mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 01:24:33 +00:00
c8507a25ce
Now that we have laid the groundwork, introduce OA sync properties in the uapi and parse the input xe_sync array as is done elsewhere in the driver. Also add DRM_XE_OA_CAPS_SYNCS bit in OA capabilities for userspace. v2: Fix and document DRM_XE_SYNC_TYPE_USER_FENCE for OA (Matt B) Add DRM_XE_OA_CAPS_SYNCS bit to OA capabilities (Jose) Acked-by: José Roberto de Souza <jose.souza@intel.com> Reviewed-by: Jonathan Cavitt <jonathan.cavitt@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20241022200352.1192560-3-ashutosh.dixit@intel.com
1721 lines
57 KiB
C
1721 lines
57 KiB
C
/* SPDX-License-Identifier: MIT */
|
|
/*
|
|
* Copyright © 2023 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _UAPI_XE_DRM_H_
|
|
#define _UAPI_XE_DRM_H_
|
|
|
|
#include "drm.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*
|
|
* Please note that modifications to all structs defined here are
|
|
* subject to backwards-compatibility constraints.
|
|
* Sections in this file are organized as follows:
|
|
* 1. IOCTL definition
|
|
* 2. Extension definition and helper structs
|
|
* 3. IOCTL's Query structs in the order of the Query's entries.
|
|
* 4. The rest of IOCTL structs in the order of IOCTL declaration.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Xe Device Block Diagram
|
|
*
|
|
* The diagram below represents a high-level simplification of a discrete
|
|
* GPU supported by the Xe driver. It shows some device components which
|
|
* are necessary to understand this API, as well as how their relations
|
|
* to each other. This diagram does not represent real hardware::
|
|
*
|
|
* ┌──────────────────────────────────────────────────────────────────┐
|
|
* │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
|
|
* │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │
|
|
* │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │
|
|
* │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │
|
|
* │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
|
|
* │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │
|
|
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
|
|
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
|
|
* │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │
|
|
* │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
|
|
* │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │
|
|
* │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │
|
|
* │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
|
|
* │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
|
|
* └─────────────────────────────Device0───────┬──────────────────────┘
|
|
* │
|
|
* ───────────────────────┴────────── PCI bus
|
|
*/
|
|
|
|
/**
|
|
* DOC: Xe uAPI Overview
|
|
*
|
|
* This section aims to describe the Xe's IOCTL entries, its structs, and other
|
|
* Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
|
|
* entries and usage.
|
|
*
|
|
* List of supported IOCTLs:
|
|
* - &DRM_IOCTL_XE_DEVICE_QUERY
|
|
* - &DRM_IOCTL_XE_GEM_CREATE
|
|
* - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
|
|
* - &DRM_IOCTL_XE_VM_CREATE
|
|
* - &DRM_IOCTL_XE_VM_DESTROY
|
|
* - &DRM_IOCTL_XE_VM_BIND
|
|
* - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
|
|
* - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
|
|
* - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
|
|
* - &DRM_IOCTL_XE_EXEC
|
|
* - &DRM_IOCTL_XE_WAIT_USER_FENCE
|
|
* - &DRM_IOCTL_XE_OBSERVATION
|
|
*/
|
|
|
|
/*
|
|
* xe specific ioctls.
|
|
*
|
|
* The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
|
|
* [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
|
|
* against DRM_COMMAND_BASE and should be between [0x0, 0x60).
|
|
*/
|
|
#define DRM_XE_DEVICE_QUERY 0x00
|
|
#define DRM_XE_GEM_CREATE 0x01
|
|
#define DRM_XE_GEM_MMAP_OFFSET 0x02
|
|
#define DRM_XE_VM_CREATE 0x03
|
|
#define DRM_XE_VM_DESTROY 0x04
|
|
#define DRM_XE_VM_BIND 0x05
|
|
#define DRM_XE_EXEC_QUEUE_CREATE 0x06
|
|
#define DRM_XE_EXEC_QUEUE_DESTROY 0x07
|
|
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08
|
|
#define DRM_XE_EXEC 0x09
|
|
#define DRM_XE_WAIT_USER_FENCE 0x0a
|
|
#define DRM_XE_OBSERVATION 0x0b
|
|
|
|
/* Must be kept compact -- no holes */
|
|
|
|
#define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
|
|
#define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
|
|
#define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
|
|
#define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
|
|
#define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
|
|
#define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
|
|
#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
|
|
#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
|
|
#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
|
|
#define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
|
|
#define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
|
|
#define DRM_IOCTL_XE_OBSERVATION DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
|
|
|
|
/**
|
|
* DOC: Xe IOCTL Extensions
|
|
*
|
|
* Before detailing the IOCTLs and its structs, it is important to highlight
|
|
* that every IOCTL in Xe is extensible.
|
|
*
|
|
* Many interfaces need to grow over time. In most cases we can simply
|
|
* extend the struct and have userspace pass in more data. Another option,
|
|
* as demonstrated by Vulkan's approach to providing extensions for forward
|
|
* and backward compatibility, is to use a list of optional structs to
|
|
* provide those extra details.
|
|
*
|
|
* The key advantage to using an extension chain is that it allows us to
|
|
* redefine the interface more easily than an ever growing struct of
|
|
* increasing complexity, and for large parts of that interface to be
|
|
* entirely optional. The downside is more pointer chasing; chasing across
|
|
* the __user boundary with pointers encapsulated inside u64.
|
|
*
|
|
* Example chaining:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_xe_user_extension ext3 {
|
|
* .next_extension = 0, // end
|
|
* .name = ...,
|
|
* };
|
|
* struct drm_xe_user_extension ext2 {
|
|
* .next_extension = (uintptr_t)&ext3,
|
|
* .name = ...,
|
|
* };
|
|
* struct drm_xe_user_extension ext1 {
|
|
* .next_extension = (uintptr_t)&ext2,
|
|
* .name = ...,
|
|
* };
|
|
*
|
|
* Typically the struct drm_xe_user_extension would be embedded in some uAPI
|
|
* struct, and in this case we would feed it the head of the chain(i.e ext1),
|
|
* which would then apply all of the above extensions.
|
|
*/
|
|
|
|
/**
|
|
* struct drm_xe_user_extension - Base class for defining a chain of extensions
|
|
*/
|
|
struct drm_xe_user_extension {
|
|
/**
|
|
* @next_extension:
|
|
*
|
|
* Pointer to the next struct drm_xe_user_extension, or zero if the end.
|
|
*/
|
|
__u64 next_extension;
|
|
|
|
/**
|
|
* @name: Name of the extension.
|
|
*
|
|
* Note that the name here is just some integer.
|
|
*
|
|
* Also note that the name space for this is not global for the whole
|
|
* driver, but rather its scope/meaning is limited to the specific piece
|
|
* of uAPI which has embedded the struct drm_xe_user_extension.
|
|
*/
|
|
__u32 name;
|
|
|
|
/**
|
|
* @pad: MBZ
|
|
*
|
|
* All undefined bits must be zero.
