mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 18:36:00 +00:00
b23bfa5633
Now that we depend on rcu_call() and synchronize_rcu() to also wait for preempt_disabled region to complete the rcu read critical section in __dev_map_flush() is no longer required. Except in a few special cases in drivers that need it for other reasons. These originally ensured the map reference was safe while a map was also being free'd. And additionally that bpf program updates via ndo_bpf did not happen while flush updates were in flight. But flush by new rules can only be called from preempt-disabled NAPI context. The synchronize_rcu from the map free path and the rcu_call from the delete path will ensure the reference there is safe. So lets remove the rcu_read_lock and rcu_read_unlock pair to avoid any confusion around how this is being protected. If the rcu_read_lock was required it would mean errors in the above logic and the original patch would also be wrong. Now that we have done above we put the rcu_read_lock in the driver code where it is needed in a driver dependent way. I think this helps readability of the code so we know where and why we are taking read locks. Most drivers will not need rcu_read_locks here and further XDP drivers already have rcu_read_locks in their code paths for reading xdp programs on RX side so this makes it symmetric where we don't have half of rcu critical sections define in driver and the other half in devmap. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Link: https://lore.kernel.org/bpf/1580084042-11598-4-git-send-email-john.fastabend@gmail.com
785 lines
21 KiB
C
785 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
|
|
*/
|
|
|
|
/* Devmaps primary use is as a backend map for XDP BPF helper call
|
|
* bpf_redirect_map(). Because XDP is mostly concerned with performance we
|
|
* spent some effort to ensure the datapath with redirect maps does not use
|
|
* any locking. This is a quick note on the details.
|
|
*
|
|
* We have three possible paths to get into the devmap control plane bpf
|
|
* syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
|
|
* will invoke an update, delete, or lookup operation. To ensure updates and
|
|
* deletes appear atomic from the datapath side xchg() is used to modify the
|
|
* netdev_map array. Then because the datapath does a lookup into the netdev_map
|
|
* array (read-only) from an RCU critical section we use call_rcu() to wait for
|
|
* an rcu grace period before free'ing the old data structures. This ensures the
|
|
* datapath always has a valid copy. However, the datapath does a "flush"
|
|
* operation that pushes any pending packets in the driver outside the RCU
|
|
* critical section. Each bpf_dtab_netdev tracks these pending operations using
|
|
* a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
|
|
* this list is empty, indicating outstanding flush operations have completed.
|
|
*
|
|
* BPF syscalls may race with BPF program calls on any of the update, delete
|
|
* or lookup operations. As noted above the xchg() operation also keep the
|
|
* netdev_map consistent in this case. From the devmap side BPF programs
|
|
* calling into these operations are the same as multiple user space threads
|
|
* making system calls.
|
|
*
|
|
* Finally, any of the above may race with a netdev_unregister notifier. The
|
|
* unregister notifier must search for net devices in the map structure that
|
|
* contain a reference to the net device and remove them. This is a two step
|
|
* process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
|
|
* check to see if the ifindex is the same as the net_device being removed.
|
|
* When removing the dev a cmpxchg() is used to ensure the correct dev is
|
|
* removed, in the case of a concurrent update or delete operation it is
|
|
* possible that the initially referenced dev is no longer in the map. As the
|
|
* notifier hook walks the map we know that new dev references can not be
|
|
* added by the user because core infrastructure ensures dev_get_by_index()
|
|
* calls will fail at this point.
|
|
*
|
|
* The devmap_hash type is a map type which interprets keys as ifindexes and
|
|
* indexes these using a hashmap. This allows maps that use ifindex as key to be
|
|
* densely packed instead of having holes in the lookup array for unused
|
|
* ifindexes. The setup and packet enqueue/send code is shared between the two
|
|
* types of devmap; only the lookup and insertion is different.
