so be nice to others */
if (num_bios)
cond_resched();
/*
* We may need to reset thousands of zones, so let's
* not go crazy with the clone allocation.
*/
alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
NULL, GFP_NOIO);
}
/* Get a clone and change it to a regular reset operation. */
clone = bio_list_pop(&blist);
clone->bi_opf &= ~REQ_OP_MASK;
clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
clone->bi_iter.bi_sector = sector;
clone->bi_iter.bi_size = 0;
__map_bio(clone);
sector += zone_sectors;
num_bios++;
nr_reset--;
}
WARN_ON_ONCE(!bio_list_empty(&blist));
atomic_sub(nr_zones - num_bios, &ci->io->io_count);
ci->sector_count = 0;
free_bitmap:
bitmap_free(need_reset);
return sts;
}
static void __send_zone_reset_all_native(struct clone_info *ci,
struct dm_target *ti)
{
unsigned int bios;
atomic_add(1, &ci->io->io_count);
bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
atomic_sub(1 - bios, &ci->io->io_count);
ci->sector_count = 0;
}
static blk_status_t __send_zone_reset_all(struct clone_info *ci)
{
struct dm_table *t = ci->map;
blk_status_t sts = BLK_STS_OK;
for (unsigned int i = 0; i < t->num_targets; i++) {
struct dm_target *ti = dm_table_get_target(t, i);
if (ti->zone_reset_all_supported) {
__send_zone_reset_all_native(ci, ti);
continue;
}
sts = __send_zone_reset_all_emulated(ci, ti);
if (sts != BLK_STS_OK)
break;
}
/* Release the reference that alloc_io() took for submission. */
atomic_sub(1, &ci->io->io_count);
return sts;
}
#else
static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
struct bio *bio)
{
return false;
}
static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
{
return false;
}
static blk_status_t __send_zone_reset_all(struct clone_info *ci)
{
return BLK_STS_NOTSUPP;
}
#endif
/*
* Entry point to split a bio into clones and submit them to the targets.
*/
static void dm_split_and_process_bio(struct mapped_device *md,
struct dm_table *map, struct bio *bio)
{
struct clone_info ci;
struct dm_io *io;
blk_status_t error = BLK_STS_OK;
bool is_abnormal, need_split;
is_abnormal = is_abnormal_io(bio);
if (static_branch_unlikely(&zoned_enabled)) {
/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
(is_abnormal || dm_zone_bio_needs_split(md, bio));
} else {
need_split = is_abnormal;
}
if (unlikely(need_split)) {
/*
* Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
* otherwise associated queue_limits won't be imposed.
* Also split the BIO for mapped devices needing zone append
* emulation to ensure that the BIO does not cross zone
* boundaries.
*/
bio = bio_split_to_limits(bio);
if (!bio)
return;
}
/*
* Use the block layer zone write plugging for mapped devices that
* need zone append emulation (e.g. dm-crypt).
*/
if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
return;
/* Only support nowait for normal IO */
if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
io = alloc_io(md, bio, GFP_NOWAIT);
if (unlikely(!io)) {
/* Unable to do anything without dm_io. */
bio_wouldblock_error(bio);
return;
}
} else {
io = alloc_io(md, bio, GFP_NOIO);
}
init_clone_info(&ci, io, map, bio, is_abnormal);
if (bio->bi_opf & REQ_PREFLUSH) {
__send_empty_flush(&ci);
/* dm_io_complete submits any data associated with flush */
goto out;
}
if (static_branch_unlikely(&zoned_enabled) &&
(bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
error = __send_zone_reset_all(&ci);
goto out;
}
error = __split_and_process_bio(&ci);
if (error || !ci.sector_count)
goto out;
/*
* Remainder must be passed to submit_bio_noacct() so it gets handled
* *after* bios already submitted have been completely processed.
*/
bio_trim(bio, io->sectors, ci.sector_count);
trace_block_split(bio, bio->bi_iter.bi_sector);
bio_inc_remaining(bio);
submit_bio_noacct(bio);
out:
/*
* Drop the extra reference count for non-POLLED bio, and hold one
* reference for POLLED bio, which will be released in dm_poll_bio
*
* Add every dm_io instance into the dm_io list head which is stored
* in bio->bi_private, so that dm_poll_bio can poll them all.
*/
if (error || !ci.submit_as_polled) {
/*
* In case of submission failure, the extra reference for
* submitting io isn't consumed yet
*/
if (error)
atomic_dec(&io->io_count);
dm_io_dec_pending(io, error);
} else
dm_queue_poll_io(bio, io);
}
static void dm_submit_bio(struct bio *bio)
{
struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
int srcu_idx;
struct dm_table *map;
map = dm_get_live_table(md, &srcu_idx);
if (unlikely(!map)) {
DMERR_LIMIT("%s: mapping table unavailable, erroring io",
dm_device_name(md));
bio_io_error(bio);
goto out;
}
/* If suspended, queue this IO for later */
if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
if (bio->bi_opf & REQ_NOWAIT)
bio_wouldblock_error(bio);
else if (bio->bi_opf & REQ_RAHEAD)
bio_io_error(bio);
else
queue_io(md, bio);
goto out;
}
dm_split_and_process_bio(md, map, bio);
out:
dm_put_live_table(md, srcu_idx);
}
static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
unsigned int flags)
{
WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
/* don't poll if the mapped io is done */
if (atomic_read(&io->io_count) > 1)
bio_poll(&io->tio.clone, iob, flags);
/* bio_poll holds the last reference */
return atomic_read(&io->io_count) == 1;
}
static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
unsigned int flags)
{
struct dm_io **head = dm_poll_list_head(bio);
struct dm_io *list = *head;
struct dm_io *tmp = NULL;
struct dm_io *curr, *next;
/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
if (!(bio->bi_opf & REQ_DM_POLL_LIST))
return 0;
WARN_ON_ONCE(!list);
/*
* Restore .bi_private before possibly completing dm_io.
