mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-06 05:13:18 +00:00
b575b5a1e6
On 32-bit ARM, AES in GCM mode takes full advantage of the ARMv8 Crypto Extensions when available, resulting in a performance of 6-7 cycles per byte for typical IPsec frames on cores such as Cortex-A53, using the generic GCM template encapsulating the accelerated AES-CTR and GHASH implementations. At such high rates, any time spent copying data or doing other poorly optimized work in the generic layer hurts disproportionately, and we can get a significant performance improvement by combining the optimized AES-CTR and GHASH implementations into a single GCM driver. On Cortex-A53, this results in a performance improvement of around 75%, and AES-256-GCM-128 with RFC4106 encapsulation runs in 4 cycles per byte. Note that this code takes advantage of the fact that kernel mode NEON is now supported in softirq context as well, and therefore does not provide a non-NEON fallback path at all. (AEADs are only callable in process or softirq context) Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
796 lines
20 KiB
C
796 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
|
|
*
|
|
* Copyright (C) 2015 - 2018 Linaro Ltd.
|
|
* Copyright (C) 2023 Google LLC.
|
|
*/
|
|
|
|
#include <asm/hwcap.h>
|
|
#include <asm/neon.h>
|
|
#include <asm/simd.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/gcm.h>
|
|
#include <crypto/b128ops.h>
|
|
#include <crypto/cryptd.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/gf128mul.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/module.h>
|
|
|
|
MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions");
|
|
MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS_CRYPTO("ghash");
|
|
MODULE_ALIAS_CRYPTO("gcm(aes)");
|
|
MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))");
|
|
|
|
#define GHASH_BLOCK_SIZE 16
|
|
#define GHASH_DIGEST_SIZE 16
|
|
|
|
#define RFC4106_NONCE_SIZE 4
|
|
|
|
struct ghash_key {
|
|
be128 k;
|
|
u64 h[][2];
|
|
};
|
|
|
|
struct gcm_key {
|
|
u64 h[4][2];
|
|
u32 rk[AES_MAX_KEYLENGTH_U32];
|
|
int rounds;
|
|
u8 nonce[]; // for RFC4106 nonce
|
|
};
|
|
|
|
struct ghash_desc_ctx {
|
|
u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
u32 count;
|
|
};
|
|
|
|
struct ghash_async_ctx {
|
|
struct cryptd_ahash *cryptd_tfm;
|
|
};
|
|
|
|
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
|
|
u64 const h[][2], const char *head);
|
|
|
|
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
|
|
u64 const h[][2], const char *head);
|
|
|
|
static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64);
|
|
|
|
static int ghash_init(struct shash_desc *desc)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
*ctx = (struct ghash_desc_ctx){};
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_do_update(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key *key, const char *head)
|
|
{
|
|
if (likely(crypto_simd_usable())) {
|
|
kernel_neon_begin();
|
|
if (static_branch_likely(&use_p64))
|
|
pmull_ghash_update_p64(blocks, dg, src, key->h, head);
|
|
else
|
|
pmull_ghash_update_p8(blocks, dg, src, key->h, head);
|
|
kernel_neon_end();
|
|
} else {
|
|
be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
|
|
|
|
do {
|
|
const u8 *in = src;
|
|
|
|
if (head) {
|
|
in = head;
|
|
blocks++;
|
|
head = NULL;
|
|
} else {
|
|
src += GHASH_BLOCK_SIZE;
|
|
}
|
|
|
|
crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
|
|
gf128mul_lle(&dst, &key->k);
|
|
} while (--blocks);
|
|
|
|
dg[0] = be64_to_cpu(dst.b);
|
|
dg[1] = be64_to_cpu(dst.a);
|
|
}
|
|
}
|
|
|
|
static int ghash_update(struct shash_desc *desc, const u8 *src,
|
|
unsigned int len)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
|
|
|
|
ctx->count += len;