|
|
*/
|
|
#include <linux/bpf.h>
|
|
#include <net/xdp.h>
|
|
#include <linux/filter.h>
|
|
#include <trace/events/xdp.h>
|
|
|
|
#define DEV_CREATE_FLAG_MASK \
|
|
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
|
|
|
|
#define DEV_MAP_BULK_SIZE 16
|
|
struct xdp_dev_bulk_queue {
|
|
struct xdp_frame *q[DEV_MAP_BULK_SIZE];
|
|
struct list_head flush_node;
|
|
struct net_device *dev;
|
|
struct net_device *dev_rx;
|
|
unsigned int count;
|
|
};
|
|
|
|
struct bpf_dtab_netdev {
|
|
struct net_device *dev; /* must be first member, due to tracepoint */
|
|
struct hlist_node index_hlist;
|
|
struct bpf_dtab *dtab;
|
|
struct rcu_head rcu;
|
|
unsigned int idx;
|
|
};
|
|
|
|
struct bpf_dtab {
|
|
struct bpf_map map;
|
|
struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
|
|
struct list_head list;
|
|
|
|
/* these are only used for DEVMAP_HASH type maps */
|
|
struct hlist_head *dev_index_head;
|
|
spinlock_t index_lock;
|
|
unsigned int items;
|
|
u32 n_buckets;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct list_head, dev_flush_list);
|
|
static DEFINE_SPINLOCK(dev_map_lock);
|
|
static LIST_HEAD(dev_map_list);
|
|
|
|
static struct hlist_head *dev_map_create_hash(unsigned int entries)
|
|
{
|
|
int i;
|
|
struct hlist_head *hash;
|
|
|
|
hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
|
|
if (hash != NULL)
|
|
for (i = 0; i < entries; i++)
|
|
INIT_HLIST_HEAD(&hash[i]);
|
|
|
|
return hash;
|
|
}
|
|
|
|
static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
|
|
int idx)
|
|
{
|
|
return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
|
|
}
|
|
|
|
static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
|
|
{
|
|
u64 cost = 0;
|
|
int err;
|
|
|
|
/* check sanity of attributes */
|
|
if (attr->max_entries == 0 || attr->key_size != 4 ||
|
|
attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
|
|
return -EINVAL;
|
|
|
|
/* Lookup returns a pointer straight to dev->ifindex, so make sure the
|
|
* verifier prevents writes from the BPF side
|
|
*/
|
|
attr->map_flags |= BPF_F_RDONLY_PROG;
|
|
|
|
|
|
bpf_map_init_from_attr(&dtab->map, attr);
|
|
|
|
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
|
|
|
|
if (!dtab->n_buckets) /* Overflow check */
|
|
return -EINVAL;
|
|
cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
|
|
} else {
|
|
cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
|
|
}
|
|
|
|
/* if map size is larger than memlock limit, reject it */
|
|
err = bpf_map_charge_init(&dtab->map.memory, cost);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
|
|
if (!dtab->dev_index_head)
|
|
goto free_charge;
|
|
|
|
spin_lock_init(&dtab->index_lock);
|
|
} else {
|
|
dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
|
|
sizeof(struct bpf_dtab_netdev *),
|
|
dtab->map.numa_node);
|
|
if (!dtab->netdev_map)
|
|
goto free_charge;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_charge:
|
|
bpf_map_charge_finish(&dtab->map.memory);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_dtab *dtab;
|
|
int err;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return ERR_PTR(-EPERM);
|
|
|
|
dtab = kzalloc(sizeof(*dtab), GFP_USER);
|
|
if (!dtab)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = dev_map_init_map(dtab, attr);
|
|
if (err) {
|
|
kfree(dtab);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
spin_lock(&dev_map_lock);
|
|
list_add_tail_rcu(&dtab->list, &dev_map_list);
|
|
spin_unlock(&dev_map_lock);
|
|
|
|
return &dtab->map;
|
|
}
|
|
|
|
static void dev_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
int i;
|
|
|
|
/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
|
|
* so the programs (can be more than one that used this map) were
|
|
* disconnected from events. The following synchronize_rcu() guarantees
|
|
* both rcu read critical sections complete and waits for
|
|
* preempt-disable regions (NAPI being the relevant context here) so we
|
|
* are certain there will be no further reads against the netdev_map and
|
|
* all flush operations are complete. Flush operations can only be done
|
|
* from NAPI context for this reason.