*
* bio_poll() is only possible once @bio has been completely
* submitted via submit_bio_noacct()'s depth-first submission.
* So there is no dm_queue_poll_io() race associated with
* clearing REQ_DM_POLL_LIST here.
*/
bio->bi_opf &= ~REQ_DM_POLL_LIST;
bio->bi_private = list->data;
for (curr = list, next = curr->next; curr; curr = next, next =
curr ? curr->next : NULL) {
if (dm_poll_dm_io(curr, iob, flags)) {
/*
* clone_endio() has already occurred, so no
* error handling is needed here.
*/
__dm_io_dec_pending(curr);
} else {
curr->next = tmp;
tmp = curr;
}
}
/* Not done? */
if (tmp) {
bio->bi_opf |= REQ_DM_POLL_LIST;
/* Reset bio->bi_private to dm_io list head */
*head = tmp;
return 0;
}
return 1;
}
/*
*---------------------------------------------------------------
* An IDR is used to keep track of allocated minor numbers.
*---------------------------------------------------------------
*/
static void free_minor(int minor)
{
spin_lock(&_minor_lock);
idr_remove(&_minor_idr, minor);
spin_unlock(&_minor_lock);
}
/*
* See if the device with a specific minor # is free.
*/
static int specific_minor(int minor)
{
int r;
if (minor >= (1 << MINORBITS))
return -EINVAL;
idr_preload(GFP_KERNEL);
spin_lock(&_minor_lock);
r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
spin_unlock(&_minor_lock);
idr_preload_end();
if (r < 0)
return r == -ENOSPC ? -EBUSY : r;
return 0;
}
static int next_free_minor(int *minor)
{
int r;
idr_preload(GFP_KERNEL);
spin_lock(&_minor_lock);
r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
spin_unlock(&_minor_lock);
idr_preload_end();
if (r < 0)
return r;
*minor = r;
return 0;
}
static const struct block_device_operations dm_blk_dops;
static const struct block_device_operations dm_rq_blk_dops;
static const struct dax_operations dm_dax_ops;
static void dm_wq_work(struct work_struct *work);
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
static void dm_queue_destroy_crypto_profile(struct request_queue *q)
{
dm_destroy_crypto_profile(q->crypto_profile);
}
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
{
}
#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
static void cleanup_mapped_device(struct mapped_device *md)
{
if (md->wq)
destroy_workqueue(md->wq);
dm_free_md_mempools(md->mempools);
if (md->dax_dev) {
dax_remove_host(md->disk);
kill_dax(md->dax_dev);
put_dax(md->dax_dev);
md->dax_dev = NULL;
}
if (md->disk) {
spin_lock(&_minor_lock);
md->disk->private_data = NULL;
spin_unlock(&_minor_lock);
if (dm_get_md_type(md) != DM_TYPE_NONE) {
struct table_device *td;
dm_sysfs_exit(md);
list_for_each_entry(td, &md->table_devices, list) {
bd_unlink_disk_holder(td->dm_dev.bdev,
md->disk);
}
/*
* Hold lock to make sure del_gendisk() won't concurrent
* with open/close_table_device().
*/
mutex_lock(&md->table_devices_lock);
del_gendisk(md->disk);
mutex_unlock(&md->table_devices_lock);
}
dm_queue_destroy_crypto_profile(md->queue);
put_disk(md->disk);
}
if (md->pending_io) {
free_percpu(md->pending_io);
md->pending_io = NULL;
}
cleanup_srcu_struct(&md->io_barrier);
mutex_destroy(&md->suspend_lock);
mutex_destroy(&md->type_lock);
mutex_destroy(&md->table_devices_lock);
mutex_destroy(&md->swap_bios_lock);
dm_mq_cleanup_mapped_device(md);
}
/*
* Allocate and initialise a blank device with a given minor.
*/
static struct mapped_device *alloc_dev(int minor)
{
int r, numa_node_id = dm_get_numa_node();
struct dax_device *dax_dev;
struct mapped_device *md;
void *old_md;
md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
if (!md) {
DMERR("unable to allocate device, out of memory.");
return NULL;
}
if (!try_module_get(THIS_MODULE))
goto bad_module_get;
/* get a minor number for the dev */
if (minor == DM_ANY_MINOR)
r = next_free_minor(&minor);
else
r = specific_minor(minor);
if (r < 0)
goto bad_minor;
r = init_srcu_struct(&md->io_barrier);
if (r < 0)
goto bad_io_barrier;
md->numa_node_id = numa_node_id;
md->init_tio_pdu = false;
md->type = DM_TYPE_NONE;
mutex_init(&md->suspend_lock);
mutex_init(&md->type_lock);
mutex_init(&md->table_devices_lock);
spin_lock_init(&md->deferred_lock);
atomic_set(&md->holders, 1);
atomic_set(&md->open_count, 0);
atomic_set(&md->event_nr, 0);
atomic_set(&md->uevent_seq, 0);
INIT_LIST_HEAD(&md->uevent_list);
INIT_LIST_HEAD(&md->table_devices);
spin_lock_init(&md->uevent_lock);
/*
* default to bio-based until DM table is loaded and md->type
* established. If request-based table is loaded: blk-mq will
* override accordingly.
