linux/drivers/nvme/host/pr.c
Guixin Liu 029cc98dec nvme: tuning pr code by using defined structs and macros
All the modifications are simply to make the code more readable,
and this patch does not include any functional changes.

Signed-off-by: Guixin Liu <kanie@linux.alibaba.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Keith Busch <kbusch@kernel.org>
2024-11-21 08:57:42 -08:00

343 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 Intel Corporation
* Keith Busch <kbusch@kernel.org>
*/
#include <linux/blkdev.h>
#include <linux/pr.h>
#include <linux/unaligned.h>
#include "nvme.h"
static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return NVME_PR_WRITE_EXCLUSIVE;
case PR_EXCLUSIVE_ACCESS:
return NVME_PR_EXCLUSIVE_ACCESS;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
}
return 0;
}
static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
{
switch (type) {
case NVME_PR_WRITE_EXCLUSIVE:
return PR_WRITE_EXCLUSIVE;
case NVME_PR_EXCLUSIVE_ACCESS:
return PR_EXCLUSIVE_ACCESS;
case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
return PR_WRITE_EXCLUSIVE_REG_ONLY;
case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
return PR_EXCLUSIVE_ACCESS_REG_ONLY;
case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
return PR_WRITE_EXCLUSIVE_ALL_REGS;
case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
return PR_EXCLUSIVE_ACCESS_ALL_REGS;
}
return 0;
}
static int nvme_send_ns_head_pr_command(struct block_device *bdev,
struct nvme_command *c, void *data, unsigned int data_len)
{
struct nvme_ns_head *head = bdev->bd_disk->private_data;
int srcu_idx = srcu_read_lock(&head->srcu);
struct nvme_ns *ns = nvme_find_path(head);
int ret = -EWOULDBLOCK;
if (ns) {
c->common.nsid = cpu_to_le32(ns->head->ns_id);
ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
}
srcu_read_unlock(&head->srcu, srcu_idx);
return ret;
}
static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
void *data, unsigned int data_len)
{
c->common.nsid = cpu_to_le32(ns->head->ns_id);
return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
}
static int nvme_status_to_pr_err(int status)
{
if (nvme_is_path_error(status))
return PR_STS_PATH_FAILED;
switch (status & NVME_SCT_SC_MASK) {
case NVME_SC_SUCCESS:
return PR_STS_SUCCESS;
case NVME_SC_RESERVATION_CONFLICT:
return PR_STS_RESERVATION_CONFLICT;
case NVME_SC_ONCS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case NVME_SC_BAD_ATTRIBUTES:
case NVME_SC_INVALID_OPCODE:
case NVME_SC_INVALID_FIELD:
case NVME_SC_INVALID_NS:
return -EINVAL;
default:
return PR_STS_IOERR;
}
}
static int __nvme_send_pr_command(struct block_device *bdev, u32 cdw10,
u32 cdw11, u8 op, void *data, unsigned int data_len)
{
struct nvme_command c = { 0 };
c.common.opcode = op;
c.common.cdw10 = cpu_to_le32(cdw10);
c.common.cdw11 = cpu_to_le32(cdw11);
if (nvme_disk_is_ns_head(bdev->bd_disk))
return nvme_send_ns_head_pr_command(bdev, &c, data, data_len);
return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c,
data, data_len);
}
static int nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11,
u8 op, void *data, unsigned int data_len)
{
int ret;
ret = __nvme_send_pr_command(bdev, cdw10, cdw11, op, data, data_len);
return ret < 0 ? ret : nvme_status_to_pr_err(ret);
}
static int nvme_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
unsigned int flags)
{
struct nvmet_pr_register_data data = { 0 };
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
data.crkey = cpu_to_le64(old_key);
data.nrkey = cpu_to_le64(new_key);
cdw10 = old_key ? NVME_PR_REGISTER_ACT_REPLACE :
NVME_PR_REGISTER_ACT_REG;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0;
cdw10 |= NVME_PR_CPTPL_PERSIST;
return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_register,
&data, sizeof(data));
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
struct nvmet_pr_acquire_data data = { 0 };
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
data.crkey = cpu_to_le64(key);
cdw10 = NVME_PR_ACQUIRE_ACT_ACQUIRE;