|
|
|
|
if ((partial + len) >= GHASH_BLOCK_SIZE) {
|
|
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
|
|
int blocks;
|
|
|
|
if (partial) {
|
|
int p = GHASH_BLOCK_SIZE - partial;
|
|
|
|
memcpy(ctx->buf + partial, src, p);
|
|
src += p;
|
|
len -= p;
|
|
}
|
|
|
|
blocks = len / GHASH_BLOCK_SIZE;
|
|
len %= GHASH_BLOCK_SIZE;
|
|
|
|
ghash_do_update(blocks, ctx->digest, src, key,
|
|
partial ? ctx->buf : NULL);
|
|
src += blocks * GHASH_BLOCK_SIZE;
|
|
partial = 0;
|
|
}
|
|
if (len)
|
|
memcpy(ctx->buf + partial, src, len);
|
|
return 0;
|
|
}
|
|
|
|
static int ghash_final(struct shash_desc *desc, u8 *dst)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
|
|
|
|
if (partial) {
|
|
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
|
|
|
|
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
|
|
ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
|
|
}
|
|
put_unaligned_be64(ctx->digest[1], dst);
|
|
put_unaligned_be64(ctx->digest[0], dst + 8);
|
|
|
|
*ctx = (struct ghash_desc_ctx){};
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_reflect(u64 h[], const be128 *k)
|
|
{
|
|
u64 carry = be64_to_cpu(k->a) >> 63;
|
|
|
|
h[0] = (be64_to_cpu(k->b) << 1) | carry;
|
|
h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
|
|
|
|
if (carry)
|
|
h[1] ^= 0xc200000000000000UL;
|
|
}
|
|
|
|
static int ghash_setkey(struct crypto_shash *tfm,
|
|
const u8 *inkey, unsigned int keylen)
|
|
{
|
|
struct ghash_key *key = crypto_shash_ctx(tfm);
|
|
|
|
if (keylen != GHASH_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
/* needed for the fallback */
|
|
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
|
|
ghash_reflect(key->h[0], &key->k);
|
|
|
|
if (static_branch_likely(&use_p64)) {
|
|
be128 h = key->k;
|
|
|
|
gf128mul_lle(&h, &key->k);
|
|
ghash_reflect(key->h[1], &h);
|
|
|
|
gf128mul_lle(&h, &key->k);
|
|
ghash_reflect(key->h[2], &h);
|
|
|
|
gf128mul_lle(&h, &key->k);
|
|
ghash_reflect(key->h[3], &h);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg ghash_alg = {
|
|
.digestsize = GHASH_DIGEST_SIZE,
|
|
.init = ghash_init,
|
|
.update = ghash_update,
|
|
.final = ghash_final,
|
|
.setkey = ghash_setkey,
|
|
.descsize = sizeof(struct ghash_desc_ctx),
|
|
|
|
.base.cra_name = "ghash",
|
|
.base.cra_driver_name = "ghash-ce-sync",
|
|
.base.cra_priority = 300 - 1,
|
|
.base.cra_blocksize = GHASH_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
|
|
.base.cra_module = THIS_MODULE,
|
|
};
|
|
|
|
static int ghash_async_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct ahash_request *cryptd_req = ahash_request_ctx(req);
|
|
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
|
|
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
|
|
struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
|
|
|
|
desc->tfm = child;
|
|
return crypto_shash_init(desc);
|
|
}
|
|
|
|
static int ghash_async_update(struct ahash_request *req)
|
|
{
|
|
struct ahash_request *cryptd_req = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
|
|
memcpy(cryptd_req, req, sizeof(*req));
|
|
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
|
|
return crypto_ahash_update(cryptd_req);
|
|
} else {
|
|
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
|
|
return shash_ahash_update(req, desc);
|
|
}
|
|
}
|
|
|
|
static int ghash_async_final(struct ahash_request *req)
|
|
{
|
|
struct ahash_request *cryptd_req = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
|
|
memcpy(cryptd_req, req, sizeof(*req));
|
|
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
|
|
return crypto_ahash_final(cryptd_req);
|
|
} else {
|
|
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
|
|
return crypto_shash_final(desc, req->result);
|
|
}
|
|
}
|
|
|
|