|
|
*/
|
|
__u32 pad;
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_ext_set_property - Generic set property extension
|
|
*
|
|
* A generic struct that allows any of the Xe's IOCTL to be extended
|
|
* with a set_property operation.
|
|
*/
|
|
struct drm_xe_ext_set_property {
|
|
/** @base: base user extension */
|
|
struct drm_xe_user_extension base;
|
|
|
|
/** @property: property to set */
|
|
__u32 property;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
|
|
/** @value: property value */
|
|
__u64 value;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_engine_class_instance - instance of an engine class
|
|
*
|
|
* It is returned as part of the @drm_xe_engine, but it also is used as
|
|
* the input of engine selection for both @drm_xe_exec_queue_create and
|
|
* @drm_xe_query_engine_cycles
|
|
*
|
|
* The @engine_class can be:
|
|
* - %DRM_XE_ENGINE_CLASS_RENDER
|
|
* - %DRM_XE_ENGINE_CLASS_COPY
|
|
* - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
|
|
* - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
|
|
* - %DRM_XE_ENGINE_CLASS_COMPUTE
|
|
* - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
|
|
* hardware engine class). Used for creating ordered queues of VM
|
|
* bind operations.
|
|
*/
|
|
struct drm_xe_engine_class_instance {
|
|
#define DRM_XE_ENGINE_CLASS_RENDER 0
|
|
#define DRM_XE_ENGINE_CLASS_COPY 1
|
|
#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2
|
|
#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3
|
|
#define DRM_XE_ENGINE_CLASS_COMPUTE 4
|
|
#define DRM_XE_ENGINE_CLASS_VM_BIND 5
|
|
/** @engine_class: engine class id */
|
|
__u16 engine_class;
|
|
/** @engine_instance: engine instance id */
|
|
__u16 engine_instance;
|
|
/** @gt_id: Unique ID of this GT within the PCI Device */
|
|
__u16 gt_id;
|
|
/** @pad: MBZ */
|
|
__u16 pad;
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_engine - describe hardware engine
|
|
*/
|
|
struct drm_xe_engine {
|
|
/** @instance: The @drm_xe_engine_class_instance */
|
|
struct drm_xe_engine_class_instance instance;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[3];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_engines - describe engines
|
|
*
|
|
* If a query is made with a struct @drm_xe_device_query where .query
|
|
* is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
|
|
* struct @drm_xe_query_engines in .data.
|
|
*/
|
|
struct drm_xe_query_engines {
|
|
/** @num_engines: number of engines returned in @engines */
|
|
__u32 num_engines;
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
/** @engines: The returned engines for this device */
|
|
struct drm_xe_engine engines[];
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_memory_class - Supported memory classes.
|
|
*/
|
|
enum drm_xe_memory_class {
|
|
/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
|
|
DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
|
|
/**
|
|
* @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
|
|
* represents the memory that is local to the device, which we
|
|
* call VRAM. Not valid on integrated platforms.
|
|
*/
|
|
DRM_XE_MEM_REGION_CLASS_VRAM
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_mem_region - Describes some region as known to
|
|
* the driver.
|
|
*/
|
|
struct drm_xe_mem_region {
|
|
/**
|
|
* @mem_class: The memory class describing this region.
|
|
*
|
|
* See enum drm_xe_memory_class for supported values.
|
|
*/
|
|
__u16 mem_class;
|
|
/**
|
|
* @instance: The unique ID for this region, which serves as the
|
|
* index in the placement bitmask used as argument for
|
|
* &DRM_IOCTL_XE_GEM_CREATE
|
|
*/
|
|
__u16 instance;
|
|
/**
|
|
* @min_page_size: Min page-size in bytes for this region.
|
|
*
|
|
* When the kernel allocates memory for this region, the
|
|
* underlying pages will be at least @min_page_size in size.
|
|
* Buffer objects with an allowable placement in this region must be
|
|
* created with a size aligned to this value.
|
|
* GPU virtual address mappings of (parts of) buffer objects that
|
|
* may be placed in this region must also have their GPU virtual
|
|
* address and range aligned to this value.
|
|
* Affected IOCTLS will return %-EINVAL if alignment restrictions are
|
|
* not met.
|
|
*/
|
|
__u32 min_page_size;
|
|
/**
|
|
* @total_size: The usable size in bytes for this region.
|
|
*/
|
|
__u64 total_size;
|
|
/**
|
|
* @used: Estimate of the memory used in bytes for this region.
|
|
*
|
|
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
|
|
* accounting. Without this the value here will always equal
|
|
* zero.
|
|
*/
|
|
__u64 used;
|
|
/**
|
|
* @cpu_visible_size: How much of this region can be CPU
|
|
* accessed, in bytes.
|
|
*
|
|
* This will always be <= @total_size, and the remainder (if
|
|
* any) will not be CPU accessible. If the CPU accessible part
|
|
* is smaller than @total_size then this is referred to as a
|
|
* small BAR system.
|
|
*
|
|
* On systems without small BAR (full BAR), the probed_size will
|
|
* always equal the @total_size, since all of it will be CPU
|
|
* accessible.
|
|
*
|
|
* Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
|
|
* regions (for other types the value here will always equal
|
|
* zero).
|
|
*/
|
|
__u64 cpu_visible_size;
|
|
/**
|
|
* @cpu_visible_used: Estimate of CPU visible memory used, in
|
|
* bytes.
|
|
*
|
|
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
|
|
* accounting. Without this the value here will always equal
|
|
* zero. Note this is only currently tracked for
|
|
* DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
|
|
* here will always be zero).
|
|
*/
|
|
__u64 cpu_visible_used;
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[6];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_mem_regions - describe memory regions
|
|
*
|
|
* If a query is made with a struct drm_xe_device_query where .query
|
|
* is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
|
|
* struct drm_xe_query_mem_regions in .data.
|
|
*/
|
|
struct drm_xe_query_mem_regions {
|
|
/** @num_mem_regions: number of memory regions returned in @mem_regions */
|
|
__u32 num_mem_regions;
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
/** @mem_regions: The returned memory regions for this device */
|
|
struct drm_xe_mem_region mem_regions[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_config - describe the device configuration
|
|
*
|
|
* If a query is made with a struct drm_xe_device_query where .query
|
|
* is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
|
|
* struct drm_xe_query_config in .data.
|
|
*
|
|
* The index in @info can be:
|
|
* - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
|
|
* and the device revision (next 8 bits)
|
|
* - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
|
|
* configuration, see list below
|
|
*
|
|
* - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
|
|
* has usable VRAM
|
|
* - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
|
|
* required by this device, typically SZ_4K or SZ_64K
|
|
* - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
|
|
* - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
|
|
* available exec queue priority
|
|
*/
|
|
struct drm_xe_query_config {
|
|
/** @num_params: number of parameters returned in info */
|
|
__u32 num_params;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
|
|
#define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0
|
|
#define DRM_XE_QUERY_CONFIG_FLAGS 1
|
|
#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0)
|
|
#define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2
|
|
#define DRM_XE_QUERY_CONFIG_VA_BITS 3
|
|
#define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4
|
|
/** @info: array of elements containing the config info */
|
|
__u64 info[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_gt - describe an individual GT.
|
|
*
|
|
* To be used with drm_xe_query_gt_list, which will return a list with all the
|
|
* existing GT individual descriptions.
