linux/drivers/remoteproc/mtk_scp.c
Uwe Kleine-König ad64a7c4a4 remoteproc: Switch back to struct platform_driver::remove()
After commit 0edb555a65 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.

Convert all platform drivers below drivers/remoteproc to use .remove(),
with the eventual goal to drop struct platform_driver::remove_new(). As
.remove() and .remove_new() have the same prototypes, conversion is done
by just changing the structure member name in the driver initializer.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://lore.kernel.org/r/20241025131340.258233-2-u.kleine-koenig@baylibre.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
2024-10-29 11:27:37 -06:00

1535 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (c) 2019 MediaTek Inc.
#include <asm/barrier.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/remoteproc/mtk_scp.h>
#include <linux/rpmsg/mtk_rpmsg.h>
#include "mtk_common.h"
#include "remoteproc_internal.h"
#define SECTION_NAME_IPI_BUFFER ".ipi_buffer"
/**
* scp_get() - get a reference to SCP.
*
* @pdev: the platform device of the module requesting SCP platform
* device for using SCP API.
*
* Return: Return NULL if failed. otherwise reference to SCP.
**/
struct mtk_scp *scp_get(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *scp_node;
struct platform_device *scp_pdev;
scp_node = of_parse_phandle(dev->of_node, "mediatek,scp", 0);
if (!scp_node) {
dev_err(dev, "can't get SCP node\n");
return NULL;
}
scp_pdev = of_find_device_by_node(scp_node);
of_node_put(scp_node);
if (WARN_ON(!scp_pdev)) {
dev_err(dev, "SCP pdev failed\n");
return NULL;
}
return platform_get_drvdata(scp_pdev);
}
EXPORT_SYMBOL_GPL(scp_get);
/**
* scp_put() - "free" the SCP
*
* @scp: mtk_scp structure from scp_get().
**/
void scp_put(struct mtk_scp *scp)
{
put_device(scp->dev);
}
EXPORT_SYMBOL_GPL(scp_put);
static void scp_wdt_handler(struct mtk_scp *scp, u32 scp_to_host)
{
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
struct mtk_scp *scp_node;
dev_err(scp->dev, "SCP watchdog timeout! 0x%x", scp_to_host);
/* report watchdog timeout to all cores */
list_for_each_entry(scp_node, &scp_cluster->mtk_scp_list, elem)
rproc_report_crash(scp_node->rproc, RPROC_WATCHDOG);
}
static void scp_init_ipi_handler(void *data, unsigned int len, void *priv)
{
struct mtk_scp *scp = priv;
struct scp_run *run = data;
scp->run.signaled = run->signaled;
strscpy(scp->run.fw_ver, run->fw_ver, SCP_FW_VER_LEN);
scp->run.dec_capability = run->dec_capability;
scp->run.enc_capability = run->enc_capability;
wake_up_interruptible(&scp->run.wq);
}
static void scp_ipi_handler(struct mtk_scp *scp)
{
struct mtk_share_obj __iomem *rcv_obj = scp->recv_buf;
struct scp_ipi_desc *ipi_desc = scp->ipi_desc;
scp_ipi_handler_t handler;
u32 id = readl(&rcv_obj->id);
u32 len = readl(&rcv_obj->len);
const struct mtk_scp_sizes_data *scp_sizes;
scp_sizes = scp->data->scp_sizes;
if (len > scp_sizes->ipi_share_buffer_size) {
dev_err(scp->dev, "ipi message too long (len %d, max %zd)", len,
scp_sizes->ipi_share_buffer_size);
return;
}
if (id >= SCP_IPI_MAX) {
dev_err(scp->dev, "No such ipi id = %d\n", id);
return;
}
scp_ipi_lock(scp, id);
handler = ipi_desc[id].handler;
if (!handler) {
dev_err(scp->dev, "No handler for ipi id = %d\n", id);
scp_ipi_unlock(scp, id);
return;
}
memcpy_fromio(scp->share_buf, &rcv_obj->share_buf, len);
memset(&scp->share_buf[len], 0, scp_sizes->ipi_share_buffer_size - len);
handler(scp->share_buf, len, ipi_desc[id].priv);
scp_ipi_unlock(scp, id);
scp->ipi_id_ack[id] = true;
wake_up(&scp->ack_wq);
}
static int scp_elf_read_ipi_buf_addr(struct mtk_scp *scp,
const struct firmware *fw,
size_t *offset);
static int scp_ipi_init(struct mtk_scp *scp, const struct firmware *fw)
{
int ret;
size_t buf_sz, offset;
size_t share_buf_offset;
const struct mtk_scp_sizes_data *scp_sizes;
/* read the ipi buf addr from FW itself first */
ret = scp_elf_read_ipi_buf_addr(scp, fw, &offset);
if (ret) {
/* use default ipi buf addr if the FW doesn't have it */
offset = scp->data->ipi_buf_offset;
if (!offset)
return ret;
}
dev_info(scp->dev, "IPI buf addr %#010zx\n", offset);
/* Make sure IPI buffer fits in the L2TCM range assigned to this core */
buf_sz = sizeof(*scp->recv_buf) + sizeof(*scp->send_buf);
if (scp->sram_size < buf_sz + offset) {
dev_err(scp->dev, "IPI buffer does not fit in SRAM.\n");
return -EOVERFLOW;
}
scp_sizes = scp->data->scp_sizes;
scp->recv_buf = (struct mtk_share_obj __iomem *)
(scp->sram_base + offset);
share_buf_offset = sizeof(scp->recv_buf->id)
+ sizeof(scp->recv_buf->len) + scp_sizes->ipi_share_buffer_size;
scp->send_buf = (struct mtk_share_obj __iomem *)
(scp->sram_base + offset + share_buf_offset);
memset_io(scp->recv_buf, 0, share_buf_offset);
memset_io(scp->send_buf, 0, share_buf_offset);
return 0;
}
static void mt8183_scp_reset_assert(struct mtk_scp *scp)
{
u32 val;
val = readl(scp->cluster->reg_base + MT8183_SW_RSTN);
val &= ~MT8183_SW_RSTN_BIT;
writel(val, scp->cluster->reg_base + MT8183_SW_RSTN);
}
static void mt8183_scp_reset_deassert(struct mtk_scp *scp)
{
u32 val;
val = readl(scp->cluster->reg_base + MT8183_SW_RSTN);
val |= MT8183_SW_RSTN_BIT;
writel(val, scp->cluster->reg_base + MT8183_SW_RSTN);
}
static void mt8192_scp_reset_assert(struct mtk_scp *scp)
{
writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET);
}
static void mt8192_scp_reset_deassert(struct mtk_scp *scp)