*/
md->disk = blk_alloc_disk(NULL, md->numa_node_id);
if (IS_ERR(md->disk)) {
md->disk = NULL;
goto bad;
}
md->queue = md->disk->queue;
init_waitqueue_head(&md->wait);
INIT_WORK(&md->work, dm_wq_work);
INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
init_waitqueue_head(&md->eventq);
init_completion(&md->kobj_holder.completion);
md->requeue_list = NULL;
md->swap_bios = get_swap_bios();
sema_init(&md->swap_bios_semaphore, md->swap_bios);
mutex_init(&md->swap_bios_lock);
md->disk->major = _major;
md->disk->first_minor = minor;
md->disk->minors = 1;
md->disk->flags |= GENHD_FL_NO_PART;
md->disk->fops = &dm_blk_dops;
md->disk->private_data = md;
sprintf(md->disk->disk_name, "dm-%d", minor);
dax_dev = alloc_dax(md, &dm_dax_ops);
if (IS_ERR(dax_dev)) {
if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
goto bad;
} else {
set_dax_nocache(dax_dev);
set_dax_nomc(dax_dev);
md->dax_dev = dax_dev;
if (dax_add_host(dax_dev, md->disk))
goto bad;
}
format_dev_t(md->name, MKDEV(_major, minor));
md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
if (!md->wq)
goto bad;
md->pending_io = alloc_percpu(unsigned long);
if (!md->pending_io)
goto bad;
r = dm_stats_init(&md->stats);
if (r < 0)
goto bad;
/* Populate the mapping, nobody knows we exist yet */
spin_lock(&_minor_lock);
old_md = idr_replace(&_minor_idr, md, minor);
spin_unlock(&_minor_lock);
BUG_ON(old_md != MINOR_ALLOCED);
return md;
bad:
cleanup_mapped_device(md);
bad_io_barrier:
free_minor(minor);
bad_minor:
module_put(THIS_MODULE);
bad_module_get:
kvfree(md);
return NULL;
}
static void unlock_fs(struct mapped_device *md);
static void free_dev(struct mapped_device *md)
{
int minor = MINOR(disk_devt(md->disk));
unlock_fs(md);
cleanup_mapped_device(md);
WARN_ON_ONCE(!list_empty(&md->table_devices));
dm_stats_cleanup(&md->stats);
free_minor(minor);
module_put(THIS_MODULE);
kvfree(md);
}
/*
* Bind a table to the device.
*/
static void event_callback(void *context)
{
unsigned long flags;
LIST_HEAD(uevents);
struct mapped_device *md = context;
spin_lock_irqsave(&md->uevent_lock, flags);
list_splice_init(&md->uevent_list, &uevents);
spin_unlock_irqrestore(&md->uevent_lock, flags);
dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
atomic_inc(&md->event_nr);
wake_up(&md->eventq);
dm_issue_global_event();
}
/*
* Returns old map, which caller must destroy.
*/
static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
struct queue_limits *limits)
{
struct dm_table *old_map;
sector_t size;
int ret;
lockdep_assert_held(&md->suspend_lock);
size = dm_table_get_size(t);
/*
* Wipe any geometry if the size of the table changed.
*/
if (size != dm_get_size(md))
memset(&md->geometry, 0, sizeof(md->geometry));
set_capacity(md->disk, size);
dm_table_event_callback(t, event_callback, md);
if (dm_table_request_based(t)) {
/*
* Leverage the fact that request-based DM targets are
* immutable singletons - used to optimize dm_mq_queue_rq.
*/
md->immutable_target = dm_table_get_immutable_target(t);
/*
* There is no need to reload with request-based dm because the
* size of front_pad doesn't change.
*
* Note for future: If you are to reload bioset, prep-ed
* requests in the queue may refer to bio from the old bioset,
* so you must walk through the queue to unprep.
*/
if (!md->mempools) {
md->mempools = t->mempools;
t->mempools = NULL;
}
} else {
/*
* The md may already have mempools that need changing.
* If so, reload bioset because front_pad may have changed
* because a different table was loaded.
*/
dm_free_md_mempools(md->mempools);
md->mempools = t->mempools;
t->mempools = NULL;
}
ret = dm_table_set_restrictions(t, md->queue, limits);
if (ret) {
old_map = ERR_PTR(ret);
goto out;
}
old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
rcu_assign_pointer(md->map, (void *)t);
md->immutable_target_type = dm_table_get_immutable_target_type(t);
if (old_map)
dm_sync_table(md);
out:
return old_map;
}
/*
* Returns unbound table for the caller to free.
*/
static struct dm_table *__unbind(struct mapped_device *md)
{
struct dm_table *map = rcu_dereference_protected(md->map, 1);
if (!map)
return NULL;
dm_table_event_callback(map, NULL, NULL);
RCU_INIT_POINTER(md->map, NULL);
dm_sync_table(md);
return map;
}
/*
* Constructor for a new device.