static int ghash_async_digest(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct ahash_request *cryptd_req = ahash_request_ctx(req);
|
|
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
|
|
memcpy(cryptd_req, req, sizeof(*req));
|
|
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
|
|
return crypto_ahash_digest(cryptd_req);
|
|
} else {
|
|
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
|
|
struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
|
|
|
|
desc->tfm = child;
|
|
return shash_ahash_digest(req, desc);
|
|
}
|
|
}
|
|
|
|
static int ghash_async_import(struct ahash_request *req, const void *in)
|
|
{
|
|
struct ahash_request *cryptd_req = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
|
|
|
|
desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm);
|
|
|
|
return crypto_shash_import(desc, in);
|
|
}
|
|
|
|
static int ghash_async_export(struct ahash_request *req, void *out)
|
|
{
|
|
struct ahash_request *cryptd_req = ahash_request_ctx(req);
|
|
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
|
|
|
|
return crypto_shash_export(desc, out);
|
|
}
|
|
|
|
static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct crypto_ahash *child = &ctx->cryptd_tfm->base;
|
|
|
|
crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
|
crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
|
|
& CRYPTO_TFM_REQ_MASK);
|
|
return crypto_ahash_setkey(child, key, keylen);
|
|
}
|
|
|
|
static int ghash_async_init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct cryptd_ahash *cryptd_tfm;
|
|
struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0);
|
|
if (IS_ERR(cryptd_tfm))
|
|
return PTR_ERR(cryptd_tfm);
|
|
ctx->cryptd_tfm = cryptd_tfm;
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct ahash_request) +
|
|
crypto_ahash_reqsize(&cryptd_tfm->base));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
cryptd_free_ahash(ctx->cryptd_tfm);
|
|
}
|
|
|
|
static struct ahash_alg ghash_async_alg = {
|
|
.init = ghash_async_init,
|
|
.update = ghash_async_update,
|
|
.final = ghash_async_final,
|
|
.setkey = ghash_async_setkey,
|
|
.digest = ghash_async_digest,
|
|
.import = ghash_async_import,
|
|
.export = ghash_async_export,
|
|
.halg.digestsize = GHASH_DIGEST_SIZE,
|
|
.halg.statesize = sizeof(struct ghash_desc_ctx),
|
|
.halg.base = {
|
|
.cra_name = "ghash",
|
|
.cra_driver_name = "ghash-ce",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = GHASH_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct ghash_async_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = ghash_async_init_tfm,
|
|
.cra_exit = ghash_async_exit_tfm,
|
|
},
|
|
};
|
|
|
|
|
|
void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src,
|
|
struct gcm_key const *k, char *dst,
|
|
const char *iv, int rounds, u32 counter);
|
|
|
|
void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag,
|
|
struct gcm_key const *k, char *head,
|
|
const char *iv, int rounds, u32 counter);
|
|
|
|
void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src,
|
|
struct gcm_key const *k, char *dst,
|
|
const char *iv, int rounds, u32 counter);
|
|
|
|
int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag,
|
|
struct gcm_key const *k, char *head,
|
|
const char *iv, int rounds, u32 counter,
|
|
const char *otag, int authsize);
|
|
|
|
static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
|
|
unsigned int keylen)
|
|
{
|
|
struct gcm_key *ctx = crypto_aead_ctx(tfm);
|
|
struct crypto_aes_ctx aes_ctx;
|
|
be128 h, k;
|
|
int ret;
|
|
|
|
ret = aes_expandkey(&aes_ctx, inkey, keylen);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){});
|
|
|
|
memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk));
|
|
ctx->rounds = 6 + keylen / 4;
|
|
|
|