{
writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_CLR);
}
static void mt8195_scp_c1_reset_assert(struct mtk_scp *scp)
{
writel(1, scp->cluster->reg_base + MT8195_CORE1_SW_RSTN_SET);
}
static void mt8195_scp_c1_reset_deassert(struct mtk_scp *scp)
{
writel(1, scp->cluster->reg_base + MT8195_CORE1_SW_RSTN_CLR);
}
static void mt8183_scp_irq_handler(struct mtk_scp *scp)
{
u32 scp_to_host;
scp_to_host = readl(scp->cluster->reg_base + MT8183_SCP_TO_HOST);
if (scp_to_host & MT8183_SCP_IPC_INT_BIT)
scp_ipi_handler(scp);
else
scp_wdt_handler(scp, scp_to_host);
/* SCP won't send another interrupt until we set SCP_TO_HOST to 0. */
writel(MT8183_SCP_IPC_INT_BIT | MT8183_SCP_WDT_INT_BIT,
scp->cluster->reg_base + MT8183_SCP_TO_HOST);
}
static void mt8192_scp_irq_handler(struct mtk_scp *scp)
{
u32 scp_to_host;
scp_to_host = readl(scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_SET);
if (scp_to_host & MT8192_SCP_IPC_INT_BIT) {
scp_ipi_handler(scp);
/*
* SCP won't send another interrupt until we clear
* MT8192_SCP2APMCU_IPC.
*/
writel(MT8192_SCP_IPC_INT_BIT,
scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_CLR);
} else {
scp_wdt_handler(scp, scp_to_host);
writel(1, scp->cluster->reg_base + MT8192_CORE0_WDT_IRQ);
}
}
static void mt8195_scp_irq_handler(struct mtk_scp *scp)
{
u32 scp_to_host;
scp_to_host = readl(scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_SET);
if (scp_to_host & MT8192_SCP_IPC_INT_BIT) {
scp_ipi_handler(scp);
} else {
u32 reason = readl(scp->cluster->reg_base + MT8195_SYS_STATUS);
if (reason & MT8195_CORE0_WDT)
writel(1, scp->cluster->reg_base + MT8192_CORE0_WDT_IRQ);
if (reason & MT8195_CORE1_WDT)
writel(1, scp->cluster->reg_base + MT8195_CORE1_WDT_IRQ);
scp_wdt_handler(scp, reason);
}
writel(scp_to_host, scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_CLR);
}
static void mt8195_scp_c1_irq_handler(struct mtk_scp *scp)
{
u32 scp_to_host;
scp_to_host = readl(scp->cluster->reg_base + MT8195_SSHUB2APMCU_IPC_SET);
if (scp_to_host & MT8192_SCP_IPC_INT_BIT)
scp_ipi_handler(scp);
writel(scp_to_host, scp->cluster->reg_base + MT8195_SSHUB2APMCU_IPC_CLR);
}
static irqreturn_t scp_irq_handler(int irq, void *priv)
{
struct mtk_scp *scp = priv;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(scp->dev, "failed to enable clocks\n");
return IRQ_NONE;
}
scp->data->scp_irq_handler(scp);
clk_disable_unprepare(scp->clk);
return IRQ_HANDLED;
}
static int scp_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
{
struct device *dev = &rproc->dev;
struct elf32_hdr *ehdr;
struct elf32_phdr *phdr;
int i, ret = 0;
const u8 *elf_data = fw->data;
ehdr = (struct elf32_hdr *)elf_data;
phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
/* go through the available ELF segments */
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
u32 da = phdr->p_paddr;
u32 memsz = phdr->p_memsz;
u32 filesz = phdr->p_filesz;
u32 offset = phdr->p_offset;
void __iomem *ptr;
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
phdr->p_type, da, memsz, filesz);
if (phdr->p_type != PT_LOAD)
continue;
if (!filesz)
continue;
if (filesz > memsz) {
dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
filesz, memsz);
ret = -EINVAL;
break;
}
if (offset + filesz > fw->size) {
dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
offset + filesz, fw->size);
ret = -EINVAL;
break;
}
/* grab the kernel address for this device address */
ptr = (void __iomem *)rproc_da_to_va(rproc, da, memsz, NULL);
if (!ptr) {
dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
ret = -EINVAL;
break;
}
/* put the segment where the remote processor expects it */
scp_memcpy_aligned(ptr, elf_data + phdr->p_offset, filesz);
}
return ret;
}
static int scp_elf_read_ipi_buf_addr(struct mtk_scp *scp,
const struct firmware *fw,
size_t *offset)
{
struct elf32_hdr *ehdr;
struct elf32_shdr *shdr, *shdr_strtab;
int i;
const u8 *elf_data = fw->data;
const char *strtab;
ehdr = (struct elf32_hdr *)elf_data;
shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
shdr_strtab = shdr + ehdr->e_shstrndx;
strtab = (const char *)(elf_data + shdr_strtab->sh_offset);
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
if (strcmp(strtab + shdr->sh_name,
SECTION_NAME_IPI_BUFFER) == 0) {
*offset = shdr->sh_addr;
return 0;
}
}
return -ENOENT;
}
static int mt8183_scp_clk_get(struct mtk_scp *scp)
{
struct device *dev = scp->dev;
int ret = 0;
scp->clk = devm_clk_get(dev, "main");
if (IS_ERR(scp->clk)) {
dev_err(dev, "Failed to get clock\n");
ret = PTR_ERR(scp->clk);
}
return ret;
}
static int mt8192_scp_clk_get(struct mtk_scp *scp)
{
return mt8183_scp_clk_get(scp);
}
static int mt8195_scp_clk_get(struct mtk_scp *scp)
{
scp->clk = NULL;
return 0;
}
static int mt8183_scp_before_load(struct mtk_scp *scp)
{
/* Clear SCP to host interrupt */
writel(MT8183_SCP_IPC_INT_BIT, scp->cluster->reg_base + MT8183_SCP_TO_HOST);
/* Reset clocks before loading FW */
writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_SW_SEL);
writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_DIV_SEL);
/* Initialize TCM before loading FW. */
writel(0x0, scp->cluster->reg_base + MT8183_SCP_L1_SRAM_PD);
writel(0x0, scp->cluster->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD);
/* Turn on the power of SCP's SRAM before using it. */
writel(0x0, scp->cluster->reg_base + MT8183_SCP_SRAM_PDN);
/*
* Set I-cache and D-cache size before loading SCP FW.