|
|
* Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
|
|
* implementing graphics and/or media operations.
|
|
*
|
|
* The index in @type can be:
|
|
* - %DRM_XE_QUERY_GT_TYPE_MAIN
|
|
* - %DRM_XE_QUERY_GT_TYPE_MEDIA
|
|
*/
|
|
struct drm_xe_gt {
|
|
#define DRM_XE_QUERY_GT_TYPE_MAIN 0
|
|
#define DRM_XE_QUERY_GT_TYPE_MEDIA 1
|
|
/** @type: GT type: Main or Media */
|
|
__u16 type;
|
|
/** @tile_id: Tile ID where this GT lives (Information only) */
|
|
__u16 tile_id;
|
|
/** @gt_id: Unique ID of this GT within the PCI Device */
|
|
__u16 gt_id;
|
|
/** @pad: MBZ */
|
|
__u16 pad[3];
|
|
/** @reference_clock: A clock frequency for timestamp */
|
|
__u32 reference_clock;
|
|
/**
|
|
* @near_mem_regions: Bit mask of instances from
|
|
* drm_xe_query_mem_regions that are nearest to the current engines
|
|
* of this GT.
|
|
* Each index in this mask refers directly to the struct
|
|
* drm_xe_query_mem_regions' instance, no assumptions should
|
|
* be made about order. The type of each region is described
|
|
* by struct drm_xe_query_mem_regions' mem_class.
|
|
*/
|
|
__u64 near_mem_regions;
|
|
/**
|
|
* @far_mem_regions: Bit mask of instances from
|
|
* drm_xe_query_mem_regions that are far from the engines of this GT.
|
|
* In general, they have extra indirections when compared to the
|
|
* @near_mem_regions. For a discrete device this could mean system
|
|
* memory and memory living in a different tile.
|
|
* Each index in this mask refers directly to the struct
|
|
* drm_xe_query_mem_regions' instance, no assumptions should
|
|
* be made about order. The type of each region is described
|
|
* by struct drm_xe_query_mem_regions' mem_class.
|
|
*/
|
|
__u64 far_mem_regions;
|
|
/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
|
|
__u16 ip_ver_major;
|
|
/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
|
|
__u16 ip_ver_minor;
|
|
/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
|
|
__u16 ip_ver_rev;
|
|
/** @pad2: MBZ */
|
|
__u16 pad2;
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[7];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_gt_list - A list with GT description items.
|
|
*
|
|
* If a query is made with a struct drm_xe_device_query where .query
|
|
* is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
|
|
* drm_xe_query_gt_list in .data.
|
|
*/
|
|
struct drm_xe_query_gt_list {
|
|
/** @num_gt: number of GT items returned in gt_list */
|
|
__u32 num_gt;
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
/** @gt_list: The GT list returned for this device */
|
|
struct drm_xe_gt gt_list[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_topology_mask - describe the topology mask of a GT
|
|
*
|
|
* This is the hardware topology which reflects the internal physical
|
|
* structure of the GPU.
|
|
*
|
|
* If a query is made with a struct drm_xe_device_query where .query
|
|
* is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
|
|
* struct drm_xe_query_topology_mask in .data.
|
|
*
|
|
* The @type can be:
|
|
* - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
|
|
* (DSS) available for geometry operations. For example a query response
|
|
* containing the following in mask:
|
|
* ``DSS_GEOMETRY ff ff ff ff 00 00 00 00``
|
|
* means 32 DSS are available for geometry.
|
|
* - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
|
|
* (DSS) available for compute operations. For example a query response
|
|
* containing the following in mask:
|
|
* ``DSS_COMPUTE ff ff ff ff 00 00 00 00``
|
|
* means 32 DSS are available for compute.
|
|
* - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks. This type
|
|
* may be omitted if the driver is unable to query the mask from the
|
|
* hardware.
|
|
* - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
|
|
* available per Dual Sub Slices (DSS). For example a query response
|
|
* containing the following in mask:
|
|
* ``EU_PER_DSS ff ff 00 00 00 00 00 00``
|
|
* means each DSS has 16 SIMD8 EUs. This type may be omitted if device
|
|
* doesn't have SIMD8 EUs.
|
|
* - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
|
|
* Units (EU) available per Dual Sub Slices (DSS). For example a query
|
|
* response containing the following in mask:
|
|
* ``SIMD16_EU_PER_DSS ff ff 00 00 00 00 00 00``
|
|
* means each DSS has 16 SIMD16 EUs. This type may be omitted if device
|
|
* doesn't have SIMD16 EUs.
|
|
*/
|
|
struct drm_xe_query_topology_mask {
|
|
/** @gt_id: GT ID the mask is associated with */
|
|
__u16 gt_id;
|
|
|
|
#define DRM_XE_TOPO_DSS_GEOMETRY 1
|
|
#define DRM_XE_TOPO_DSS_COMPUTE 2
|
|
#define DRM_XE_TOPO_L3_BANK 3
|
|
#define DRM_XE_TOPO_EU_PER_DSS 4
|
|
#define DRM_XE_TOPO_SIMD16_EU_PER_DSS 5
|
|
/** @type: type of mask */
|
|
__u16 type;
|
|
|
|
/** @num_bytes: number of bytes in requested mask */
|
|
__u32 num_bytes;
|
|
|
|
/** @mask: little-endian mask of @num_bytes */
|
|
__u8 mask[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
|
|
*
|
|
* If a query is made with a struct drm_xe_device_query where .query is equal to
|
|
* DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
|
|
* in .data. struct drm_xe_query_engine_cycles is allocated by the user and
|
|
* .data points to this allocated structure.
|
|
*
|
|
* The query returns the engine cycles, which along with GT's @reference_clock,
|
|
* can be used to calculate the engine timestamp. In addition the
|
|
* query returns a set of cpu timestamps that indicate when the command
|
|
* streamer cycle count was captured.
|
|
*/
|
|
struct drm_xe_query_engine_cycles {
|
|
/**
|
|
* @eci: This is input by the user and is the engine for which command
|
|
* streamer cycles is queried.
|
|
*/
|
|
struct drm_xe_engine_class_instance eci;
|
|
|
|
/**
|
|
* @clockid: This is input by the user and is the reference clock id for
|
|
* CPU timestamp. For definition, see clock_gettime(2) and
|
|
* perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
|
|
* CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
|
|
*/
|
|
__s32 clockid;
|
|
|
|
/** @width: Width of the engine cycle counter in bits. */
|
|
__u32 width;
|
|
|
|
/**
|
|
* @engine_cycles: Engine cycles as read from its register
|
|
* at 0x358 offset.