memzero_explicit(&aes_ctx, sizeof(aes_ctx));
|
|
|
|
ghash_reflect(ctx->h[0], &k);
|
|
|
|
h = k;
|
|
gf128mul_lle(&h, &k);
|
|
ghash_reflect(ctx->h[1], &h);
|
|
|
|
gf128mul_lle(&h, &k);
|
|
ghash_reflect(ctx->h[2], &h);
|
|
|
|
gf128mul_lle(&h, &k);
|
|
ghash_reflect(ctx->h[3], &h);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
return crypto_gcm_check_authsize(authsize);
|
|
}
|
|
|
|
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
|
|
int *buf_count, struct gcm_key *ctx)
|
|
{
|
|
if (*buf_count > 0) {
|
|
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
|
|
|
|
memcpy(&buf[*buf_count], src, buf_added);
|
|
|
|
*buf_count += buf_added;
|
|
src += buf_added;
|
|
count -= buf_added;
|
|
}
|
|
|
|
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
|
|
int blocks = count / GHASH_BLOCK_SIZE;
|
|
|
|
pmull_ghash_update_p64(blocks, dg, src, ctx->h,
|
|
*buf_count ? buf : NULL);
|
|
|
|
src += blocks * GHASH_BLOCK_SIZE;
|
|
count %= GHASH_BLOCK_SIZE;
|
|
*buf_count = 0;
|
|
}
|
|
|
|
if (count > 0) {
|
|
memcpy(buf, src, count);
|
|
*buf_count = count;
|
|
}
|
|
}
|
|
|
|
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_key *ctx = crypto_aead_ctx(aead);
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
struct scatter_walk walk;
|
|
int buf_count = 0;
|
|
|
|
scatterwalk_start(&walk, req->src);
|
|
|
|
do {
|
|
u32 n = scatterwalk_clamp(&walk, len);
|
|
u8 *p;
|
|
|
|
if (!n) {
|
|
scatterwalk_start(&walk, sg_next(walk.sg));
|
|
n = scatterwalk_clamp(&walk, len);
|
|
}
|
|
|
|
p = scatterwalk_map(&walk);
|
|
gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
|
|
scatterwalk_unmap(p);
|
|
|
|
if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) {
|
|
kernel_neon_end();
|
|
kernel_neon_begin();
|
|
}
|
|
|
|
len -= n;
|
|
scatterwalk_advance(&walk, n);
|
|
scatterwalk_done(&walk, 0, len);
|
|
} while (len);
|
|
|
|
if (buf_count) {
|
|
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
|
|
pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL);
|
|
}
|
|
}
|
|
|
|
static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_key *ctx = crypto_aead_ctx(aead);
|
|
struct skcipher_walk walk;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
u32 counter = 2;
|
|
u64 dg[2] = {};
|
|
be128 lengths;
|
|
const u8 *src;
|
|
u8 *tag, *dst;
|
|
int tail, err;
|
|
|
|
if (WARN_ON_ONCE(!may_use_simd()))
|
|
return -EBUSY;
|
|
|
|
err = skcipher_walk_aead_encrypt(&walk, req, false);
|
|
|
|
kernel_neon_begin();
|
|
|
|
if (assoclen)
|
|
gcm_calculate_auth_mac(req, dg, assoclen);
|
|
|
|
src = walk.src.virt.addr;
|
|
dst = walk.dst.virt.addr;
|
|
|
|
while (walk.nbytes >= AES_BLOCK_SIZE) {
|
|
int nblocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
|
|
pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv,
|
|
ctx->rounds, counter);
|
|
counter += nblocks;
|
|
|
|
if (walk.nbytes == walk.total) {
|
|
src += nblocks * AES_BLOCK_SIZE;
|
|
dst += nblocks * AES_BLOCK_SIZE;
|
|
break;
|
|
}
|
|
|
|
kernel_neon_end();
|
|
|
|
err = skcipher_walk_done(&walk,
|
|
walk.nbytes % AES_BLOCK_SIZE);
|
|
if (err)
|
|
return err;
|
|
|
|
src = walk.src.virt.addr;
|
|
dst = walk.dst.virt.addr;
|
|
|
|
kernel_neon_begin();
|
|
}
|
|
|
|
|
|
lengths.a = cpu_to_be64(assoclen * 8);
|
|
lengths.b = cpu_to_be64(req->cryptlen * 8);
|
|
|
|
tag = (u8 *)&lengths;
|
|
tail = walk.nbytes % AES_BLOCK_SIZE;
|
|
|
|
/*
|
|
* Bounce via a buffer unless we are encrypting in place and src/dst
|
|
* are not pointing to the start of the walk buffer. In that case, we
|
|
* can do a NEON load/xor/store sequence in place as long as we move
|
|
* the plain/ciphertext and keystream to the start of the register. If
|
|
* not, do a memcpy() to the end of the buffer so we can reuse the same
|
|
* logic.