* SCP SRAM logical address may change when cache size setting differs.
*/
writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB,
scp->cluster->reg_base + MT8183_SCP_CACHE_CON);
writel(MT8183_SCP_CACHESIZE_8KB, scp->cluster->reg_base + MT8183_SCP_DCACHE_CON);
return 0;
}
static void scp_sram_power_on(void __iomem *addr, u32 reserved_mask)
{
int i;
for (i = 31; i >= 0; i--)
writel(GENMASK(i, 0) & ~reserved_mask, addr);
writel(0, addr);
}
static void scp_sram_power_off(void __iomem *addr, u32 reserved_mask)
{
int i;
writel(0, addr);
for (i = 0; i < 32; i++)
writel(GENMASK(i, 0) & ~reserved_mask, addr);
}
static int mt8186_scp_before_load(struct mtk_scp *scp)
{
/* Clear SCP to host interrupt */
writel(MT8183_SCP_IPC_INT_BIT, scp->cluster->reg_base + MT8183_SCP_TO_HOST);
/* Reset clocks before loading FW */
writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_SW_SEL);
writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_DIV_SEL);
/* Turn on the power of SCP's SRAM before using it. Enable 1 block per time*/
scp_sram_power_on(scp->cluster->reg_base + MT8183_SCP_SRAM_PDN, 0);
/* Initialize TCM before loading FW. */
writel(0x0, scp->cluster->reg_base + MT8183_SCP_L1_SRAM_PD);
writel(0x0, scp->cluster->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD);
writel(0x0, scp->cluster->reg_base + MT8186_SCP_L1_SRAM_PD_P1);
writel(0x0, scp->cluster->reg_base + MT8186_SCP_L1_SRAM_PD_p2);
/*
* Set I-cache and D-cache size before loading SCP FW.
* SCP SRAM logical address may change when cache size setting differs.
*/
writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB,
scp->cluster->reg_base + MT8183_SCP_CACHE_CON);
writel(MT8183_SCP_CACHESIZE_8KB, scp->cluster->reg_base + MT8183_SCP_DCACHE_CON);
return 0;
}
static int mt8188_scp_l2tcm_on(struct mtk_scp *scp)
{
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
mutex_lock(&scp_cluster->cluster_lock);
if (scp_cluster->l2tcm_refcnt == 0) {
/* clear SPM interrupt, SCP2SPM_IPC_CLR */
writel(0xff, scp->cluster->reg_base + MT8192_SCP2SPM_IPC_CLR);
/* Power on L2TCM */
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0);
}
scp_cluster->l2tcm_refcnt += 1;
mutex_unlock(&scp_cluster->cluster_lock);
return 0;
}
static int mt8188_scp_before_load(struct mtk_scp *scp)
{
writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET);
mt8188_scp_l2tcm_on(scp);
scp_sram_power_on(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0);
/* enable MPU for all memory regions */
writel(0xff, scp->cluster->reg_base + MT8192_CORE0_MEM_ATT_PREDEF);
return 0;
}
static int mt8188_scp_c1_before_load(struct mtk_scp *scp)
{
u32 sec_ctrl;
struct mtk_scp *scp_c0;
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
scp->data->scp_reset_assert(scp);
mt8188_scp_l2tcm_on(scp);
scp_sram_power_on(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0);
/* enable MPU for all memory regions */
writel(0xff, scp->cluster->reg_base + MT8195_CORE1_MEM_ATT_PREDEF);
/*
* The L2TCM_OFFSET_RANGE and L2TCM_OFFSET shift the destination address
* on SRAM when SCP core 1 accesses SRAM.
*
* This configuration solves booting the SCP core 0 and core 1 from
* different SRAM address because core 0 and core 1 both boot from
* the head of SRAM by default. this must be configured before boot SCP core 1.
*
* The value of L2TCM_OFFSET_RANGE is from the viewpoint of SCP core 1.
* When SCP core 1 issues address within the range (L2TCM_OFFSET_RANGE),
* the address will be added with a fixed offset (L2TCM_OFFSET) on the bus.
* The shift action is tranparent to software.