|
|
*/
|
|
__u64 engine_cycles;
|
|
|
|
/**
|
|
* @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
|
|
* reading the engine_cycles register using the reference clockid set by the
|
|
* user.
|
|
*/
|
|
__u64 cpu_timestamp;
|
|
|
|
/**
|
|
* @cpu_delta: Time delta in ns captured around reading the lower dword
|
|
* of the engine_cycles register.
|
|
*/
|
|
__u64 cpu_delta;
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
|
|
*
|
|
* Given a uc_type this will return the branch, major, minor and patch version
|
|
* of the micro-controller firmware.
|
|
*/
|
|
struct drm_xe_query_uc_fw_version {
|
|
/** @uc_type: The micro-controller type to query firmware version */
|
|
#define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
|
|
#define XE_QUERY_UC_TYPE_HUC 1
|
|
__u16 uc_type;
|
|
|
|
/** @pad: MBZ */
|
|
__u16 pad;
|
|
|
|
/** @branch_ver: branch uc fw version */
|
|
__u32 branch_ver;
|
|
/** @major_ver: major uc fw version */
|
|
__u32 major_ver;
|
|
/** @minor_ver: minor uc fw version */
|
|
__u32 minor_ver;
|
|
/** @patch_ver: patch uc fw version */
|
|
__u32 patch_ver;
|
|
|
|
/** @pad2: MBZ */
|
|
__u32 pad2;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved;
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
|
|
* structure to query device information
|
|
*
|
|
* The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
|
|
* and sets the value in the query member. This determines the type of
|
|
* the structure provided by the driver in data, among struct drm_xe_query_*.
|
|
*
|
|
* The @query can be:
|
|
* - %DRM_XE_DEVICE_QUERY_ENGINES
|
|
* - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
|
|
* - %DRM_XE_DEVICE_QUERY_CONFIG
|
|
* - %DRM_XE_DEVICE_QUERY_GT_LIST
|
|
* - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
|
|
* configuration of the device such as information on slices, memory,
|
|
* caches, and so on. It is provided as a table of key / value
|
|
* attributes.
|
|
* - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
|
|
* - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
|
|
*
|
|
* If size is set to 0, the driver fills it with the required size for
|
|
* the requested type of data to query. If size is equal to the required
|
|
* size, the queried information is copied into data. If size is set to
|
|
* a value different from 0 and different from the required size, the
|
|
* IOCTL call returns -EINVAL.
|
|
*
|
|
* For example the following code snippet allows retrieving and printing
|
|
* information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_xe_query_engines *engines;
|
|
* struct drm_xe_device_query query = {
|
|
* .extensions = 0,
|
|
* .query = DRM_XE_DEVICE_QUERY_ENGINES,
|
|
* .size = 0,
|
|
* .data = 0,
|
|
* };
|
|
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
|
|
* engines = malloc(query.size);
|
|
* query.data = (uintptr_t)engines;
|
|
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
|
|
* for (int i = 0; i < engines->num_engines; i++) {
|
|
* printf("Engine %d: %s\n", i,
|
|
* engines->engines[i].instance.engine_class ==
|
|
* DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
|
|
* engines->engines[i].instance.engine_class ==
|
|
* DRM_XE_ENGINE_CLASS_COPY ? "COPY":
|
|
* engines->engines[i].instance.engine_class ==
|
|
* DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
|
|
* engines->engines[i].instance.engine_class ==
|
|
* DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
|
|
* engines->engines[i].instance.engine_class ==
|
|
* DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
|
|
* "UNKNOWN");
|
|
* }
|
|
* free(engines);
|
|
*/
|
|
struct drm_xe_device_query {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
#define DRM_XE_DEVICE_QUERY_ENGINES 0
|
|
#define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1
|
|
#define DRM_XE_DEVICE_QUERY_CONFIG 2
|
|
#define DRM_XE_DEVICE_QUERY_GT_LIST 3
|
|
#define DRM_XE_DEVICE_QUERY_HWCONFIG 4
|
|
#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5
|
|
#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6
|
|
#define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7
|
|
#define DRM_XE_DEVICE_QUERY_OA_UNITS 8
|
|
/** @query: The type of data to query */
|
|
__u32 query;
|
|
|
|
/** @size: Size of the queried data */
|
|
__u32 size;
|
|
|
|
/** @data: Queried data is placed here */
|
|
__u64 data;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
|
|
* gem creation
|
|
*
|
|
* The @flags can be:
|
|
* - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
|
|
* - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
|
|
* - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
|
|
* possible placement, ensure that the corresponding VRAM allocation
|
|
* will always use the CPU accessible part of VRAM. This is important
|
|
* for small-bar systems (on full-bar systems this gets turned into a
|
|
* noop).
|
|
* Note1: System memory can be used as an extra placement if the kernel
|
|
* should spill the allocation to system memory, if space can't be made
|
|
* available in the CPU accessible part of VRAM (giving the same
|
|
* behaviour as the i915 interface, see
|
|
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
|
|
* Note2: For clear-color CCS surfaces the kernel needs to read the
|
|
* clear-color value stored in the buffer, and on discrete platforms we
|
|
* need to use VRAM for display surfaces, therefore the kernel requires
|
|
* setting this flag for such objects, otherwise an error is thrown on
|
|
* small-bar systems.
|
|
*
|
|
* @cpu_caching supports the following values:
|
|
* - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
|
|
* caching. On iGPU this can't be used for scanout surfaces. Currently
|
|
* not allowed for objects placed in VRAM.
|
|
* - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
|
|
* is uncached. Scanout surfaces should likely use this. All objects
|
|
* that can be placed in VRAM must use this.
|
|
*/
|
|
struct drm_xe_gem_create {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/**
|
|
* @size: Size of the object to be created, must match region
|
|
* (system or vram) minimum alignment (&min_page_size).
|
|
*/
|
|
__u64 size;
|
|
|
|
/**
|
|
* @placement: A mask of memory instances of where BO can be placed.
|
|
* Each index in this mask refers directly to the struct
|
|
* drm_xe_query_mem_regions' instance, no assumptions should
|
|
* be made about order. The type of each region is described
|
|
* by struct drm_xe_query_mem_regions' mem_class.
|
|
*/
|
|
__u32 placement;
|
|
|
|
#define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0)
|
|
#define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1)
|
|
#define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2)
|
|
/**
|
|
* @flags: Flags, currently a mask of memory instances of where BO can
|
|
* be placed
|
|
*/
|
|
__u32 flags;
|
|
|
|
/**
|
|
* @vm_id: Attached VM, if any
|
|
*
|
|
* If a VM is specified, this BO must:
|
|
*
|
|
* 1. Only ever be bound to that VM.
|
|
* 2. Cannot be exported as a PRIME fd.
|
|
*/
|
|
__u32 vm_id;
|
|
|
|
/**
|
|
* @handle: Returned handle for the object.
|
|
*
|
|
* Object handles are nonzero.