|
|
*/
|
|
|
|
spin_lock(&dev_map_lock);
|
|
list_del_rcu(&dtab->list);
|
|
spin_unlock(&dev_map_lock);
|
|
|
|
bpf_clear_redirect_map(map);
|
|
synchronize_rcu();
|
|
|
|
/* Make sure prior __dev_map_entry_free() have completed. */
|
|
rcu_barrier();
|
|
|
|
if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
for (i = 0; i < dtab->n_buckets; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
|
|
head = dev_map_index_hash(dtab, i);
|
|
|
|
hlist_for_each_entry_safe(dev, next, head, index_hlist) {
|
|
hlist_del_rcu(&dev->index_hlist);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
}
|
|
|
|
kfree(dtab->dev_index_head);
|
|
} else {
|
|
for (i = 0; i < dtab->map.max_entries; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = dtab->netdev_map[i];
|
|
if (!dev)
|
|
continue;
|
|
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
|
|
bpf_map_area_free(dtab->netdev_map);
|
|
}
|
|
|
|
kfree(dtab);
|
|
}
|
|
|
|
static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
u32 index = key ? *(u32 *)key : U32_MAX;
|
|
u32 *next = next_key;
|
|
|
|
if (index >= dtab->map.max_entries) {
|
|
*next = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (index == dtab->map.max_entries - 1)
|
|
return -ENOENT;
|
|
*next = index + 1;
|
|
return 0;
|
|
}
|
|
|
|
struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct hlist_head *head = dev_map_index_hash(dtab, key);
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
hlist_for_each_entry_rcu(dev, head, index_hlist,
|
|
lockdep_is_held(&dtab->index_lock))
|
|
if (dev->idx == key)
|
|
return dev;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
|
|
void *next_key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
u32 idx, *next = next_key;
|
|
struct bpf_dtab_netdev *dev, *next_dev;
|
|
struct hlist_head *head;
|
|
int i = 0;
|
|
|
|
if (!key)
|
|
goto find_first;
|
|
|
|
idx = *(u32 *)key;
|
|
|
|
dev = __dev_map_hash_lookup_elem(map, idx);
|
|
if (!dev)
|
|
goto find_first;
|
|
|
|
next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
|
|
struct bpf_dtab_netdev, index_hlist);
|
|
|
|
if (next_dev) {
|
|
*next = next_dev->idx;
|
|
return 0;
|
|
}
|
|
|
|
i = idx & (dtab->n_buckets - 1);
|
|
i++;
|
|
|
|
find_first:
|
|
for (; i < dtab->n_buckets; i++) {
|
|
head = dev_map_index_hash(dtab, i);
|
|
|
|
next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
|
|
struct bpf_dtab_netdev,
|
|
index_hlist);
|
|
if (next_dev) {
|
|
*next = next_dev->idx;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
|
|
{
|
|
struct net_device *dev = bq->dev;
|
|
int sent = 0, drops = 0, err = 0;
|
|
int i;
|
|
|
|
if (unlikely(!bq->count))
|
|
return 0;
|
|
|
|
for (i = 0; i < bq->count; i++) {
|
|
struct xdp_frame *xdpf = bq->q[i];
|
|
|
|
prefetch(xdpf);
|
|
}
|
|
|
|
sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
|
|
if (sent < 0) {
|
|
err = sent;
|
|
sent = 0;
|
|
goto error;
|
|
}
|
|
drops = bq->count - sent;
|
|
out:
|
|
bq->count = 0;
|
|
|
|
trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
|
|
bq->dev_rx = NULL;
|
|
__list_del_clearprev(&bq->flush_node);
|
|
return 0;
|
|
error:
|
|
/* If ndo_xdp_xmit fails with an errno, no frames have been
|
|
* xmit'ed and it's our responsibility to them free all.