*/
writel(0, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_LOW);
writel(scp->sram_size, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_HIGH);
scp_c0 = list_first_entry(&scp_cluster->mtk_scp_list, struct mtk_scp, elem);
writel(scp->sram_phys - scp_c0->sram_phys, scp->cluster->reg_base + MT8195_L2TCM_OFFSET);
/* enable SRAM offset when fetching instruction and data */
sec_ctrl = readl(scp->cluster->reg_base + MT8195_SEC_CTRL);
sec_ctrl |= MT8195_CORE_OFFSET_ENABLE_I | MT8195_CORE_OFFSET_ENABLE_D;
writel(sec_ctrl, scp->cluster->reg_base + MT8195_SEC_CTRL);
return 0;
}
static int mt8192_scp_before_load(struct mtk_scp *scp)
{
/* clear SPM interrupt, SCP2SPM_IPC_CLR */
writel(0xff, scp->cluster->reg_base + MT8192_SCP2SPM_IPC_CLR);
writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET);
/* enable SRAM clock */
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0);
/* enable MPU for all memory regions */
writel(0xff, scp->cluster->reg_base + MT8192_CORE0_MEM_ATT_PREDEF);
return 0;
}
static int mt8195_scp_l2tcm_on(struct mtk_scp *scp)
{
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
mutex_lock(&scp_cluster->cluster_lock);
if (scp_cluster->l2tcm_refcnt == 0) {
/* clear SPM interrupt, SCP2SPM_IPC_CLR */
writel(0xff, scp->cluster->reg_base + MT8192_SCP2SPM_IPC_CLR);
/* Power on L2TCM */
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0);
scp_sram_power_on(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN,
MT8195_L1TCM_SRAM_PDN_RESERVED_RSI_BITS);
}
scp_cluster->l2tcm_refcnt += 1;
mutex_unlock(&scp_cluster->cluster_lock);
return 0;
}
static int mt8195_scp_before_load(struct mtk_scp *scp)
{
writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET);
mt8195_scp_l2tcm_on(scp);
scp_sram_power_on(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0);
/* enable MPU for all memory regions */
writel(0xff, scp->cluster->reg_base + MT8192_CORE0_MEM_ATT_PREDEF);
return 0;
}
static int mt8195_scp_c1_before_load(struct mtk_scp *scp)
{
u32 sec_ctrl;
struct mtk_scp *scp_c0;
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
scp->data->scp_reset_assert(scp);
mt8195_scp_l2tcm_on(scp);
scp_sram_power_on(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0);
/* enable MPU for all memory regions */
writel(0xff, scp->cluster->reg_base + MT8195_CORE1_MEM_ATT_PREDEF);
/*
* The L2TCM_OFFSET_RANGE and L2TCM_OFFSET shift the destination address
* on SRAM when SCP core 1 accesses SRAM.
*
* This configuration solves booting the SCP core 0 and core 1 from
* different SRAM address because core 0 and core 1 both boot from
* the head of SRAM by default. this must be configured before boot SCP core 1.
*
* The value of L2TCM_OFFSET_RANGE is from the viewpoint of SCP core 1.
* When SCP core 1 issues address within the range (L2TCM_OFFSET_RANGE),
* the address will be added with a fixed offset (L2TCM_OFFSET) on the bus.
* The shift action is tranparent to software.
*/
writel(0, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_LOW);
writel(scp->sram_size, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_HIGH);
scp_c0 = list_first_entry(&scp_cluster->mtk_scp_list, struct mtk_scp, elem);
writel(scp->sram_phys - scp_c0->sram_phys, scp->cluster->reg_base + MT8195_L2TCM_OFFSET);
/* enable SRAM offset when fetching instruction and data */
sec_ctrl = readl(scp->cluster->reg_base + MT8195_SEC_CTRL);
sec_ctrl |= MT8195_CORE_OFFSET_ENABLE_I | MT8195_CORE_OFFSET_ENABLE_D;
writel(sec_ctrl, scp->cluster->reg_base + MT8195_SEC_CTRL);
return 0;
}
static int scp_load(struct rproc *rproc, const struct firmware *fw)
{
struct mtk_scp *scp = rproc->priv;
struct device *dev = scp->dev;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(dev, "failed to enable clocks\n");
return ret;
}
/* Hold SCP in reset while loading FW. */
scp->data->scp_reset_assert(scp);
ret = scp->data->scp_before_load(scp);
if (ret < 0)
goto leave;
ret = scp_elf_load_segments(rproc, fw);
leave:
clk_disable_unprepare(scp->clk);
return ret;
}
static int scp_parse_fw(struct rproc *rproc, const struct firmware *fw)
{
struct mtk_scp *scp = rproc->priv;
struct device *dev = scp->dev;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(dev, "failed to enable clocks\n");
return ret;
}
ret = scp_ipi_init(scp, fw);
clk_disable_unprepare(scp->clk);
return ret;
}
static int scp_start(struct rproc *rproc)
{
struct mtk_scp *scp = rproc->priv;
struct device *dev = scp->dev;
struct scp_run *run = &scp->run;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(dev, "failed to enable clocks\n");
return ret;
}
run->signaled = false;
scp->data->scp_reset_deassert(scp);
ret = wait_event_interruptible_timeout(
run->wq,
run->signaled,
msecs_to_jiffies(2000));
if (ret == 0) {
dev_err(dev, "wait SCP initialization timeout!\n");
ret = -ETIME;
goto stop;
}
if (ret == -ERESTARTSYS) {
dev_err(dev, "wait SCP interrupted by a signal!\n");
goto stop;
}
clk_disable_unprepare(scp->clk);
dev_info(dev, "SCP is ready. FW version %s\n", run->fw_ver);
return 0;
stop:
scp->data->scp_reset_assert(scp);
clk_disable_unprepare(scp->clk);
return ret;
}
static void *mt8183_scp_da_to_va(struct mtk_scp *scp, u64 da, size_t len)
{
int offset;
const struct mtk_scp_sizes_data *scp_sizes;
scp_sizes = scp->data->scp_sizes;