*/
int dm_create(int minor, struct mapped_device **result)
{
struct mapped_device *md;
md = alloc_dev(minor);
if (!md)
return -ENXIO;
dm_ima_reset_data(md);
*result = md;
return 0;
}
/*
* Functions to manage md->type.
* All are required to hold md->type_lock.
*/
void dm_lock_md_type(struct mapped_device *md)
{
mutex_lock(&md->type_lock);
}
void dm_unlock_md_type(struct mapped_device *md)
{
mutex_unlock(&md->type_lock);
}
enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
{
return md->type;
}
struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
{
return md->immutable_target_type;
}
/*
* Setup the DM device's queue based on md's type
*/
int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
{
enum dm_queue_mode type = dm_table_get_type(t);
struct queue_limits limits;
struct table_device *td;
int r;
WARN_ON_ONCE(type == DM_TYPE_NONE);
if (type == DM_TYPE_REQUEST_BASED) {
md->disk->fops = &dm_rq_blk_dops;
r = dm_mq_init_request_queue(md, t);
if (r) {
DMERR("Cannot initialize queue for request-based dm mapped device");
return r;
}
}
r = dm_calculate_queue_limits(t, &limits);
if (r) {
DMERR("Cannot calculate initial queue limits");
return r;
}
r = dm_table_set_restrictions(t, md->queue, &limits);
if (r)
return r;
/*
* Hold lock to make sure add_disk() and del_gendisk() won't concurrent
* with open_table_device() and close_table_device().
*/
mutex_lock(&md->table_devices_lock);
r = add_disk(md->disk);
mutex_unlock(&md->table_devices_lock);
if (r)
return r;
/*
* Register the holder relationship for devices added before the disk
* was live.
*/
list_for_each_entry(td, &md->table_devices, list) {
r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
if (r)
goto out_undo_holders;
}
r = dm_sysfs_init(md);
if (r)
goto out_undo_holders;
md->type = type;
return 0;
out_undo_holders:
list_for_each_entry_continue_reverse(td, &md->table_devices, list)
bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
mutex_lock(&md->table_devices_lock);
del_gendisk(md->disk);
mutex_unlock(&md->table_devices_lock);
return r;
}
struct mapped_device *dm_get_md(dev_t dev)
{
struct mapped_device *md;
unsigned int minor = MINOR(dev);
if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
return NULL;
spin_lock(&_minor_lock);
md = idr_find(&_minor_idr, minor);
if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
md = NULL;
goto out;
}
dm_get(md);
out:
spin_unlock(&_minor_lock);
return md;
}
EXPORT_SYMBOL_GPL(dm_get_md);
void *dm_get_mdptr(struct mapped_device *md)
{
return md->interface_ptr;
}
void dm_set_mdptr(struct mapped_device *md, void *ptr)
{
md->interface_ptr = ptr;
}
void dm_get(struct mapped_device *md)
{
atomic_inc(&md->holders);
BUG_ON(test_bit(DMF_FREEING, &md->flags));
}
int dm_hold(struct mapped_device *md)
{
spin_lock(&_minor_lock);
if (test_bit(DMF_FREEING, &md->flags)) {
spin_unlock(&_minor_lock);
return -EBUSY;
}
dm_get(md);
spin_unlock(&_minor_lock);
return 0;
}
EXPORT_SYMBOL_GPL(dm_hold);
const char *dm_device_name(struct mapped_device *md)
{
return md->name;
}
EXPORT_SYMBOL_GPL(dm_device_name);
static void __dm_destroy(struct mapped_device *md, bool wait)
{
struct dm_table *map;
int srcu_idx;
might_sleep();
spin_lock(&_minor_lock);
idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
set_bit(DMF_FREEING, &md->flags);
spin_unlock(&_minor_lock);
blk_mark_disk_dead(md->disk);
/*
* Take suspend_lock so that presuspend and postsuspend methods
* do not race with internal suspend.
*/
mutex_lock(&md->suspend_lock);
map = dm_get_live_table(md, &srcu_idx);
if (!dm_suspended_md(md)) {
dm_table_presuspend_targets(map);
set_bit(DMF_SUSPENDED, &md->flags);
set_bit(DMF_POST_SUSPENDING, &md->flags);
dm_table_postsuspend_targets(map);
}
/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
dm_put_live_table(md, srcu_idx);
mutex_unlock(&md->suspend_lock);
/*
* Rare, but there may be I/O requests still going to complete,
* for example. Wait for all references to disappear.
* No one should increment the reference count of the mapped_device,
* after the mapped_device state becomes DMF_FREEING.