|
|
*/
|
|
for (i = 0; i < bq->count; i++) {
|
|
struct xdp_frame *xdpf = bq->q[i];
|
|
|
|
xdp_return_frame_rx_napi(xdpf);
|
|
drops++;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* __dev_flush is called from xdp_do_flush() which _must_ be signaled
|
|
* from the driver before returning from its napi->poll() routine. The poll()
|
|
* routine is called either from busy_poll context or net_rx_action signaled
|
|
* from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
|
|
* net device can be torn down. On devmap tear down we ensure the flush list
|
|
* is empty before completing to ensure all flush operations have completed.
|
|
* When drivers update the bpf program they may need to ensure any flush ops
|
|
* are also complete. Using synchronize_rcu or call_rcu will suffice for this
|
|
* because both wait for napi context to exit.
|
|
*/
|
|
void __dev_flush(void)
|
|
{
|
|
struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
|
|
struct xdp_dev_bulk_queue *bq, *tmp;
|
|
|
|
list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
|
|
bq_xmit_all(bq, XDP_XMIT_FLUSH);
|
|
}
|
|
|
|
/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
|
|
* update happens in parallel here a dev_put wont happen until after reading the
|
|
* ifindex.
|
|
*/
|
|
struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *obj;
|
|
|
|
if (key >= map->max_entries)
|
|
return NULL;
|
|
|
|
obj = READ_ONCE(dtab->netdev_map[key]);
|
|
return obj;
|
|
}
|
|
|
|
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
|
|
* Thus, safe percpu variable access.
|
|
*/
|
|
static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
|
|
struct net_device *dev_rx)
|
|
{
|
|
struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
|
|
struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
|
|
|
|
if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
|
|
bq_xmit_all(bq, 0);
|
|
|
|
/* Ingress dev_rx will be the same for all xdp_frame's in
|
|
* bulk_queue, because bq stored per-CPU and must be flushed
|
|
* from net_device drivers NAPI func end.
|
|
*/
|
|
if (!bq->dev_rx)
|
|
bq->dev_rx = dev_rx;
|
|
|
|
bq->q[bq->count++] = xdpf;
|
|
|
|
if (!bq->flush_node.prev)
|
|
list_add(&bq->flush_node, flush_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
|
|
struct net_device *dev_rx)
|
|
{
|
|
struct xdp_frame *xdpf;
|
|
int err;
|
|
|
|
if (!dev->netdev_ops->ndo_xdp_xmit)
|
|
return -EOPNOTSUPP;
|
|
|
|
err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
xdpf = convert_to_xdp_frame(xdp);
|
|
if (unlikely(!xdpf))
|
|
return -EOVERFLOW;
|
|
|
|
return bq_enqueue(dev, xdpf, dev_rx);
|
|
}
|
|
|
|
int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
|
|
struct net_device *dev_rx)
|
|
{
|
|
return __xdp_enqueue(dev, xdp, dev_rx);
|
|
}
|
|
|
|
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
|
|
struct net_device *dev_rx)
|
|
{
|
|
struct net_device *dev = dst->dev;
|
|
|
|
return __xdp_enqueue(dev, xdp, dev_rx);
|
|
}
|
|
|
|
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
|
|
struct bpf_prog *xdp_prog)
|
|
{
|
|
int err;
|
|
|
|
err = xdp_ok_fwd_dev(dst->dev, skb->len);
|
|
if (unlikely(err))
|
|
return err;
|
|
skb->dev = dst->dev;
|
|
generic_xdp_tx(skb, xdp_prog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
|
|
struct net_device *dev = obj ? obj->dev : NULL;
|
|
|
|
return dev ? &dev->ifindex : NULL;
|
|
}
|
|
|
|
static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
|
|
*(u32 *)key);
|
|
struct net_device *dev = obj ? obj->dev : NULL;
|
|
|
|
return dev ? &dev->ifindex : NULL;
|
|
}
|
|
|
|
static void __dev_map_entry_free(struct rcu_head *rcu)
|
|
{
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
|
|
static int dev_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *old_dev;
|
|
int k = *(u32 *)key;
|
|
|
|
if (k >= map->max_entries)
|
|
return -EINVAL;
|
|
|
|
/* Use call_rcu() here to ensure any rcu critical sections have
|
|
* completed as well as any flush operations because call_rcu
|
|
* will wait for preempt-disable region to complete, NAPI in this
|
|
* context. And additionally, the driver tear down ensures all
|
|
* soft irqs are complete before removing the net device in the
|
|
* case of dev_put equals zero.
