mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-28 16:53:49 +00:00
ee4cdf7ba8
Improve the efficiency of buffered reads in a number of ways: (1) Overhaul the algorithm in general so that it's a lot more compact and split the read submission code between buffered and unbuffered versions. The unbuffered version can be vastly simplified. (2) Read-result collection is handed off to a work queue rather than being done in the I/O thread. Multiple subrequests can be processes simultaneously. (3) When a subrequest is collected, any folios it fully spans are collected and "spare" data on either side is donated to either the previous or the next subrequest in the sequence. Notes: (*) Readahead expansion is massively slows down fio, presumably because it causes a load of extra allocations, both folio and xarray, up front before RPC requests can be transmitted. (*) RDMA with cifs does appear to work, both with SIW and RXE. (*) PG_private_2-based reading and copy-to-cache is split out into its own file and altered to use folio_queue. Note that the copy to the cache now creates a new write transaction against the cache and adds the folios to be copied into it. This allows it to use part of the writeback I/O code. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20240814203850.2240469-20-dhowells@redhat.com/ # v2 Signed-off-by: Christian Brauner <brauner@kernel.org>
262 lines
6.6 KiB
C
262 lines
6.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Direct I/O support.
|
|
*
|
|
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/netfs.h>
|
|
#include "internal.h"
|
|
|
|
static void netfs_prepare_dio_read_iterator(struct netfs_io_subrequest *subreq)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
size_t rsize;
|
|
|
|
rsize = umin(subreq->len, rreq->io_streams[0].sreq_max_len);
|
|
subreq->len = rsize;
|
|
|
|
if (unlikely(rreq->io_streams[0].sreq_max_segs)) {
|
|
size_t limit = netfs_limit_iter(&rreq->iter, 0, rsize,
|
|
rreq->io_streams[0].sreq_max_segs);
|
|
|
|
if (limit < rsize) {
|
|
subreq->len = limit;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
|
|
}
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
|
|
subreq->io_iter = rreq->iter;
|
|
iov_iter_truncate(&subreq->io_iter, subreq->len);
|
|
iov_iter_advance(&rreq->iter, subreq->len);
|
|
}
|
|
|
|
/*
|
|
* Perform a read to a buffer from the server, slicing up the region to be read
|
|
* according to the network rsize.
|
|
*/
|
|
static int netfs_dispatch_unbuffered_reads(struct netfs_io_request *rreq)
|
|
{
|
|
unsigned long long start = rreq->start;
|
|
ssize_t size = rreq->len;
|
|
int ret = 0;
|
|
|
|
atomic_set(&rreq->nr_outstanding, 1);
|
|
|
|
do {
|
|
struct netfs_io_subrequest *subreq;
|
|
ssize_t slice;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->start = start;
|
|
subreq->len = size;
|
|
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
spin_lock_bh(&rreq->lock);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
subreq->prev_donated = rreq->prev_donated;
|
|
rreq->prev_donated = 0;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_added);
|
|
spin_unlock_bh(&rreq->lock);
|
|
|
|
netfs_stat(&netfs_n_rh_download);
|
|
if (rreq->netfs_ops->prepare_read) {
|
|
ret = rreq->netfs_ops->prepare_read(subreq);
|
|
if (ret < 0) {
|
|
atomic_dec(&rreq->nr_outstanding);
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_cancel);
|
|
break;
|
|
}
|
|
}
|
|
|
|
netfs_prepare_dio_read_iterator(subreq);
|
|
slice = subreq->len;
|
|
rreq->netfs_ops->issue_read(subreq);
|
|
|
|
size -= slice;
|
|
start += slice;
|
|
rreq->submitted += slice;
|
|
|
|
if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
|
|
break;
|
|
cond_resched();
|
|
} while (size > 0);
|
|
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_terminated(rreq, false);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Perform a read to an application buffer, bypassing the pagecache and the
|
|
* local disk cache.