|
|
*/
|
|
__u32 handle;
|
|
|
|
#define DRM_XE_GEM_CPU_CACHING_WB 1
|
|
#define DRM_XE_GEM_CPU_CACHING_WC 2
|
|
/**
|
|
* @cpu_caching: The CPU caching mode to select for this object. If
|
|
* mmaping the object the mode selected here will also be used. The
|
|
* exception is when mapping system memory (including data evicted
|
|
* to system) on discrete GPUs. The caching mode selected will
|
|
* then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
|
|
* between GPU- and CPU is guaranteed. The caching mode of
|
|
* existing CPU-mappings will be updated transparently to
|
|
* user-space clients.
|
|
*/
|
|
__u16 cpu_caching;
|
|
/** @pad: MBZ */
|
|
__u16 pad[3];
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
|
|
*/
|
|
struct drm_xe_gem_mmap_offset {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @handle: Handle for the object being mapped. */
|
|
__u32 handle;
|
|
|
|
/** @flags: Must be zero */
|
|
__u32 flags;
|
|
|
|
/** @offset: The fake offset to use for subsequent mmap call */
|
|
__u64 offset;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
|
|
*
|
|
* The @flags can be:
|
|
* - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
|
|
* - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
|
|
* exec submissions to its exec_queues that don't have an upper time
|
|
* limit on the job execution time. But exec submissions to these
|
|
* don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
|
|
* DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
|
|
* used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
|
|
* LR VMs can be created in recoverable page-fault mode using
|
|
* DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
|
|
* If that flag is omitted, the UMD can not rely on the slightly
|
|
* different per-VM overcommit semantics that are enabled by
|
|
* DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
|
|
* still enable recoverable pagefaults if supported by the device.
|
|
* - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
|
|
* DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
|
|
* demand when accessed, and also allows per-VM overcommit of memory.
|
|
* The xe driver internally uses recoverable pagefaults to implement
|
|
* this.
|
|
*/
|
|
struct drm_xe_vm_create {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
#define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0)
|
|
#define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1)
|
|
#define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2)
|
|
/** @flags: Flags */
|
|
__u32 flags;
|
|
|
|
/** @vm_id: Returned VM ID */
|
|
__u32 vm_id;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
|
|
*/
|
|
struct drm_xe_vm_destroy {
|
|
/** @vm_id: VM ID */
|
|
__u32 vm_id;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_vm_bind_op - run bind operations
|
|
*
|
|
* The @op can be:
|
|
* - %DRM_XE_VM_BIND_OP_MAP
|
|
* - %DRM_XE_VM_BIND_OP_UNMAP
|
|
* - %DRM_XE_VM_BIND_OP_MAP_USERPTR
|
|
* - %DRM_XE_VM_BIND_OP_UNMAP_ALL
|
|
* - %DRM_XE_VM_BIND_OP_PREFETCH
|
|
*
|
|
* and the @flags can be:
|
|
* - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
|
|
* to ensure write protection
|
|
* - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
|
|
* MAP operation immediately rather than deferring the MAP to the page
|
|
* fault handler. This is implied on a non-faulting VM as there is no
|
|
* fault handler to defer to.
|
|
* - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
|
|
* tables are setup with a special bit which indicates writes are
|
|
* dropped and all reads return zero. In the future, the NULL flags
|
|
* will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
|
|
* handle MBZ, and the BO offset MBZ. This flag is intended to
|
|
* implement VK sparse bindings.
|
|
*/
|
|
struct drm_xe_vm_bind_op {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/**
|
|
* @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
|
|
*/
|
|
__u32 obj;
|
|
|
|
/**
|
|
* @pat_index: The platform defined @pat_index to use for this mapping.
|
|
* The index basically maps to some predefined memory attributes,
|
|
* including things like caching, coherency, compression etc. The exact
|
|
* meaning of the pat_index is platform specific and defined in the
|
|
* Bspec and PRMs. When the KMD sets up the binding the index here is
|
|
* encoded into the ppGTT PTE.
|
|
*
|
|
* For coherency the @pat_index needs to be at least 1way coherent when
|
|
* drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
|
|
* will extract the coherency mode from the @pat_index and reject if
|
|
* there is a mismatch (see note below for pre-MTL platforms).
|
|
*
|
|
* Note: On pre-MTL platforms there is only a caching mode and no
|
|
* explicit coherency mode, but on such hardware there is always a
|
|
* shared-LLC (or is dgpu) so all GT memory accesses are coherent with
|
|
* CPU caches even with the caching mode set as uncached. It's only the
|
|
* display engine that is incoherent (on dgpu it must be in VRAM which
|
|
* is always mapped as WC on the CPU). However to keep the uapi somewhat
|
|
* consistent with newer platforms the KMD groups the different cache
|
|
* levels into the following coherency buckets on all pre-MTL platforms:
|
|
*
|
|
* ppGTT UC -> COH_NONE
|
|
* ppGTT WC -> COH_NONE
|
|
* ppGTT WT -> COH_NONE
|
|
* ppGTT WB -> COH_AT_LEAST_1WAY
|
|
*
|
|
* In practice UC/WC/WT should only ever used for scanout surfaces on
|
|
* such platforms (or perhaps in general for dma-buf if shared with
|
|
* another device) since it is only the display engine that is actually
|
|
* incoherent. Everything else should typically use WB given that we
|
|
* have a shared-LLC. On MTL+ this completely changes and the HW
|
|
* defines the coherency mode as part of the @pat_index, where
|
|
* incoherent GT access is possible.
|
|
*
|
|
* Note: For userptr and externally imported dma-buf the kernel expects
|
|
* either 1WAY or 2WAY for the @pat_index.
|
|
*
|
|
* For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
|
|
* on the @pat_index. For such mappings there is no actual memory being
|
|
* mapped (the address in the PTE is invalid), so the various PAT memory
|
|
* attributes likely do not apply. Simply leaving as zero is one
|
|
* option (still a valid pat_index).
|
|
*/
|
|
__u16 pat_index;
|
|
|
|
/** @pad: MBZ */
|
|
__u16 pad;
|
|
|
|
union {
|
|
/**
|
|
* @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
|
|
* ignored for unbind
|
|
*/
|
|
__u64 obj_offset;
|
|
|
|
/** @userptr: user pointer to bind on */
|
|
__u64 userptr;
|
|
};
|
|
|
|
/**
|
|
* @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
|
|
*/
|
|
__u64 range;
|
|
|
|
/** @addr: Address to operate on, MBZ for UNMAP_ALL */
|
|
__u64 addr;
|
|
|
|
#define DRM_XE_VM_BIND_OP_MAP 0x0
|
|
#define DRM_XE_VM_BIND_OP_UNMAP 0x1
|
|
#define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2
|
|
#define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3
|
|
#define DRM_XE_VM_BIND_OP_PREFETCH 0x4
|
|
/** @op: Bind operation to perform */
|
|
__u32 op;
|
|
|
|
#define DRM_XE_VM_BIND_FLAG_READONLY (1 << 0)
|
|
#define DRM_XE_VM_BIND_FLAG_IMMEDIATE (1 << 1)
|
|
#define DRM_XE_VM_BIND_FLAG_NULL (1 << 2)
|
|
#define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3)
|
|
/** @flags: Bind flags */
|
|
__u32 flags;
|
|
|
|
/**
|
|
* @prefetch_mem_region_instance: Memory region to prefetch VMA to.
|
|
* It is a region instance, not a mask.
|
|
* To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
|
|
*/
|
|
__u32 prefetch_mem_region_instance;
|
|
|
|
/** @pad2: MBZ */
|
|
__u32 pad2;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[3];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
|
|
*
|
|
* Below is an example of a minimal use of @drm_xe_vm_bind to
|
|
* asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
|
|
* illustrate `userptr`. It can be synchronized by using the example
|
|
* provided for @drm_xe_sync.