|
|
*/
|
|
old_dev = xchg(&dtab->netdev_map[k], NULL);
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
return 0;
|
|
}
|
|
|
|
static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *old_dev;
|
|
int k = *(u32 *)key;
|
|
unsigned long flags;
|
|
int ret = -ENOENT;
|
|
|
|
spin_lock_irqsave(&dtab->index_lock, flags);
|
|
|
|
old_dev = __dev_map_hash_lookup_elem(map, k);
|
|
if (old_dev) {
|
|
dtab->items--;
|
|
hlist_del_init_rcu(&old_dev->index_hlist);
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
ret = 0;
|
|
}
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
|
|
struct bpf_dtab *dtab,
|
|
u32 ifindex,
|
|
unsigned int idx)
|
|
{
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
|
|
dtab->map.numa_node);
|
|
if (!dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
dev->dev = dev_get_by_index(net, ifindex);
|
|
if (!dev->dev) {
|
|
kfree(dev);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
dev->idx = idx;
|
|
dev->dtab = dtab;
|
|
|
|
return dev;
|
|
}
|
|
|
|
static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
|
|
void *key, void *value, u64 map_flags)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *dev, *old_dev;
|
|
u32 ifindex = *(u32 *)value;
|
|
u32 i = *(u32 *)key;
|
|
|
|
if (unlikely(map_flags > BPF_EXIST))
|
|
return -EINVAL;
|
|
if (unlikely(i >= dtab->map.max_entries))
|
|
return -E2BIG;
|
|
if (unlikely(map_flags == BPF_NOEXIST))
|
|
return -EEXIST;
|
|
|
|
if (!ifindex) {
|
|
dev = NULL;
|
|
} else {
|
|
dev = __dev_map_alloc_node(net, dtab, ifindex, i);
|
|
if (IS_ERR(dev))
|
|
return PTR_ERR(dev);
|
|
}
|
|
|
|
/* Use call_rcu() here to ensure rcu critical sections have completed
|
|
* Remembering the driver side flush operation will happen before the
|
|
* net device is removed.
|
|
*/
|
|
old_dev = xchg(&dtab->netdev_map[i], dev);
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 map_flags)
|
|
{
|
|
return __dev_map_update_elem(current->nsproxy->net_ns,
|
|
map, key, value, map_flags);
|
|
}
|
|
|
|
static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
|
|
void *key, void *value, u64 map_flags)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *dev, *old_dev;
|
|
u32 ifindex = *(u32 *)value;
|
|
u32 idx = *(u32 *)key;
|
|
unsigned long flags;
|
|
int err = -EEXIST;
|
|
|
|
if (unlikely(map_flags > BPF_EXIST || !ifindex))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&dtab->index_lock, flags);
|
|
|
|
old_dev = __dev_map_hash_lookup_elem(map, idx);
|
|
if (old_dev && (map_flags & BPF_NOEXIST))
|
|
goto out_err;
|
|
|
|
dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
|
|
if (IS_ERR(dev)) {
|
|
err = PTR_ERR(dev);
|
|
goto out_err;
|
|
}
|
|
|
|
if (old_dev) {
|
|
hlist_del_rcu(&old_dev->index_hlist);
|
|
} else {
|
|
if (dtab->items >= dtab->map.max_entries) {
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
call_rcu(&dev->rcu, __dev_map_entry_free);
|
|
return -E2BIG;
|
|
}
|
|
dtab->items++;
|
|
}
|
|
|
|
hlist_add_head_rcu(&dev->index_hlist,
|
|
dev_map_index_hash(dtab, idx));
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
return err;
|
|
}
|
|
|
|
static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 map_flags)
|
|
{
|
|
return __dev_map_hash_update_elem(current->nsproxy->net_ns,