if (da < scp->sram_size) {
offset = da;
if (offset >= 0 && (offset + len) <= scp->sram_size)
return (void __force *)scp->sram_base + offset;
} else if (scp_sizes->max_dram_size) {
offset = da - scp->dma_addr;
if (offset >= 0 && (offset + len) <= scp_sizes->max_dram_size)
return scp->cpu_addr + offset;
}
return NULL;
}
static void *mt8192_scp_da_to_va(struct mtk_scp *scp, u64 da, size_t len)
{
int offset;
const struct mtk_scp_sizes_data *scp_sizes;
scp_sizes = scp->data->scp_sizes;
if (da >= scp->sram_phys &&
(da + len) <= scp->sram_phys + scp->sram_size) {
offset = da - scp->sram_phys;
return (void __force *)scp->sram_base + offset;
}
/* optional memory region */
if (scp->cluster->l1tcm_size &&
da >= scp->cluster->l1tcm_phys &&
(da + len) <= scp->cluster->l1tcm_phys + scp->cluster->l1tcm_size) {
offset = da - scp->cluster->l1tcm_phys;
return (void __force *)scp->cluster->l1tcm_base + offset;
}
/* optional memory region */
if (scp_sizes->max_dram_size &&
da >= scp->dma_addr &&
(da + len) <= scp->dma_addr + scp_sizes->max_dram_size) {
offset = da - scp->dma_addr;
return scp->cpu_addr + offset;
}
return NULL;
}
static void *scp_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct mtk_scp *scp = rproc->priv;
return scp->data->scp_da_to_va(scp, da, len);
}
static void mt8183_scp_stop(struct mtk_scp *scp)
{
/* Disable SCP watchdog */
writel(0, scp->cluster->reg_base + MT8183_WDT_CFG);
}
static void mt8188_scp_l2tcm_off(struct mtk_scp *scp)
{
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
mutex_lock(&scp_cluster->cluster_lock);
if (scp_cluster->l2tcm_refcnt > 0)
scp_cluster->l2tcm_refcnt -= 1;
if (scp_cluster->l2tcm_refcnt == 0) {
/* Power off L2TCM */
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0);
}
mutex_unlock(&scp_cluster->cluster_lock);
}
static void mt8188_scp_stop(struct mtk_scp *scp)
{
mt8188_scp_l2tcm_off(scp);
scp_sram_power_off(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0);
/* Disable SCP watchdog */
writel(0, scp->cluster->reg_base + MT8192_CORE0_WDT_CFG);
}
static void mt8188_scp_c1_stop(struct mtk_scp *scp)
{
mt8188_scp_l2tcm_off(scp);
/* Power off CPU SRAM */
scp_sram_power_off(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0);
/* Disable SCP watchdog */
writel(0, scp->cluster->reg_base + MT8195_CORE1_WDT_CFG);
}
static void mt8192_scp_stop(struct mtk_scp *scp)
{
/* Disable SRAM clock */
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0);
/* Disable SCP watchdog */
writel(0, scp->cluster->reg_base + MT8192_CORE0_WDT_CFG);
}
static void mt8195_scp_l2tcm_off(struct mtk_scp *scp)
{
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
mutex_lock(&scp_cluster->cluster_lock);
if (scp_cluster->l2tcm_refcnt > 0)
scp_cluster->l2tcm_refcnt -= 1;
if (scp_cluster->l2tcm_refcnt == 0) {
/* Power off L2TCM */
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0);
scp_sram_power_off(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN,
MT8195_L1TCM_SRAM_PDN_RESERVED_RSI_BITS);
}
mutex_unlock(&scp_cluster->cluster_lock);
}
static void mt8195_scp_stop(struct mtk_scp *scp)
{
mt8195_scp_l2tcm_off(scp);
scp_sram_power_off(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0);
/* Disable SCP watchdog */
writel(0, scp->cluster->reg_base + MT8192_CORE0_WDT_CFG);
}
static void mt8195_scp_c1_stop(struct mtk_scp *scp)
{
mt8195_scp_l2tcm_off(scp);
/* Power off CPU SRAM */
scp_sram_power_off(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0);
/* Disable SCP watchdog */
writel(0, scp->cluster->reg_base + MT8195_CORE1_WDT_CFG);
}
static int scp_stop(struct rproc *rproc)
{
struct mtk_scp *scp = rproc->priv;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(scp->dev, "failed to enable clocks\n");
return ret;
}
scp->data->scp_reset_assert(scp);
scp->data->scp_stop(scp);
clk_disable_unprepare(scp->clk);
return 0;
}
static const struct rproc_ops scp_ops = {
.start = scp_start,
.stop = scp_stop,
.load = scp_load,
.da_to_va = scp_da_to_va,
.parse_fw = scp_parse_fw,
.sanity_check = rproc_elf_sanity_check,
};
/**
* scp_get_device() - get device struct of SCP
*
* @scp: mtk_scp structure
**/
struct device *scp_get_device(struct mtk_scp *scp)
{
return scp->dev;
}
EXPORT_SYMBOL_GPL(scp_get_device);
/**
* scp_get_rproc() - get rproc struct of SCP
*
* @scp: mtk_scp structure
**/
struct rproc *scp_get_rproc(struct mtk_scp *scp)
{
return scp->rproc;
}
EXPORT_SYMBOL_GPL(scp_get_rproc);
/**
* scp_get_vdec_hw_capa() - get video decoder hardware capability
*
* @scp: mtk_scp structure
*
* Return: video decoder hardware capability
**/
unsigned int scp_get_vdec_hw_capa(struct mtk_scp *scp)
{
return scp->run.dec_capability;
}
EXPORT_SYMBOL_GPL(scp_get_vdec_hw_capa);
/**
* scp_get_venc_hw_capa() - get video encoder hardware capability
*
* @scp: mtk_scp structure
*
* Return: video encoder hardware capability
**/
unsigned int scp_get_venc_hw_capa(struct mtk_scp *scp)
{
return scp->run.enc_capability;
}
EXPORT_SYMBOL_GPL(scp_get_venc_hw_capa);
/**
* scp_mapping_dm_addr() - Mapping SRAM/DRAM to kernel virtual address
*
* @scp: mtk_scp structure
* @mem_addr: SCP views memory address
*
* Mapping the SCP's SRAM address /
* DMEM (Data Extended Memory) memory address /
* Working buffer memory address to
* kernel virtual address.