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* data = aligned_alloc(ALIGNMENT, BO_SIZE);
|
|
* struct drm_xe_vm_bind bind = {
|
|
* .vm_id = vm,
|
|
* .num_binds = 1,
|
|
* .bind.obj = 0,
|
|
* .bind.obj_offset = to_user_pointer(data),
|
|
* .bind.range = BO_SIZE,
|
|
* .bind.addr = BIND_ADDRESS,
|
|
* .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
|
|
* .bind.flags = 0,
|
|
* .num_syncs = 1,
|
|
* .syncs = &sync,
|
|
* .exec_queue_id = 0,
|
|
* };
|
|
* ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
|
|
*
|
|
*/
|
|
struct drm_xe_vm_bind {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @vm_id: The ID of the VM to bind to */
|
|
__u32 vm_id;
|
|
|
|
/**
|
|
* @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
|
|
* and exec queue must have same vm_id. If zero, the default VM bind engine
|
|
* is used.
|
|
*/
|
|
__u32 exec_queue_id;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
|
|
/** @num_binds: number of binds in this IOCTL */
|
|
__u32 num_binds;
|
|
|
|
union {
|
|
/** @bind: used if num_binds == 1 */
|
|
struct drm_xe_vm_bind_op bind;
|
|
|
|
/**
|
|
* @vector_of_binds: userptr to array of struct
|
|
* drm_xe_vm_bind_op if num_binds > 1
|
|
*/
|
|
__u64 vector_of_binds;
|
|
};
|
|
|
|
/** @pad2: MBZ */
|
|
__u32 pad2;
|
|
|
|
/** @num_syncs: amount of syncs to wait on */
|
|
__u32 num_syncs;
|
|
|
|
/** @syncs: pointer to struct drm_xe_sync array */
|
|
__u64 syncs;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
|
|
*
|
|
* The example below shows how to use @drm_xe_exec_queue_create to create
|
|
* a simple exec_queue (no parallel submission) of class
|
|
* &DRM_XE_ENGINE_CLASS_RENDER.
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_xe_engine_class_instance instance = {
|
|
* .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
|
|
* };
|
|
* struct drm_xe_exec_queue_create exec_queue_create = {
|
|
* .extensions = 0,
|
|
* .vm_id = vm,
|
|
* .num_bb_per_exec = 1,
|
|
* .num_eng_per_bb = 1,
|
|
* .instances = to_user_pointer(&instance),
|
|
* };
|
|
* ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
|
|
*
|
|
*/
|
|
struct drm_xe_exec_queue_create {
|
|
#define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0
|
|
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0
|
|
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1
|
|
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @width: submission width (number BB per exec) for this exec queue */
|
|
__u16 width;
|
|
|
|
/** @num_placements: number of valid placements for this exec queue */
|
|
__u16 num_placements;
|
|
|
|
/** @vm_id: VM to use for this exec queue */
|
|
__u32 vm_id;
|
|
|
|
/** @flags: MBZ */
|
|
__u32 flags;
|
|
|
|
/** @exec_queue_id: Returned exec queue ID */
|
|
__u32 exec_queue_id;
|
|
|
|
/**
|
|
* @instances: user pointer to a 2-d array of struct
|
|
* drm_xe_engine_class_instance
|
|
*
|
|
* length = width (i) * num_placements (j)
|
|
* index = j + i * width
|
|
*/
|
|
__u64 instances;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
|
|
*/
|
|
struct drm_xe_exec_queue_destroy {
|
|
/** @exec_queue_id: Exec queue ID */
|
|
__u32 exec_queue_id;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
|
|
*
|
|
* The @property can be:
|
|
* - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
|
|
*/
|
|
struct drm_xe_exec_queue_get_property {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @exec_queue_id: Exec queue ID */
|
|
__u32 exec_queue_id;
|
|
|
|
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0
|
|
/** @property: property to get */
|
|
__u32 property;
|
|
|
|
/** @value: property value */
|
|
__u64 value;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_sync - sync object
|
|
*
|
|
* The @type can be:
|
|
* - %DRM_XE_SYNC_TYPE_SYNCOBJ
|
|
* - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
|
|
* - %DRM_XE_SYNC_TYPE_USER_FENCE
|
|
*
|
|
* and the @flags can be:
|
|
* - %DRM_XE_SYNC_FLAG_SIGNAL
|
|
*
|
|
* A minimal use of @drm_xe_sync looks like this:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_xe_sync sync = {
|
|
* .flags = DRM_XE_SYNC_FLAG_SIGNAL,
|
|
* .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
|
|
* };
|
|
* struct drm_syncobj_create syncobj_create = { 0 };
|
|
* ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
|
|
* sync.handle = syncobj_create.handle;
|
|
* ...
|
|
* use of &sync in drm_xe_exec or drm_xe_vm_bind
|
|
* ...
|
|
* struct drm_syncobj_wait wait = {
|
|
* .handles = &sync.handle,
|
|
* .timeout_nsec = INT64_MAX,
|
|
* .count_handles = 1,
|
|
* .flags = 0,
|
|
* .first_signaled = 0,
|
|
* .pad = 0,
|
|
* };
|
|
* ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
|
|
*/
|
|
struct drm_xe_sync {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
#define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0
|
|
#define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1
|
|
#define DRM_XE_SYNC_TYPE_USER_FENCE 0x2
|
|
/** @type: Type of the this sync object */
|
|
__u32 type;
|
|
|
|
#define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0)
|
|
/** @flags: Sync Flags */
|
|
__u32 flags;
|
|
|
|
union {
|
|
/** @handle: Handle for the object */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* @addr: Address of user fence. When sync is passed in via exec
|
|
* IOCTL this is a GPU address in the VM. When sync passed in via
|
|
* VM bind IOCTL this is a user pointer. In either case, it is
|
|
* the users responsibility that this address is present and
|
|
* mapped when the user fence is signalled. Must be qword
|
|
* aligned.
|
|
*/
|
|
__u64 addr;
|
|
};
|
|
|
|
/**
|
|
* @timeline_value: Input for the timeline sync object. Needs to be
|
|
* different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
|
|
*/
|
|
__u64 timeline_value;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
|
|
*
|
|
* This is an example to use @drm_xe_exec for execution of the object
|
|
* at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
|
|
* (see example in @drm_xe_exec_queue_create). It can be synchronized
|
|
* by using the example provided for @drm_xe_sync.