*/
if (wait)
while (atomic_read(&md->holders))
fsleep(1000);
else if (atomic_read(&md->holders))
DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
dm_device_name(md), atomic_read(&md->holders));
dm_table_destroy(__unbind(md));
free_dev(md);
}
void dm_destroy(struct mapped_device *md)
{
__dm_destroy(md, true);
}
void dm_destroy_immediate(struct mapped_device *md)
{
__dm_destroy(md, false);
}
void dm_put(struct mapped_device *md)
{
atomic_dec(&md->holders);
}
EXPORT_SYMBOL_GPL(dm_put);
static bool dm_in_flight_bios(struct mapped_device *md)
{
int cpu;
unsigned long sum = 0;
for_each_possible_cpu(cpu)
sum += *per_cpu_ptr(md->pending_io, cpu);
return sum != 0;
}
static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
{
int r = 0;
DEFINE_WAIT(wait);
while (true) {
prepare_to_wait(&md->wait, &wait, task_state);
if (!dm_in_flight_bios(md))
break;
if (signal_pending_state(task_state, current)) {
r = -ERESTARTSYS;
break;
}
io_schedule();
}
finish_wait(&md->wait, &wait);
smp_rmb();
return r;
}
static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
{
int r = 0;
if (!queue_is_mq(md->queue))
return dm_wait_for_bios_completion(md, task_state);
while (true) {
if (!blk_mq_queue_inflight(md->queue))
break;
if (signal_pending_state(task_state, current)) {
r = -ERESTARTSYS;
break;
}
fsleep(5000);
}
return r;
}
/*
* Process the deferred bios
*/
static void dm_wq_work(struct work_struct *work)
{
struct mapped_device *md = container_of(work, struct mapped_device, work);
struct bio *bio;
while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
spin_lock_irq(&md->deferred_lock);
bio = bio_list_pop(&md->deferred);
spin_unlock_irq(&md->deferred_lock);
if (!bio)
break;
submit_bio_noacct(bio);
cond_resched();
}
}
static void dm_queue_flush(struct mapped_device *md)
{
clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
smp_mb__after_atomic();
queue_work(md->wq, &md->work);
}
/*
* Swap in a new table, returning the old one for the caller to destroy.
*/
struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
{
struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
struct queue_limits limits;
int r;
mutex_lock(&md->suspend_lock);
/* device must be suspended */
if (!dm_suspended_md(md))
goto out;
/*
* If the new table has no data devices, retain the existing limits.
* This helps multipath with queue_if_no_path if all paths disappear,
* then new I/O is queued based on these limits, and then some paths
* reappear.
*/
if (dm_table_has_no_data_devices(table)) {
live_map = dm_get_live_table_fast(md);
if (live_map)
limits = md->queue->limits;
dm_put_live_table_fast(md);
}
if (!live_map) {
r = dm_calculate_queue_limits(table, &limits);
if (r) {
map = ERR_PTR(r);
goto out;
}
}
map = __bind(md, table, &limits);
dm_issue_global_event();
out:
mutex_unlock(&md->suspend_lock);
return map;
}
/*
* Functions to lock and unlock any filesystem running on the
* device.
*/
static int lock_fs(struct mapped_device *md)
{
int r;
WARN_ON(test_bit(DMF_FROZEN, &md->flags));
r = bdev_freeze(md->disk->part0);
if (!r)
set_bit(DMF_FROZEN, &md->flags);
return r;
}
static void unlock_fs(struct mapped_device *md)
{
if (!test_bit(DMF_FROZEN, &md->flags))
return;
bdev_thaw(md->disk->part0);
clear_bit(DMF_FROZEN, &md->flags);
}
/*
* @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
* @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
* @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
*
* If __dm_suspend returns 0, the device is completely quiescent
* now. There is no request-processing activity. All new requests
* are being added to md->deferred list.
*/
static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
unsigned int suspend_flags, unsigned int task_state,
int dmf_suspended_flag)
{
bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
int r;
lockdep_assert_held(&md->suspend_lock);
/*
* DMF_NOFLUSH_SUSPENDING must be set before presuspend.
* This flag is cleared before dm_suspend returns.
*/
if (noflush)
set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
else
DMDEBUG("%s: suspending with flush", dm_device_name(md));
/*
* This gets reverted if there's an error later and the targets
* provide the .presuspend_undo hook.
*/
dm_table_presuspend_targets(map);
/*
* Flush I/O to the device.
* Any I/O submitted after lock_fs() may not be flushed.
* noflush takes precedence over do_lockfs.
* (lock_fs() flushes I/Os and waits for them to complete.)
*/
if (!noflush && do_lockfs) {
r = lock_fs(md);
if (r) {
dm_table_presuspend_undo_targets(map);
return r;
}
}
/*
* Here we must make sure that no processes are submitting requests
* to target drivers i.e. no one may be executing
* dm_split_and_process_bio from dm_submit_bio.
*
* To get all processes out of dm_split_and_process_bio in dm_submit_bio,
* we take the write lock. To prevent any process from reentering
* dm_split_and_process_bio from dm_submit_bio and quiesce the thread
* (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
* flush_workqueue(md->wq).
*/
set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
if (map)
synchronize_srcu(&md->io_barrier);
/*
* Stop md->queue before flushing md->wq in case request-based
* dm defers requests to md->wq from md->queue.
*/
if (dm_request_based(md))
dm_stop_queue(md->queue);
flush_workqueue(md->wq);
/*
* At this point no more requests are entering target request routines.
* We call dm_wait_for_completion to wait for all existing requests
* to finish.
*/
r = dm_wait_for_completion(md, task_state);
if (!r)
set_bit(dmf_suspended_flag, &md->flags);
if (noflush)
clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
if (map)
synchronize_srcu(&md->io_barrier);
/* were we interrupted ? */
if (r < 0) {
dm_queue_flush(md);
if (dm_request_based(md))
dm_start_queue(md->queue);
unlock_fs(md);
dm_table_presuspend_undo_targets(map);
/* pushback list is already flushed, so skip flush */
}
return r;
}
/*
* We need to be able to change a mapping table under a mounted
* filesystem. For example we might want to move some data in
* the background. Before the table can be swapped with
* dm_bind_table, dm_suspend must be called to flush any in
* flight bios and ensure that any further io gets deferred.