*
* Return: Return ERR_PTR(-EINVAL) if mapping failed,
* otherwise the mapped kernel virtual address
**/
void *scp_mapping_dm_addr(struct mtk_scp *scp, u32 mem_addr)
{
void *ptr;
ptr = scp_da_to_va(scp->rproc, mem_addr, 0, NULL);
if (!ptr)
return ERR_PTR(-EINVAL);
return ptr;
}
EXPORT_SYMBOL_GPL(scp_mapping_dm_addr);
static int scp_map_memory_region(struct mtk_scp *scp)
{
int ret;
const struct mtk_scp_sizes_data *scp_sizes;
ret = of_reserved_mem_device_init(scp->dev);
/* reserved memory is optional. */
if (ret == -ENODEV) {
dev_info(scp->dev, "skipping reserved memory initialization.");
return 0;
}
if (ret) {
dev_err(scp->dev, "failed to assign memory-region: %d\n", ret);
return -ENOMEM;
}
/* Reserved SCP code size */
scp_sizes = scp->data->scp_sizes;
scp->cpu_addr = dma_alloc_coherent(scp->dev, scp_sizes->max_dram_size,
&scp->dma_addr, GFP_KERNEL);
if (!scp->cpu_addr)
return -ENOMEM;
return 0;
}
static void scp_unmap_memory_region(struct mtk_scp *scp)
{
const struct mtk_scp_sizes_data *scp_sizes;
scp_sizes = scp->data->scp_sizes;
if (scp_sizes->max_dram_size == 0)
return;
dma_free_coherent(scp->dev, scp_sizes->max_dram_size, scp->cpu_addr,
scp->dma_addr);
of_reserved_mem_device_release(scp->dev);
}
static int scp_register_ipi(struct platform_device *pdev, u32 id,
ipi_handler_t handler, void *priv)
{
struct mtk_scp *scp = platform_get_drvdata(pdev);
return scp_ipi_register(scp, id, handler, priv);
}
static void scp_unregister_ipi(struct platform_device *pdev, u32 id)
{
struct mtk_scp *scp = platform_get_drvdata(pdev);
scp_ipi_unregister(scp, id);
}
static int scp_send_ipi(struct platform_device *pdev, u32 id, void *buf,
unsigned int len, unsigned int wait)
{
struct mtk_scp *scp = platform_get_drvdata(pdev);
return scp_ipi_send(scp, id, buf, len, wait);
}
static struct mtk_rpmsg_info mtk_scp_rpmsg_info = {
.send_ipi = scp_send_ipi,
.register_ipi = scp_register_ipi,
.unregister_ipi = scp_unregister_ipi,
.ns_ipi_id = SCP_IPI_NS_SERVICE,
};
static void scp_add_rpmsg_subdev(struct mtk_scp *scp)
{
scp->rpmsg_subdev =
mtk_rpmsg_create_rproc_subdev(to_platform_device(scp->dev),
&mtk_scp_rpmsg_info);
if (scp->rpmsg_subdev)
rproc_add_subdev(scp->rproc, scp->rpmsg_subdev);
}
static void scp_remove_rpmsg_subdev(struct mtk_scp *scp)
{
if (scp->rpmsg_subdev) {
rproc_remove_subdev(scp->rproc, scp->rpmsg_subdev);
mtk_rpmsg_destroy_rproc_subdev(scp->rpmsg_subdev);
scp->rpmsg_subdev = NULL;
}
}
static struct mtk_scp *scp_rproc_init(struct platform_device *pdev,
struct mtk_scp_of_cluster *scp_cluster,
const struct mtk_scp_of_data *of_data)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct mtk_scp *scp;
struct rproc *rproc;
struct resource *res;
const char *fw_name = "scp.img";
int ret, i;
const struct mtk_scp_sizes_data *scp_sizes;
ret = rproc_of_parse_firmware(dev, 0, &fw_name);
if (ret < 0 && ret != -EINVAL)
return ERR_PTR(ret);
rproc = devm_rproc_alloc(dev, np->name, &scp_ops, fw_name, sizeof(*scp));
if (!rproc) {
dev_err(dev, "unable to allocate remoteproc\n");
return ERR_PTR(-ENOMEM);
}
scp = rproc->priv;
scp->rproc = rproc;
scp->dev = dev;
scp->data = of_data;
scp->cluster = scp_cluster;
platform_set_drvdata(pdev, scp);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
scp->sram_base = devm_ioremap_resource(dev, res);
if (IS_ERR(scp->sram_base)) {
dev_err(dev, "Failed to parse and map sram memory\n");
return ERR_CAST(scp->sram_base);
}
scp->sram_size = resource_size(res);
scp->sram_phys = res->start;
ret = scp->data->scp_clk_get(scp);
if (ret)
return ERR_PTR(ret);
ret = scp_map_memory_region(scp);
if (ret)
return ERR_PTR(ret);
mutex_init(&scp->send_lock);
for (i = 0; i < SCP_IPI_MAX; i++)
mutex_init(&scp->ipi_desc[i].lock);
/* register SCP initialization IPI */
ret = scp_ipi_register(scp, SCP_IPI_INIT, scp_init_ipi_handler, scp);
if (ret) {
dev_err(dev, "Failed to register IPI_SCP_INIT\n");
goto release_dev_mem;
}
scp_sizes = scp->data->scp_sizes;
scp->share_buf = kzalloc(scp_sizes->ipi_share_buffer_size, GFP_KERNEL);
if (!scp->share_buf) {
dev_err(dev, "Failed to allocate IPI share buffer\n");
ret = -ENOMEM;
goto release_dev_mem;
}
init_waitqueue_head(&scp->run.wq);
init_waitqueue_head(&scp->ack_wq);
scp_add_rpmsg_subdev(scp);
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), NULL,
scp_irq_handler, IRQF_ONESHOT,
pdev->name, scp);
if (ret) {
dev_err(dev, "failed to request irq\n");
goto remove_subdev;
}
return scp;
remove_subdev:
scp_remove_rpmsg_subdev(scp);
scp_ipi_unregister(scp, SCP_IPI_INIT);
kfree(scp->share_buf);
scp->share_buf = NULL;
release_dev_mem:
scp_unmap_memory_region(scp);
for (i = 0; i < SCP_IPI_MAX; i++)
mutex_destroy(&scp->ipi_desc[i].lock);
mutex_destroy(&scp->send_lock);
return ERR_PTR(ret);
}