|
|
*/
|
|
if (unlikely(tail && (tail == walk.nbytes || src != dst)))
|
|
src = memcpy(buf + sizeof(buf) - tail, src, tail);
|
|
|
|
pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv,
|
|
ctx->rounds, counter);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(tail && src != dst))
|
|
memcpy(dst, src, tail);
|
|
|
|
if (walk.nbytes) {
|
|
err = skcipher_walk_done(&walk, 0);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* copy authtag to end of dst */
|
|
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
|
|
crypto_aead_authsize(aead), 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_key *ctx = crypto_aead_ctx(aead);
|
|
int authsize = crypto_aead_authsize(aead);
|
|
struct skcipher_walk walk;
|
|
u8 otag[AES_BLOCK_SIZE];
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
u32 counter = 2;
|
|
u64 dg[2] = {};
|
|
be128 lengths;
|
|
const u8 *src;
|
|
u8 *tag, *dst;
|
|
int tail, err, ret;
|
|
|
|
if (WARN_ON_ONCE(!may_use_simd()))
|
|
return -EBUSY;
|
|
|
|
scatterwalk_map_and_copy(otag, req->src,
|
|
req->assoclen + req->cryptlen - authsize,
|
|
authsize, 0);
|
|
|
|
err = skcipher_walk_aead_decrypt(&walk, req, false);
|
|
|
|
kernel_neon_begin();
|
|
|
|
if (assoclen)
|
|
gcm_calculate_auth_mac(req, dg, assoclen);
|
|
|
|
src = walk.src.virt.addr;
|
|
dst = walk.dst.virt.addr;
|
|
|
|
while (walk.nbytes >= AES_BLOCK_SIZE) {
|
|
int nblocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
|
|
pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv,
|
|
ctx->rounds, counter);
|
|
counter += nblocks;
|
|
|
|
if (walk.nbytes == walk.total) {
|
|
src += nblocks * AES_BLOCK_SIZE;
|
|
dst += nblocks * AES_BLOCK_SIZE;
|
|
break;
|
|
}
|
|
|
|
kernel_neon_end();
|
|
|
|
err = skcipher_walk_done(&walk,
|
|
walk.nbytes % AES_BLOCK_SIZE);
|
|
if (err)
|
|
return err;
|
|
|
|
src = walk.src.virt.addr;
|
|
dst = walk.dst.virt.addr;
|
|
|
|
kernel_neon_begin();
|
|
}
|
|
|
|
lengths.a = cpu_to_be64(assoclen * 8);
|
|
lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
|
|
|
|
tag = (u8 *)&lengths;
|
|
tail = walk.nbytes % AES_BLOCK_SIZE;
|
|
|
|
if (unlikely(tail && (tail == walk.nbytes || src != dst)))
|
|
src = memcpy(buf + sizeof(buf) - tail, src, tail);
|
|
|
|
ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv,
|
|
ctx->rounds, counter, otag, authsize);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(tail && src != dst))
|
|
memcpy(dst, src, tail);
|
|
|
|
if (walk.nbytes) {
|
|
err = skcipher_walk_done(&walk, 0);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return ret ? -EBADMSG : 0;
|
|
}
|
|
|
|
static int gcm_aes_encrypt(struct aead_request *req)
|
|
{
|
|
return gcm_encrypt(req, req->iv, req->assoclen);
|
|
}
|
|
|
|
static int gcm_aes_decrypt(struct aead_request *req)
|
|
{
|
|
return gcm_decrypt(req, req->iv, req->assoclen);
|
|
}
|
|
|
|
static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
|
|
unsigned int keylen)
|
|
{
|
|
struct gcm_key *ctx = crypto_aead_ctx(tfm);
|
|
int err;