*/
/*
* Suspend mechanism in request-based dm.
*
* 1. Flush all I/Os by lock_fs() if needed.
* 2. Stop dispatching any I/O by stopping the request_queue.
* 3. Wait for all in-flight I/Os to be completed or requeued.
*
* To abort suspend, start the request_queue.
*/
int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
{
struct dm_table *map = NULL;
int r = 0;
retry:
mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
if (dm_suspended_md(md)) {
r = -EINVAL;
goto out_unlock;
}
if (dm_suspended_internally_md(md)) {
/* already internally suspended, wait for internal resume */
mutex_unlock(&md->suspend_lock);
r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
if (r)
return r;
goto retry;
}
map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
if (!map) {
/* avoid deadlock with fs/namespace.c:do_mount() */
suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
}
r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
if (r)
goto out_unlock;
set_bit(DMF_POST_SUSPENDING, &md->flags);
dm_table_postsuspend_targets(map);
clear_bit(DMF_POST_SUSPENDING, &md->flags);
out_unlock:
mutex_unlock(&md->suspend_lock);
return r;
}
static int __dm_resume(struct mapped_device *md, struct dm_table *map)
{
if (map) {
int r = dm_table_resume_targets(map);
if (r)
return r;
}
dm_queue_flush(md);
/*
* Flushing deferred I/Os must be done after targets are resumed
* so that mapping of targets can work correctly.
* Request-based dm is queueing the deferred I/Os in its request_queue.
*/
if (dm_request_based(md))
dm_start_queue(md->queue);
unlock_fs(md);
return 0;
}
int dm_resume(struct mapped_device *md)
{
int r;
struct dm_table *map = NULL;
retry:
r = -EINVAL;
mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
if (!dm_suspended_md(md))
goto out;
if (dm_suspended_internally_md(md)) {
/* already internally suspended, wait for internal resume */
mutex_unlock(&md->suspend_lock);
r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
if (r)
return r;
goto retry;
}
map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
if (!map || !dm_table_get_size(map))
goto out;
r = __dm_resume(md, map);
if (r)
goto out;
clear_bit(DMF_SUSPENDED, &md->flags);
out:
mutex_unlock(&md->suspend_lock);
return r;
}
/*
* Internal suspend/resume works like userspace-driven suspend. It waits
* until all bios finish and prevents issuing new bios to the target drivers.
* It may be used only from the kernel.
*/
static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
{
struct dm_table *map = NULL;
lockdep_assert_held(&md->suspend_lock);
if (md->internal_suspend_count++)
return; /* nested internal suspend */
if (dm_suspended_md(md)) {
set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
return; /* nest suspend */
}
map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
/*
* Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
* supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
* would require changing .presuspend to return an error -- avoid this
* until there is a need for more elaborate variants of internal suspend.
*/
(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
DMF_SUSPENDED_INTERNALLY);
set_bit(DMF_POST_SUSPENDING, &md->flags);
dm_table_postsuspend_targets(map);
clear_bit(DMF_POST_SUSPENDING, &md->flags);
}
static void __dm_internal_resume(struct mapped_device *md)
{
int r;
struct dm_table *map;
BUG_ON(!md->internal_suspend_count);
if (--md->internal_suspend_count)
return; /* resume from nested internal suspend */
if (dm_suspended_md(md))
goto done; /* resume from nested suspend */
map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
r = __dm_resume(md, map);
if (r) {
/*
* If a preresume method of some target failed, we are in a
* tricky situation. We can't return an error to the caller. We
* can't fake success because then the "resume" and
* "postsuspend" methods would not be paired correctly, and it
* would break various targets, for example it would cause list
* corruption in the "origin" target.
*
* So, we fake normal suspend here, to make sure that the
* "resume" and "postsuspend" methods will be paired correctly.
*/
DMERR("Preresume method failed: %d", r);
set_bit(DMF_SUSPENDED, &md->flags);
}
done:
clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
smp_mb__after_atomic();
wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
}
void dm_internal_suspend_noflush(struct mapped_device *md)
{
mutex_lock(&md->suspend_lock);
__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
mutex_unlock(&md->suspend_lock);
}
EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
void dm_internal_resume(struct mapped_device *md)
{
mutex_lock(&md->suspend_lock);
__dm_internal_resume(md);
mutex_unlock(&md->suspend_lock);
}
EXPORT_SYMBOL_GPL(dm_internal_resume);
/*
* Fast variants of internal suspend/resume hold md->suspend_lock,
* which prevents interaction with userspace-driven suspend.
*/
void dm_internal_suspend_fast(struct mapped_device *md)
{
mutex_lock(&md->suspend_lock);
if (dm_suspended_md(md) || dm_suspended_internally_md(md))
return;
set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
synchronize_srcu(&md->io_barrier);
flush_workqueue(md->wq);
dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
void dm_internal_resume_fast(struct mapped_device *md)
{
if (dm_suspended_md(md) || dm_suspended_internally_md(md))
goto done;
dm_queue_flush(md);
done:
mutex_unlock(&md->suspend_lock);
}
EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
/*
*---------------------------------------------------------------
* Event notification.