cdw10 |= nvme_pr_type_from_blk(type) << 8;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0;
return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire,
&data, sizeof(data));
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
struct nvmet_pr_acquire_data data = { 0 };
u32 cdw10;
data.crkey = cpu_to_le64(old);
data.prkey = cpu_to_le64(new);
cdw10 = abort ? NVME_PR_ACQUIRE_ACT_PREEMPT_AND_ABORT :
NVME_PR_ACQUIRE_ACT_PREEMPT;
cdw10 |= nvme_pr_type_from_blk(type) << 8;
return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire,
&data, sizeof(data));
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
struct nvmet_pr_release_data data = { 0 };
u32 cdw10;
data.crkey = cpu_to_le64(key);
cdw10 = NVME_PR_RELEASE_ACT_CLEAR;
cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY;
return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release,
&data, sizeof(data));
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
struct nvmet_pr_release_data data = { 0 };
u32 cdw10;
data.crkey = cpu_to_le64(key);
cdw10 = NVME_PR_RELEASE_ACT_RELEASE;
cdw10 |= nvme_pr_type_from_blk(type) << 8;
cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY;
return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release,
&data, sizeof(data));
}
static int nvme_pr_resv_report(struct block_device *bdev, void *data,
u32 data_len, bool *eds)
{
u32 cdw10, cdw11;
int ret;
cdw10 = nvme_bytes_to_numd(data_len);
cdw11 = NVME_EXTENDED_DATA_STRUCT;
*eds = true;
retry:
ret = __nvme_send_pr_command(bdev, cdw10, cdw11, nvme_cmd_resv_report,
data, data_len);
if (ret == NVME_SC_HOST_ID_INCONSIST &&
cdw11 == NVME_EXTENDED_DATA_STRUCT) {
cdw11 = 0;
*eds = false;
goto retry;
}
return ret < 0 ? ret : nvme_status_to_pr_err(ret);
}
static int nvme_pr_read_keys(struct block_device *bdev,
struct pr_keys *keys_info)
{
u32 rse_len, num_keys = keys_info->num_keys;
struct nvme_reservation_status_ext *rse;
int ret, i;
bool eds;
/*
* Assume we are using 128-bit host IDs and allocate a buffer large
* enough to get enough keys to fill the return keys buffer.
*/
rse_len = struct_size(rse, regctl_eds, num_keys);
rse = kzalloc(rse_len, GFP_KERNEL);
if (!rse)
return -ENOMEM;
ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
if (ret)
goto free_rse;
keys_info->generation = le32_to_cpu(rse->gen);
keys_info->num_keys = get_unaligned_le16(&rse->regctl);
num_keys = min(num_keys, keys_info->num_keys);
for (i = 0; i < num_keys; i++) {
if (eds) {
keys_info->keys[i] =
le64_to_cpu(rse->regctl_eds[i].rkey);
} else {
struct nvme_reservation_status *rs;
rs = (struct nvme_reservation_status *)rse;
keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
}
}
free_rse:
kfree(rse);
return ret;
}
static int nvme_pr_read_reservation(struct block_device *bdev,
struct pr_held_reservation *resv)
{
struct nvme_reservation_status_ext tmp_rse, *rse;
int ret, i, num_regs;
u32 rse_len;
bool eds;
get_num_regs:
/*
* Get the number of registrations so we know how big to allocate
* the response buffer.
*/
ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
if (ret)
return ret;
num_regs = get_unaligned_le16(&tmp_rse.regctl);
if (!num_regs) {
resv->generation = le32_to_cpu(tmp_rse.gen);
return 0;
}
rse_len = struct_size(rse, regctl_eds, num_regs);
rse = kzalloc(rse_len, GFP_KERNEL);
if (!rse)
return -ENOMEM;
ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
if (ret)
goto free_rse;
if (num_regs != get_unaligned_le16(&rse->regctl)) {
kfree(rse);
goto get_num_regs;
}
resv->generation = le32_to_cpu(rse->gen);
resv->type = block_pr_type_from_nvme(rse->rtype);
for (i = 0; i < num_regs; i++) {
if (eds) {
if (rse->regctl_eds[i].rcsts) {
resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
break;
}
} else {
struct nvme_reservation_status *rs;
rs = (struct nvme_reservation_status *)rse;
if (rs->regctl_ds[i].rcsts) {
resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
break;
}
}
}
free_rse:
kfree(rse);
return ret;
}
const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
.pr_read_keys = nvme_pr_read_keys,
.pr_read_reservation = nvme_pr_read_reservation,
};