static void scp_free(struct mtk_scp *scp)
{
int i;
scp_remove_rpmsg_subdev(scp);
scp_ipi_unregister(scp, SCP_IPI_INIT);
kfree(scp->share_buf);
scp->share_buf = NULL;
scp_unmap_memory_region(scp);
for (i = 0; i < SCP_IPI_MAX; i++)
mutex_destroy(&scp->ipi_desc[i].lock);
mutex_destroy(&scp->send_lock);
}
static int scp_add_single_core(struct platform_device *pdev,
struct mtk_scp_of_cluster *scp_cluster)
{
struct device *dev = &pdev->dev;
struct list_head *scp_list = &scp_cluster->mtk_scp_list;
struct mtk_scp *scp;
int ret;
scp = scp_rproc_init(pdev, scp_cluster, of_device_get_match_data(dev));
if (IS_ERR(scp))
return PTR_ERR(scp);
ret = rproc_add(scp->rproc);
if (ret) {
dev_err(dev, "Failed to add rproc\n");
scp_free(scp);
return ret;
}
list_add_tail(&scp->elem, scp_list);
return 0;
}
static int scp_add_multi_core(struct platform_device *pdev,
struct mtk_scp_of_cluster *scp_cluster)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev_of_node(dev);
struct platform_device *cpdev;
struct device_node *child;
struct list_head *scp_list = &scp_cluster->mtk_scp_list;
const struct mtk_scp_of_data **cluster_of_data;
struct mtk_scp *scp, *temp;
int core_id = 0;
int ret;
cluster_of_data = (const struct mtk_scp_of_data **)of_device_get_match_data(dev);
for_each_available_child_of_node(np, child) {
if (!cluster_of_data[core_id]) {
ret = -EINVAL;
dev_err(dev, "Not support core %d\n", core_id);
of_node_put(child);
goto init_fail;
}
cpdev = of_find_device_by_node(child);
if (!cpdev) {
ret = -ENODEV;
dev_err(dev, "Not found platform device for core %d\n", core_id);
of_node_put(child);
goto init_fail;
}
scp = scp_rproc_init(cpdev, scp_cluster, cluster_of_data[core_id]);
put_device(&cpdev->dev);
if (IS_ERR(scp)) {
ret = PTR_ERR(scp);
dev_err(dev, "Failed to initialize core %d rproc\n", core_id);
of_node_put(child);
goto init_fail;
}
ret = rproc_add(scp->rproc);
if (ret) {
dev_err(dev, "Failed to add rproc of core %d\n", core_id);
of_node_put(child);
scp_free(scp);
goto init_fail;
}
list_add_tail(&scp->elem, scp_list);
core_id++;
}
/*
* Here we are setting the platform device for @pdev to the last @scp that was
* created, which is needed because (1) scp_rproc_init() is calling
* platform_set_drvdata() on the child platform devices and (2) we need a handle to
* the cluster list in scp_remove().
*/
platform_set_drvdata(pdev, scp);
return 0;
init_fail:
list_for_each_entry_safe_reverse(scp, temp, scp_list, elem) {
list_del(&scp->elem);
rproc_del(scp->rproc);
scp_free(scp);
}
return ret;
}
static bool scp_is_single_core(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev_of_node(dev);
struct device_node *child;
int num_cores = 0;
for_each_child_of_node(np, child)
if (of_device_is_compatible(child, "mediatek,scp-core"))
num_cores++;
return num_cores < 2;
}
static int scp_cluster_init(struct platform_device *pdev, struct mtk_scp_of_cluster *scp_cluster)
{
int ret;
if (scp_is_single_core(pdev))
ret = scp_add_single_core(pdev, scp_cluster);
else
ret = scp_add_multi_core(pdev, scp_cluster);
return ret;
}
static int scp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mtk_scp_of_cluster *scp_cluster;
struct resource *res;
int ret;
scp_cluster = devm_kzalloc(dev, sizeof(*scp_cluster), GFP_KERNEL);
if (!scp_cluster)
return -ENOMEM;
scp_cluster->reg_base = devm_platform_ioremap_resource_byname(pdev, "cfg");
if (IS_ERR(scp_cluster->reg_base))
return dev_err_probe(dev, PTR_ERR(scp_cluster->reg_base),
"Failed to parse and map cfg memory\n");
/* l1tcm is an optional memory region */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "l1tcm");
if (res) {
scp_cluster->l1tcm_base = devm_ioremap_resource(dev, res);
if (IS_ERR(scp_cluster->l1tcm_base))
return dev_err_probe(dev, PTR_ERR(scp_cluster->l1tcm_base),
"Failed to map l1tcm memory\n");
scp_cluster->l1tcm_size = resource_size(res);
scp_cluster->l1tcm_phys = res->start;
}
INIT_LIST_HEAD(&scp_cluster->mtk_scp_list);
mutex_init(&scp_cluster->cluster_lock);
ret = devm_of_platform_populate(dev);
if (ret)
return dev_err_probe(dev, ret, "Failed to populate platform devices\n");
ret = scp_cluster_init(pdev, scp_cluster);
if (ret)
return ret;
return 0;
}
static void scp_remove(struct platform_device *pdev)
{
struct mtk_scp *scp = platform_get_drvdata(pdev);
struct mtk_scp_of_cluster *scp_cluster = scp->cluster;
struct mtk_scp *temp;
list_for_each_entry_safe_reverse(scp, temp, &scp_cluster->mtk_scp_list, elem) {
list_del(&scp->elem);
rproc_del(scp->rproc);
scp_free(scp);
}
mutex_destroy(&scp_cluster->cluster_lock);
}
static const struct mtk_scp_sizes_data default_scp_sizes = {
.max_dram_size = 0x500000,
.ipi_share_buffer_size = 288,
};
static const struct mtk_scp_sizes_data mt8188_scp_sizes = {
.max_dram_size = 0x800000,
.ipi_share_buffer_size = 600,