*---------------------------------------------------------------
*/
int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
unsigned int cookie, bool need_resize_uevent)
{
int r;
unsigned int noio_flag;
char udev_cookie[DM_COOKIE_LENGTH];
char *envp[3] = { NULL, NULL, NULL };
char **envpp = envp;
if (cookie) {
snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
DM_COOKIE_ENV_VAR_NAME, cookie);
*envpp++ = udev_cookie;
}
if (need_resize_uevent) {
*envpp++ = "RESIZE=1";
}
noio_flag = memalloc_noio_save();
r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
memalloc_noio_restore(noio_flag);
return r;
}
uint32_t dm_next_uevent_seq(struct mapped_device *md)
{
return atomic_add_return(1, &md->uevent_seq);
}
uint32_t dm_get_event_nr(struct mapped_device *md)
{
return atomic_read(&md->event_nr);
}
int dm_wait_event(struct mapped_device *md, int event_nr)
{
return wait_event_interruptible(md->eventq,
(event_nr != atomic_read(&md->event_nr)));
}
void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
{
unsigned long flags;
spin_lock_irqsave(&md->uevent_lock, flags);
list_add(elist, &md->uevent_list);
spin_unlock_irqrestore(&md->uevent_lock, flags);
}
/*
* The gendisk is only valid as long as you have a reference
* count on 'md'.
*/
struct gendisk *dm_disk(struct mapped_device *md)
{
return md->disk;
}
EXPORT_SYMBOL_GPL(dm_disk);
struct kobject *dm_kobject(struct mapped_device *md)
{
return &md->kobj_holder.kobj;
}
struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
{
struct mapped_device *md;
md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
spin_lock(&_minor_lock);
if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
md = NULL;
goto out;
}
dm_get(md);
out:
spin_unlock(&_minor_lock);
return md;
}
int dm_suspended_md(struct mapped_device *md)
{
return test_bit(DMF_SUSPENDED, &md->flags);
}
static int dm_post_suspending_md(struct mapped_device *md)
{
return test_bit(DMF_POST_SUSPENDING, &md->flags);
}
int dm_suspended_internally_md(struct mapped_device *md)
{
return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
}
int dm_test_deferred_remove_flag(struct mapped_device *md)
{
return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
}
int dm_suspended(struct dm_target *ti)
{
return dm_suspended_md(ti->table->md);
}
EXPORT_SYMBOL_GPL(dm_suspended);
int dm_post_suspending(struct dm_target *ti)
{
return dm_post_suspending_md(ti->table->md);
}
EXPORT_SYMBOL_GPL(dm_post_suspending);
int dm_noflush_suspending(struct dm_target *ti)
{
return __noflush_suspending(ti->table->md);
}
EXPORT_SYMBOL_GPL(dm_noflush_suspending);
void dm_free_md_mempools(struct dm_md_mempools *pools)
{
if (!pools)
return;
bioset_exit(&pools->bs);
bioset_exit(&pools->io_bs);
kfree(pools);
}
struct dm_blkdev_id {
u8 *id;
enum blk_unique_id type;
};
static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_blkdev_id *dm_id = data;
const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
if (!fops->get_unique_id)
return 0;
return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
}
/*
* Allow access to get_unique_id() for the first device returning a
* non-zero result. Reasonable use expects all devices to have the
* same unique id.
*/
static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
enum blk_unique_id type)
{
struct mapped_device *md = disk->private_data;
struct dm_table *table;
struct dm_target *ti;
int ret = 0, srcu_idx;
struct dm_blkdev_id dm_id = {
.id = id,
.type = type,
};
table = dm_get_live_table(md, &srcu_idx);
if (!table || !dm_table_get_size(table))
goto out;
/* We only support devices that have a single target */
if (table->num_targets != 1)
goto out;
ti = dm_table_get_target(table, 0);
if (!ti->type->iterate_devices)
goto out;
ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
out:
dm_put_live_table(md, srcu_idx);
return ret;
}
struct dm_pr {
u64 old_key;
u64 new_key;
u32 flags;
bool abort;
bool fail_early;
int ret;
enum pr_type type;
struct pr_keys *read_keys;
struct pr_held_reservation *rsv;
};
static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
struct dm_pr *pr)
{
struct mapped_device *md = bdev->bd_disk->private_data;
struct dm_table *table;
struct dm_target *ti;
int ret = -ENOTTY, srcu_idx;
table = dm_get_live_table(md, &srcu_idx);
if (!table || !dm_table_get_size(table))
goto out;
/* We only support devices that have a single target */
if (table->num_targets != 1)
goto out;
ti = dm_table_get_target(table, 0);
if (dm_suspended_md(md)) {
ret = -EAGAIN;
goto out;
}
ret = -EINVAL;
if (!ti->type->iterate_devices)
goto out;
ti->type->iterate_devices(ti, fn, pr);
ret = 0;
out:
dm_put_live_table(md, srcu_idx);
return ret;
}
/*
* For register / unregister we need to manually call out to every path.