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_xe_exec exec = {
|
|
* .exec_queue_id = exec_queue,
|
|
* .syncs = &sync,
|
|
* .num_syncs = 1,
|
|
* .address = BIND_ADDRESS,
|
|
* .num_batch_buffer = 1,
|
|
* };
|
|
* ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
|
|
*
|
|
*/
|
|
struct drm_xe_exec {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @exec_queue_id: Exec queue ID for the batch buffer */
|
|
__u32 exec_queue_id;
|
|
|
|
/** @num_syncs: Amount of struct drm_xe_sync in array. */
|
|
__u32 num_syncs;
|
|
|
|
/** @syncs: Pointer to struct drm_xe_sync array. */
|
|
__u64 syncs;
|
|
|
|
/**
|
|
* @address: address of batch buffer if num_batch_buffer == 1 or an
|
|
* array of batch buffer addresses
|
|
*/
|
|
__u64 address;
|
|
|
|
/**
|
|
* @num_batch_buffer: number of batch buffer in this exec, must match
|
|
* the width of the engine
|
|
*/
|
|
__u16 num_batch_buffer;
|
|
|
|
/** @pad: MBZ */
|
|
__u16 pad[3];
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
|
|
*
|
|
* Wait on user fence, XE will wake-up on every HW engine interrupt in the
|
|
* instances list and check if user fence is complete::
|
|
*
|
|
* (*addr & MASK) OP (VALUE & MASK)
|
|
*
|
|
* Returns to user on user fence completion or timeout.
|
|
*
|
|
* The @op can be:
|
|
* - %DRM_XE_UFENCE_WAIT_OP_EQ
|
|
* - %DRM_XE_UFENCE_WAIT_OP_NEQ
|
|
* - %DRM_XE_UFENCE_WAIT_OP_GT
|
|
* - %DRM_XE_UFENCE_WAIT_OP_GTE
|
|
* - %DRM_XE_UFENCE_WAIT_OP_LT
|
|
* - %DRM_XE_UFENCE_WAIT_OP_LTE
|
|
*
|
|
* and the @flags can be:
|
|
* - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
|
|
* - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
|
|
*
|
|
* The @mask values can be for example:
|
|
* - 0xffu for u8
|
|
* - 0xffffu for u16
|
|
* - 0xffffffffu for u32
|
|
* - 0xffffffffffffffffu for u64
|
|
*/
|
|
struct drm_xe_wait_user_fence {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/**
|
|
* @addr: user pointer address to wait on, must qword aligned
|
|
*/
|
|
__u64 addr;
|
|
|
|
#define DRM_XE_UFENCE_WAIT_OP_EQ 0x0
|
|
#define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1
|
|
#define DRM_XE_UFENCE_WAIT_OP_GT 0x2
|
|
#define DRM_XE_UFENCE_WAIT_OP_GTE 0x3
|
|
#define DRM_XE_UFENCE_WAIT_OP_LT 0x4
|
|
#define DRM_XE_UFENCE_WAIT_OP_LTE 0x5
|
|
/** @op: wait operation (type of comparison) */
|
|
__u16 op;
|
|
|
|
#define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0)
|
|
/** @flags: wait flags */
|
|
__u16 flags;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
|
|
/** @value: compare value */
|
|
__u64 value;
|
|
|
|
/** @mask: comparison mask */
|
|
__u64 mask;
|
|
|
|
/**
|
|
* @timeout: how long to wait before bailing, value in nanoseconds.
|
|
* Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
|
|
* it contains timeout expressed in nanoseconds to wait (fence will
|
|
* expire at now() + timeout).
|
|
* When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
|
|
* will end at timeout (uses system MONOTONIC_CLOCK).
|
|
* Passing negative timeout leads to neverending wait.
|
|
*
|
|
* On relative timeout this value is updated with timeout left
|
|
* (for restarting the call in case of signal delivery).
|
|
* On absolute timeout this value stays intact (restarted call still
|
|
* expire at the same point of time).
|
|
*/
|
|
__s64 timeout;
|
|
|
|
/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
|
|
__u32 exec_queue_id;
|
|
|
|
/** @pad2: MBZ */
|
|
__u32 pad2;
|
|
|
|
/** @reserved: Reserved */
|
|
__u64 reserved[2];
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_observation_type - Observation stream types
|
|
*/
|
|
enum drm_xe_observation_type {
|
|
/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
|
|
DRM_XE_OBSERVATION_TYPE_OA,
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_observation_op - Observation stream ops
|
|
*/
|
|
enum drm_xe_observation_op {
|
|
/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
|
|
DRM_XE_OBSERVATION_OP_STREAM_OPEN,
|
|
|
|
/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
|
|
DRM_XE_OBSERVATION_OP_ADD_CONFIG,
|
|
|
|
/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
|
|
DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
|
|
*
|
|
* The observation layer enables multiplexing observation streams of
|
|
* multiple types. The actual params for a particular stream operation are
|
|
* supplied via the @param pointer (use __copy_from_user to get these
|
|
* params).
|
|
*/
|
|
struct drm_xe_observation_param {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
|
|
__u64 observation_type;
|
|
/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
|
|
__u64 observation_op;
|
|
/** @param: Pointer to actual stream params */
|
|
__u64 param;
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_observation_ioctls - Observation stream fd ioctl's
|
|
*
|
|
* Information exchanged between userspace and kernel for observation fd
|
|
* ioctl's is stream type specific
|
|
*/
|
|
enum drm_xe_observation_ioctls {
|
|
/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
|
|
DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
|
|
|
|
/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
|
|
DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
|
|
|
|
/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
|
|
DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
|
|
|
|
/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
|
|
DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
|
|
|
|
/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
|
|
DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_oa_unit_type - OA unit types
|
|
*/
|
|
enum drm_xe_oa_unit_type {
|
|
/**
|
|
* @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
|
|
* sub-types of OAG. For OAR/OAC, use OAG.
|
|
*/
|
|
DRM_XE_OA_UNIT_TYPE_OAG,
|
|
|
|
/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
|
|
DRM_XE_OA_UNIT_TYPE_OAM,
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_oa_unit - describe OA unit
|
|
*/
|
|
struct drm_xe_oa_unit {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @oa_unit_id: OA unit ID */
|
|
__u32 oa_unit_id;
|
|
|
|
/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
|
|
__u32 oa_unit_type;
|
|
|
|
/** @capabilities: OA capabilities bit-mask */
|
|
__u64 capabilities;
|
|
#define DRM_XE_OA_CAPS_BASE (1 << 0)
|
|
#define DRM_XE_OA_CAPS_SYNCS (1 << 1)
|
|
|
|
/** @oa_timestamp_freq: OA timestamp freq */
|
|
__u64 oa_timestamp_freq;
|
|
|
|
/** @reserved: MBZ */
|
|
__u64 reserved[4];
|
|
|
|
/** @num_engines: number of engines in @eci array */
|
|
__u64 num_engines;
|
|
|
|
/** @eci: engines attached to this OA unit */
|
|
struct drm_xe_engine_class_instance eci[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_query_oa_units - describe OA units
|
|
*
|
|
* If a query is made with a struct drm_xe_device_query where .query
|
|
* is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
|
|
* drm_xe_query_oa_units in .data.