};
static const struct mtk_scp_sizes_data mt8188_scp_c1_sizes = {
.max_dram_size = 0xA00000,
.ipi_share_buffer_size = 600,
};
static const struct mtk_scp_sizes_data mt8195_scp_sizes = {
.max_dram_size = 0x800000,
.ipi_share_buffer_size = 288,
};
static const struct mtk_scp_of_data mt8183_of_data = {
.scp_clk_get = mt8183_scp_clk_get,
.scp_before_load = mt8183_scp_before_load,
.scp_irq_handler = mt8183_scp_irq_handler,
.scp_reset_assert = mt8183_scp_reset_assert,
.scp_reset_deassert = mt8183_scp_reset_deassert,
.scp_stop = mt8183_scp_stop,
.scp_da_to_va = mt8183_scp_da_to_va,
.host_to_scp_reg = MT8183_HOST_TO_SCP,
.host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT,
.ipi_buf_offset = 0x7bdb0,
.scp_sizes = &default_scp_sizes,
};
static const struct mtk_scp_of_data mt8186_of_data = {
.scp_clk_get = mt8195_scp_clk_get,
.scp_before_load = mt8186_scp_before_load,
.scp_irq_handler = mt8183_scp_irq_handler,
.scp_reset_assert = mt8183_scp_reset_assert,
.scp_reset_deassert = mt8183_scp_reset_deassert,
.scp_stop = mt8183_scp_stop,
.scp_da_to_va = mt8183_scp_da_to_va,
.host_to_scp_reg = MT8183_HOST_TO_SCP,
.host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT,
.ipi_buf_offset = 0x3bdb0,
.scp_sizes = &default_scp_sizes,
};
static const struct mtk_scp_of_data mt8188_of_data = {
.scp_clk_get = mt8195_scp_clk_get,
.scp_before_load = mt8188_scp_before_load,
.scp_irq_handler = mt8195_scp_irq_handler,
.scp_reset_assert = mt8192_scp_reset_assert,
.scp_reset_deassert = mt8192_scp_reset_deassert,
.scp_stop = mt8188_scp_stop,
.scp_da_to_va = mt8192_scp_da_to_va,
.host_to_scp_reg = MT8192_GIPC_IN_SET,
.host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT,
.scp_sizes = &mt8188_scp_sizes,
};
static const struct mtk_scp_of_data mt8188_of_data_c1 = {
.scp_clk_get = mt8195_scp_clk_get,
.scp_before_load = mt8188_scp_c1_before_load,
.scp_irq_handler = mt8195_scp_c1_irq_handler,
.scp_reset_assert = mt8195_scp_c1_reset_assert,
.scp_reset_deassert = mt8195_scp_c1_reset_deassert,
.scp_stop = mt8188_scp_c1_stop,
.scp_da_to_va = mt8192_scp_da_to_va,
.host_to_scp_reg = MT8192_GIPC_IN_SET,
.host_to_scp_int_bit = MT8195_CORE1_HOST_IPC_INT_BIT,
.scp_sizes = &mt8188_scp_c1_sizes,
};
static const struct mtk_scp_of_data mt8192_of_data = {
.scp_clk_get = mt8192_scp_clk_get,
.scp_before_load = mt8192_scp_before_load,
.scp_irq_handler = mt8192_scp_irq_handler,
.scp_reset_assert = mt8192_scp_reset_assert,
.scp_reset_deassert = mt8192_scp_reset_deassert,
.scp_stop = mt8192_scp_stop,
.scp_da_to_va = mt8192_scp_da_to_va,
.host_to_scp_reg = MT8192_GIPC_IN_SET,
.host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT,
.scp_sizes = &default_scp_sizes,
};
static const struct mtk_scp_of_data mt8195_of_data = {
.scp_clk_get = mt8195_scp_clk_get,
.scp_before_load = mt8195_scp_before_load,
.scp_irq_handler = mt8195_scp_irq_handler,
.scp_reset_assert = mt8192_scp_reset_assert,
.scp_reset_deassert = mt8192_scp_reset_deassert,
.scp_stop = mt8195_scp_stop,
.scp_da_to_va = mt8192_scp_da_to_va,
.host_to_scp_reg = MT8192_GIPC_IN_SET,
.host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT,
.scp_sizes = &mt8195_scp_sizes,
};
static const struct mtk_scp_of_data mt8195_of_data_c1 = {
.scp_clk_get = mt8195_scp_clk_get,
.scp_before_load = mt8195_scp_c1_before_load,
.scp_irq_handler = mt8195_scp_c1_irq_handler,
.scp_reset_assert = mt8195_scp_c1_reset_assert,
.scp_reset_deassert = mt8195_scp_c1_reset_deassert,
.scp_stop = mt8195_scp_c1_stop,
.scp_da_to_va = mt8192_scp_da_to_va,
.host_to_scp_reg = MT8192_GIPC_IN_SET,
.host_to_scp_int_bit = MT8195_CORE1_HOST_IPC_INT_BIT,
.scp_sizes = &default_scp_sizes,
};
static const struct mtk_scp_of_data *mt8188_of_data_cores[] = {
&mt8188_of_data,
&mt8188_of_data_c1,
NULL
};
static const struct mtk_scp_of_data *mt8195_of_data_cores[] = {
&mt8195_of_data,
&mt8195_of_data_c1,
NULL
};
static const struct of_device_id mtk_scp_of_match[] = {
{ .compatible = "mediatek,mt8183-scp", .data = &mt8183_of_data },
{ .compatible = "mediatek,mt8186-scp", .data = &mt8186_of_data },
{ .compatible = "mediatek,mt8188-scp", .data = &mt8188_of_data },
{ .compatible = "mediatek,mt8188-scp-dual", .data = &mt8188_of_data_cores },
{ .compatible = "mediatek,mt8192-scp", .data = &mt8192_of_data },
{ .compatible = "mediatek,mt8195-scp", .data = &mt8195_of_data },
{ .compatible = "mediatek,mt8195-scp-dual", .data = &mt8195_of_data_cores },
{},
};
MODULE_DEVICE_TABLE(of, mtk_scp_of_match);
static struct platform_driver mtk_scp_driver = {
.probe = scp_probe,
.remove = scp_remove,
.driver = {
.name = "mtk-scp",
.of_match_table = mtk_scp_of_match,
},
};
module_platform_driver(mtk_scp_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MediaTek SCP control driver");