|
|
map, key, value, map_flags);
|
|
}
|
|
|
|
const struct bpf_map_ops dev_map_ops = {
|
|
.map_alloc = dev_map_alloc,
|
|
.map_free = dev_map_free,
|
|
.map_get_next_key = dev_map_get_next_key,
|
|
.map_lookup_elem = dev_map_lookup_elem,
|
|
.map_update_elem = dev_map_update_elem,
|
|
.map_delete_elem = dev_map_delete_elem,
|
|
.map_check_btf = map_check_no_btf,
|
|
};
|
|
|
|
const struct bpf_map_ops dev_map_hash_ops = {
|
|
.map_alloc = dev_map_alloc,
|
|
.map_free = dev_map_free,
|
|
.map_get_next_key = dev_map_hash_get_next_key,
|
|
.map_lookup_elem = dev_map_hash_lookup_elem,
|
|
.map_update_elem = dev_map_hash_update_elem,
|
|
.map_delete_elem = dev_map_hash_delete_elem,
|
|
.map_check_btf = map_check_no_btf,
|
|
};
|
|
|
|
static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
|
|
struct net_device *netdev)
|
|
{
|
|
unsigned long flags;
|
|
u32 i;
|
|
|
|
spin_lock_irqsave(&dtab->index_lock, flags);
|
|
for (i = 0; i < dtab->n_buckets; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
|
|
head = dev_map_index_hash(dtab, i);
|
|
|
|
hlist_for_each_entry_safe(dev, next, head, index_hlist) {
|
|
if (netdev != dev->dev)
|
|
continue;
|
|
|
|
dtab->items--;
|
|
hlist_del_rcu(&dev->index_hlist);
|
|
call_rcu(&dev->rcu, __dev_map_entry_free);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
}
|
|
|
|
static int dev_map_notification(struct notifier_block *notifier,
|
|
ulong event, void *ptr)
|
|
{
|
|
struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
|
|
struct bpf_dtab *dtab;
|
|
int i, cpu;
|
|
|
|
switch (event) {
|
|
case NETDEV_REGISTER:
|
|
if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
|
|
break;
|
|
|
|
/* will be freed in free_netdev() */
|
|
netdev->xdp_bulkq =
|
|
__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
|
|
sizeof(void *), GFP_ATOMIC);
|
|
if (!netdev->xdp_bulkq)
|
|
return NOTIFY_BAD;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
|
|
break;
|
|
case NETDEV_UNREGISTER:
|
|
/* This rcu_read_lock/unlock pair is needed because
|
|
* dev_map_list is an RCU list AND to ensure a delete
|
|
* operation does not free a netdev_map entry while we
|
|
* are comparing it against the netdev being unregistered.
|
|
*/
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(dtab, &dev_map_list, list) {
|
|
if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
dev_map_hash_remove_netdev(dtab, netdev);
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < dtab->map.max_entries; i++) {
|
|
struct bpf_dtab_netdev *dev, *odev;
|
|
|
|
dev = READ_ONCE(dtab->netdev_map[i]);
|
|
if (!dev || netdev != dev->dev)
|
|
continue;
|
|
odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
|
|
if (dev == odev)
|
|
call_rcu(&dev->rcu,
|
|
__dev_map_entry_free);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block dev_map_notifier = {
|
|
.notifier_call = dev_map_notification,
|
|
};
|
|
|
|
static int __init dev_map_init(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
|
|
BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
|
|
offsetof(struct _bpf_dtab_netdev, dev));
|
|
register_netdevice_notifier(&dev_map_notifier);
|
|
|
|
for_each_possible_cpu(cpu)
|
|
INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(dev_map_init);
|