|
|
*
|
|
* OA unit properties for all OA units can be accessed using a code block
|
|
* such as the one below:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_xe_query_oa_units *qoa;
|
|
* struct drm_xe_oa_unit *oau;
|
|
* u8 *poau;
|
|
*
|
|
* // malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
|
|
* poau = (u8 *)&qoa->oa_units[0];
|
|
* for (int i = 0; i < qoa->num_oa_units; i++) {
|
|
* oau = (struct drm_xe_oa_unit *)poau;
|
|
* // Access 'struct drm_xe_oa_unit' fields here
|
|
* poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
|
|
* }
|
|
*/
|
|
struct drm_xe_query_oa_units {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
/** @num_oa_units: number of OA units returned in oau[] */
|
|
__u32 num_oa_units;
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
/**
|
|
* @oa_units: struct @drm_xe_oa_unit array returned for this device.
|
|
* Written below as a u64 array to avoid problems with nested flexible
|
|
* arrays with some compilers
|
|
*/
|
|
__u64 oa_units[];
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
|
|
* 52198/60942
|
|
*/
|
|
enum drm_xe_oa_format_type {
|
|
/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
|
|
DRM_XE_OA_FMT_TYPE_OAG,
|
|
/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
|
|
DRM_XE_OA_FMT_TYPE_OAR,
|
|
/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
|
|
DRM_XE_OA_FMT_TYPE_OAM,
|
|
/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
|
|
DRM_XE_OA_FMT_TYPE_OAC,
|
|
/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
|
|
DRM_XE_OA_FMT_TYPE_OAM_MPEC,
|
|
/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
|
|
DRM_XE_OA_FMT_TYPE_PEC,
|
|
};
|
|
|
|
/**
|
|
* enum drm_xe_oa_property_id - OA stream property id's
|
|
*
|
|
* Stream params are specified as a chain of @drm_xe_ext_set_property
|
|
* struct's, with @property values from enum @drm_xe_oa_property_id and
|
|
* @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
|
|
* @param field in struct @drm_xe_observation_param points to the first
|
|
* @drm_xe_ext_set_property struct.
|
|
*
|
|
* Exactly the same mechanism is also used for stream reconfiguration using the
|
|
* @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
|
|
* subset of properties below can be specified for stream reconfiguration.
|
|
*/
|
|
enum drm_xe_oa_property_id {
|
|
#define DRM_XE_OA_EXTENSION_SET_PROPERTY 0
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
|
|
* the OA stream, see @oa_unit_id in 'struct
|
|
* drm_xe_query_oa_units'. Defaults to 0 if not provided.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
|
|
* OA unit reports or stream samples in a global buffer attached to an
|
|
* OA unit.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_SAMPLE_OA,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
|
|
* reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_OA_METRIC_SET,
|
|
|
|
/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
|
|
DRM_XE_OA_PROPERTY_OA_FORMAT,
|
|
/*
|
|
* OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
|
|
* in terms of the following quantities: a. enum @drm_xe_oa_format_type
|
|
* b. Counter select c. Counter size and d. BC report. Also refer to the
|
|
* oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
|
|
*/
|
|
#define DRM_XE_OA_FORMAT_MASK_FMT_TYPE (0xffu << 0)
|
|
#define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL (0xffu << 8)
|
|
#define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE (0xffu << 16)
|
|
#define DRM_XE_OA_FORMAT_MASK_BC_REPORT (0xffu << 24)
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
|
|
* sampling with sampling frequency proportional to 2^(period_exponent + 1)
|
|
*/
|
|
DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
|
|
* stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
|
|
*/
|
|
DRM_XE_OA_PROPERTY_OA_DISABLED,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
|
|
* @exec_queue_id. OA queries can be executed on this exec queue.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
|
|
* pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
|
|
* to be disabled for the stream exec queue.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_NO_PREEMPT,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_NUM_SYNCS: Number of syncs in the sync array
|
|
* specified in @DRM_XE_OA_PROPERTY_SYNCS
|
|
*/
|
|
DRM_XE_OA_PROPERTY_NUM_SYNCS,
|
|
|
|
/**
|
|
* @DRM_XE_OA_PROPERTY_SYNCS: Pointer to struct @drm_xe_sync array
|
|
* with array size specified via @DRM_XE_OA_PROPERTY_NUM_SYNCS. OA
|
|
* configuration will wait till input fences signal. Output fences
|
|
* will signal after the new OA configuration takes effect. For
|
|
* @DRM_XE_SYNC_TYPE_USER_FENCE, @addr is a user pointer, similar
|
|
* to the VM bind case.
|
|
*/
|
|
DRM_XE_OA_PROPERTY_SYNCS,
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_oa_config - OA metric configuration
|
|
*
|
|
* Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
|
|
* particular config can be specified when opening an OA stream using
|
|
* @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
|
|
*/
|
|
struct drm_xe_oa_config {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
|
|
char uuid[36];
|
|
|
|
/** @n_regs: Number of regs in @regs_ptr */
|
|
__u32 n_regs;
|
|
|
|
/**
|
|
* @regs_ptr: Pointer to (register address, value) pairs for OA config
|
|
* registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
|
|
*/
|
|
__u64 regs_ptr;
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_oa_stream_status - OA stream status returned from
|
|
* @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
|
|
* call the ioctl to query stream status in response to EIO errno from
|
|
* observation fd read().
|
|
*/
|
|
struct drm_xe_oa_stream_status {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @oa_status: OA stream status (see Bspec 46717/61226) */
|
|
__u64 oa_status;
|
|
#define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL (1 << 3)
|
|
#define DRM_XE_OASTATUS_COUNTER_OVERFLOW (1 << 2)
|
|
#define DRM_XE_OASTATUS_BUFFER_OVERFLOW (1 << 1)
|
|
#define DRM_XE_OASTATUS_REPORT_LOST (1 << 0)
|
|
|
|
/** @reserved: reserved for future use */
|
|
__u64 reserved[3];
|
|
};
|
|
|
|
/**
|
|
* struct drm_xe_oa_stream_info - OA stream info returned from
|
|
* @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
|
|
*/
|
|
struct drm_xe_oa_stream_info {
|
|
/** @extensions: Pointer to the first extension struct, if any */
|
|
__u64 extensions;
|
|
|
|
/** @oa_buf_size: OA buffer size */
|
|
__u64 oa_buf_size;
|
|
|
|
/** @reserved: reserved for future use */
|
|
__u64 reserved[3];
|
|
};
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* _UAPI_XE_DRM_H_ */
|