|
|
|
|
keylen -= RFC4106_NONCE_SIZE;
|
|
err = gcm_aes_setkey(tfm, inkey, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
return crypto_rfc4106_check_authsize(authsize);
|
|
}
|
|
|
|
static int rfc4106_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_key *ctx = crypto_aead_ctx(aead);
|
|
u8 iv[GCM_AES_IV_SIZE];
|
|
|
|
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
|
|
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
|
|
|
|
return crypto_ipsec_check_assoclen(req->assoclen) ?:
|
|
gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
|
|
}
|
|
|
|
static int rfc4106_decrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_key *ctx = crypto_aead_ctx(aead);
|
|
u8 iv[GCM_AES_IV_SIZE];
|
|
|
|
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
|
|
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
|
|
|
|
return crypto_ipsec_check_assoclen(req->assoclen) ?:
|
|
gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
|
|
}
|
|
|
|
static struct aead_alg gcm_aes_algs[] = {{
|
|
.ivsize = GCM_AES_IV_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.setkey = gcm_aes_setkey,
|
|
.setauthsize = gcm_aes_setauthsize,
|
|
.encrypt = gcm_aes_encrypt,
|
|
.decrypt = gcm_aes_decrypt,
|
|
|
|
.base.cra_name = "gcm(aes)",
|
|
.base.cra_driver_name = "gcm-aes-ce",
|
|
.base.cra_priority = 400,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct gcm_key),
|
|
.base.cra_module = THIS_MODULE,
|
|
}, {
|
|
.ivsize = GCM_RFC4106_IV_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.setkey = rfc4106_setkey,
|
|
.setauthsize = rfc4106_setauthsize,
|
|
.encrypt = rfc4106_encrypt,
|
|
.decrypt = rfc4106_decrypt,
|
|
|
|
.base.cra_name = "rfc4106(gcm(aes))",
|
|
.base.cra_driver_name = "rfc4106-gcm-aes-ce",
|
|
.base.cra_priority = 400,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE,
|
|
.base.cra_module = THIS_MODULE,
|
|
}};
|
|
|
|
static int __init ghash_ce_mod_init(void)
|
|
{
|
|
int err;
|
|
|
|
if (!(elf_hwcap & HWCAP_NEON))
|
|
return -ENODEV;
|
|
|
|
if (elf_hwcap2 & HWCAP2_PMULL) {
|
|
err = crypto_register_aeads(gcm_aes_algs,
|
|
ARRAY_SIZE(gcm_aes_algs));
|
|
if (err)
|
|
return err;
|
|
ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]);
|
|
static_branch_enable(&use_p64);
|
|
}
|
|
|
|
err = crypto_register_shash(&ghash_alg);
|
|
if (err)
|
|
goto err_aead;
|
|
err = crypto_register_ahash(&ghash_async_alg);
|
|
if (err)
|
|
goto err_shash;
|
|
|
|
return 0;
|
|
|
|
err_shash:
|
|
crypto_unregister_shash(&ghash_alg);
|
|
err_aead:
|
|
if (elf_hwcap2 & HWCAP2_PMULL)
|
|
crypto_unregister_aeads(gcm_aes_algs,
|
|
ARRAY_SIZE(gcm_aes_algs));
|
|
return err;
|
|
}
|
|
|
|
static void __exit ghash_ce_mod_exit(void)
|
|
{
|
|
crypto_unregister_ahash(&ghash_async_alg);
|
|
crypto_unregister_shash(&ghash_alg);
|
|
if (elf_hwcap2 & HWCAP2_PMULL)
|
|
crypto_unregister_aeads(gcm_aes_algs,
|
|
ARRAY_SIZE(gcm_aes_algs));
|
|
}
|
|
|
|
module_init(ghash_ce_mod_init);
|
|
module_exit(ghash_ce_mod_exit);
|