|
|
*/
|
|
static int netfs_unbuffered_read(struct netfs_io_request *rreq, bool sync)
|
|
{
|
|
int ret;
|
|
|
|
_enter("R=%x %llx-%llx",
|
|
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
|
|
|
|
if (rreq->len == 0) {
|
|
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
|
|
return -EIO;
|
|
}
|
|
|
|
// TODO: Use bounce buffer if requested
|
|
|
|
inode_dio_begin(rreq->inode);
|
|
|
|
ret = netfs_dispatch_unbuffered_reads(rreq);
|
|
|
|
if (!rreq->submitted) {
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
|
|
inode_dio_end(rreq->inode);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (sync) {
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
|
|
wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len &&
|
|
rreq->origin != NETFS_DIO_READ) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
ret = -EIOCBQUEUED;
|
|
}
|
|
|
|
out:
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* netfs_unbuffered_read_iter_locked - Perform an unbuffered or direct I/O read
|
|
* @iocb: The I/O control descriptor describing the read
|
|
* @iter: The output buffer (also specifies read length)
|
|
*
|
|
* Perform an unbuffered I/O or direct I/O from the file in @iocb to the
|
|
* output buffer. No use is made of the pagecache.
|
|
*
|
|
* The caller must hold any appropriate locks.
|
|
*/
|
|
ssize_t netfs_unbuffered_read_iter_locked(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
ssize_t ret;
|
|
size_t orig_count = iov_iter_count(iter);
|
|
bool sync = is_sync_kiocb(iocb);
|
|
|
|
_enter("");
|
|
|
|
if (!orig_count)
|
|
return 0; /* Don't update atime */
|
|
|
|
ret = kiocb_write_and_wait(iocb, orig_count);
|
|
if (ret < 0)
|
|
return ret;
|
|
file_accessed(iocb->ki_filp);
|
|
|
|
rreq = netfs_alloc_request(iocb->ki_filp->f_mapping, iocb->ki_filp,
|
|
iocb->ki_pos, orig_count,
|
|
NETFS_DIO_READ);
|
|
if (IS_ERR(rreq))
|
|
return PTR_ERR(rreq);
|
|
|
|
netfs_stat(&netfs_n_rh_dio_read);
|
|
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_dio_read);
|
|
|
|
/* If this is an async op, we have to keep track of the destination
|
|
* buffer for ourselves as the caller's iterator will be trashed when
|
|
* we return.
|
|
*
|
|
* In such a case, extract an iterator to represent as much of the the
|
|
* output buffer as we can manage. Note that the extraction might not
|
|
* be able to allocate a sufficiently large bvec array and may shorten
|
|
* the request.
|
|
*/
|
|
if (user_backed_iter(iter)) {
|
|
ret = netfs_extract_user_iter(iter, rreq->len, &rreq->iter, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
rreq->direct_bv = (struct bio_vec *)rreq->iter.bvec;
|
|
rreq->direct_bv_count = ret;
|
|
rreq->direct_bv_unpin = iov_iter_extract_will_pin(iter);
|
|
rreq->len = iov_iter_count(&rreq->iter);
|
|
} else {
|
|
rreq->iter = *iter;
|
|
rreq->len = orig_count;
|
|
rreq->direct_bv_unpin = false;
|
|
iov_iter_advance(iter, orig_count);
|
|
}
|
|
|
|
// TODO: Set up bounce buffer if needed
|
|
|
|
if (!sync)
|
|
rreq->iocb = iocb;
|
|
|
|
ret = netfs_unbuffered_read(rreq, sync);
|
|
if (ret < 0)
|
|
goto out; /* May be -EIOCBQUEUED */
|
|
if (sync) {
|
|
// TODO: Copy from bounce buffer
|
|
iocb->ki_pos += rreq->transferred;
|
|
ret = rreq->transferred;
|
|
}
|
|
|
|
out:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
if (ret > 0)
|
|
orig_count -= ret;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_unbuffered_read_iter_locked);
|
|
|
|
/**
|
|
* netfs_unbuffered_read_iter - Perform an unbuffered or direct I/O read
|
|
* @iocb: The I/O control descriptor describing the read
|
|
* @iter: The output buffer (also specifies read length)
|
|
*
|
|
* Perform an unbuffered I/O or direct I/O from the file in @iocb to the
|
|
* output buffer. No use is made of the pagecache.
|
|
*/
|
|
ssize_t netfs_unbuffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t ret;
|
|
|
|
if (!iter->count)
|
|
return 0; /* Don't update atime */
|
|
|
|
ret = netfs_start_io_direct(inode);
|
|
if (ret == 0) {
|
|
ret = netfs_unbuffered_read_iter_locked(iocb, iter);
|
|
netfs_end_io_direct(inode);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_unbuffered_read_iter);
|