*/
static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_pr *pr = data;
const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
int ret;
if (!ops || !ops->pr_register) {
pr->ret = -EOPNOTSUPP;
return -1;
}
ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
if (!ret)
return 0;
if (!pr->ret)
pr->ret = ret;
if (pr->fail_early)
return -1;
return 0;
}
static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
u32 flags)
{
struct dm_pr pr = {
.old_key = old_key,
.new_key = new_key,
.flags = flags,
.fail_early = true,
.ret = 0,
};
int ret;
ret = dm_call_pr(bdev, __dm_pr_register, &pr);
if (ret) {
/* Didn't even get to register a path */
return ret;
}
if (!pr.ret)
return 0;
ret = pr.ret;
if (!new_key)
return ret;
/* unregister all paths if we failed to register any path */
pr.old_key = new_key;
pr.new_key = 0;
pr.flags = 0;
pr.fail_early = false;
(void) dm_call_pr(bdev, __dm_pr_register, &pr);
return ret;
}
static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_pr *pr = data;
const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
if (!ops || !ops->pr_reserve) {
pr->ret = -EOPNOTSUPP;
return -1;
}
pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
if (!pr->ret)
return -1;
return 0;
}
static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
u32 flags)
{
struct dm_pr pr = {
.old_key = key,
.flags = flags,
.type = type,
.fail_early = false,
.ret = 0,
};
int ret;
ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
if (ret)
return ret;
return pr.ret;
}
/*
* If there is a non-All Registrants type of reservation, the release must be
* sent down the holding path. For the cases where there is no reservation or
* the path is not the holder the device will also return success, so we must
* try each path to make sure we got the correct path.
*/
static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_pr *pr = data;
const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
if (!ops || !ops->pr_release) {
pr->ret = -EOPNOTSUPP;
return -1;
}
pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
if (pr->ret)
return -1;
return 0;
}
static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
struct dm_pr pr = {
.old_key = key,
.type = type,
.fail_early = false,
};
int ret;
ret = dm_call_pr(bdev, __dm_pr_release, &pr);
if (ret)
return ret;
return pr.ret;
}
static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_pr *pr = data;
const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
if (!ops || !ops->pr_preempt) {
pr->ret = -EOPNOTSUPP;
return -1;
}
pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
pr->abort);
if (!pr->ret)
return -1;
return 0;
}
static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
enum pr_type type, bool abort)
{
struct dm_pr pr = {
.new_key = new_key,
.old_key = old_key,
.type = type,
.fail_early = false,
};
int ret;
ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
if (ret)
return ret;
return pr.ret;
}
static int dm_pr_clear(struct block_device *bdev, u64 key)
{
struct mapped_device *md = bdev->bd_disk->private_data;
const struct pr_ops *ops;
int r, srcu_idx;
r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
if (r < 0)
goto out;
ops = bdev->bd_disk->fops->pr_ops;
if (ops && ops->pr_clear)
r = ops->pr_clear(bdev, key);
else
r = -EOPNOTSUPP;
out:
dm_unprepare_ioctl(md, srcu_idx);
return r;
}
static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_pr *pr = data;
const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
if (!ops || !ops->pr_read_keys) {
pr->ret = -EOPNOTSUPP;
return -1;
}
pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
if (!pr->ret)
return -1;
return 0;
}
static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
{
struct dm_pr pr = {
.read_keys = keys,
};
int ret;
ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
if (ret)
return ret;
return pr.ret;
}
static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct dm_pr *pr = data;
const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
if (!ops || !ops->pr_read_reservation) {
pr->ret = -EOPNOTSUPP;
return -1;
}
pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
if (!pr->ret)
return -1;
return 0;
}
static int dm_pr_read_reservation(struct block_device *bdev,
struct pr_held_reservation *rsv)
{
struct dm_pr pr = {
.rsv = rsv,
};
int ret;
ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
if (ret)
return ret;
return pr.ret;
}
static const struct pr_ops dm_pr_ops = {
.pr_register = dm_pr_register,
.pr_reserve = dm_pr_reserve,
.pr_release = dm_pr_release,
.pr_preempt = dm_pr_preempt,
.pr_clear = dm_pr_clear,
.pr_read_keys = dm_pr_read_keys,
.pr_read_reservation = dm_pr_read_reservation,
};
static const struct block_device_operations dm_blk_dops = {
.submit_bio = dm_submit_bio,
.poll_bio = dm_poll_bio,
.open = dm_blk_open,
.release = dm_blk_close,
.ioctl = dm_blk_ioctl,
.getgeo = dm_blk_getgeo,
.report_zones = dm_blk_report_zones,
.get_unique_id = dm_blk_get_unique_id,
.pr_ops = &dm_pr_ops,
.owner = THIS_MODULE
};
static const struct block_device_operations dm_rq_blk_dops = {
.open = dm_blk_open,
.release = dm_blk_close,
.ioctl = dm_blk_ioctl,
.getgeo = dm_blk_getgeo,
.get_unique_id = dm_blk_get_unique_id,
.pr_ops = &dm_pr_ops,
.owner = THIS_MODULE
};
static const struct dax_operations dm_dax_ops = {
.direct_access = dm_dax_direct_access,
.zero_page_range = dm_dax_zero_page_range,
.recovery_write = dm_dax_recovery_write,
};
/*
* module hooks
*/
module_init(dm_init);
module_exit(dm_exit);
module_param(major, uint, 0);
MODULE_PARM_DESC(major, "The major number of the device mapper");
module_param(reserved_bio_based_ios, uint, 0644);
MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
module_param(dm_numa_node, int, 0644);
MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
module_param(swap_bios, int, 0644);
MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
MODULE_DESCRIPTION(DM_NAME " driver");
MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
MODULE_LICENSE("GPL");