mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 02:46:06 +00:00
55151ea9ec
Although subpage itself is conflicting with higher folio, since subpage (sectorsize < PAGE_SIZE and nodesize < PAGE_SIZE) means we will never need higher order folio, there is a hidden pitfall: - btrfs_page_*() helpers Those helpers are an abstraction to handle both subpage and non-subpage cases, which means we're going to pass pages pointers to those helpers. And since those helpers are shared between data and metadata paths, it's unavoidable to let them to handle folios, including higher order folios). Meanwhile for true subpage case, we should only have a single page backed folios anyway, thus add a new ASSERT() for btrfs_subpage_assert() to ensure that. Also since those helpers are shared between both data and metadata, add some extra ASSERT()s for data path to make sure we only get single page backed folio for now. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1523 lines
40 KiB
C
1523 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "transaction.h"
|
|
#include "locking.h"
|
|
#include "accessors.h"
|
|
#include "messages.h"
|
|
#include "delalloc-space.h"
|
|
#include "subpage.h"
|
|
#include "defrag.h"
|
|
#include "file-item.h"
|
|
#include "super.h"
|
|
|
|
static struct kmem_cache *btrfs_inode_defrag_cachep;
|
|
|
|
/*
|
|
* When auto defrag is enabled we queue up these defrag structs to remember
|
|
* which inodes need defragging passes.
|
|
*/
|
|
struct inode_defrag {
|
|
struct rb_node rb_node;
|
|
/* Inode number */
|
|
u64 ino;
|
|
/*
|
|
* Transid where the defrag was added, we search for extents newer than
|
|
* this.
|
|
*/
|
|
u64 transid;
|
|
|
|
/* Root objectid */
|
|
u64 root;
|
|
|
|
/*
|
|
* The extent size threshold for autodefrag.
|
|
*
|
|
* This value is different for compressed/non-compressed extents, thus
|
|
* needs to be passed from higher layer.
|
|
* (aka, inode_should_defrag())
|
|
*/
|
|
u32 extent_thresh;
|
|
};
|
|
|
|
static int __compare_inode_defrag(struct inode_defrag *defrag1,
|
|
struct inode_defrag *defrag2)
|
|
{
|
|
if (defrag1->root > defrag2->root)
|
|
return 1;
|
|
else if (defrag1->root < defrag2->root)
|
|
return -1;
|
|
else if (defrag1->ino > defrag2->ino)
|
|
return 1;
|
|
else if (defrag1->ino < defrag2->ino)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pop a record for an inode into the defrag tree. The lock must be held
|
|
* already.
|
|
*
|
|
* If you're inserting a record for an older transid than an existing record,
|
|
* the transid already in the tree is lowered.
|
|
*
|
|
* If an existing record is found the defrag item you pass in is freed.
|
|
*/
|
|
static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct inode_defrag *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
int ret;
|
|
|
|
p = &fs_info->defrag_inodes.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
ret = __compare_inode_defrag(defrag, entry);
|
|
if (ret < 0)
|
|
p = &parent->rb_left;
|
|
else if (ret > 0)
|
|
p = &parent->rb_right;
|
|
else {
|
|
/*
|
|
* If we're reinserting an entry for an old defrag run,
|
|
* make sure to lower the transid of our existing
|
|
* record.
|
|
*/
|
|
if (defrag->transid < entry->transid)
|
|
entry->transid = defrag->transid;
|
|
entry->extent_thresh = min(defrag->extent_thresh,
|
|
entry->extent_thresh);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
|
|
rb_link_node(&defrag->rb_node, parent, p);
|
|
rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
|
|
return 0;
|
|
|
|
if (btrfs_fs_closing(fs_info))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Insert a defrag record for this inode if auto defrag is enabled.
|
|
*/
|
|
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode, u32 extent_thresh)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct inode_defrag *defrag;
|
|
u64 transid;
|
|
int ret;
|
|
|
|
if (!__need_auto_defrag(fs_info))
|
|
return 0;
|
|
|
|
if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
|
|
return 0;
|
|
|
|
if (trans)
|
|
transid = trans->transid;
|
|
else
|
|
transid = inode->root->last_trans;
|
|
|
|
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
|
|
if (!defrag)
|
|
return -ENOMEM;
|
|
|
|
defrag->ino = btrfs_ino(inode);
|
|
defrag->transid = transid;
|
|
defrag->root = root->root_key.objectid;
|
|
defrag->extent_thresh = extent_thresh;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
|
|
/*
|
|
* If we set IN_DEFRAG flag and evict the inode from memory,
|
|
* and then re-read this inode, this new inode doesn't have
|
|
* IN_DEFRAG flag. At the case, we may find the existed defrag.
|
|
*/
|
|
ret = __btrfs_add_inode_defrag(inode, defrag);
|
|
if (ret)
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
} else {
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
}
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pick the defragable inode that we want, if it doesn't exist, we will get the
|
|
* next one.
|
|
*/
|
|
static struct inode_defrag *btrfs_pick_defrag_inode(
|
|
struct btrfs_fs_info *fs_info, u64 root, u64 ino)
|
|
{
|
|
struct inode_defrag *entry = NULL;
|
|
struct inode_defrag tmp;
|
|
struct rb_node *p;
|
|
struct rb_node *parent = NULL;
|
|
int ret;
|
|
|
|
tmp.ino = ino;
|
|
tmp.root = root;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
p = fs_info->defrag_inodes.rb_node;
|
|
while (p) {
|
|
parent = p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
ret = __compare_inode_defrag(&tmp, entry);
|
|
if (ret < 0)
|
|
p = parent->rb_left;
|
|
else if (ret > 0)
|
|
p = parent->rb_right;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
|
|
parent = rb_next(parent);
|
|
if (parent)
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
else
|
|
entry = NULL;
|
|
}
|
|
out:
|
|
if (entry)
|
|
rb_erase(parent, &fs_info->defrag_inodes);
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
return entry;
|
|
}
|
|
|
|
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
node = rb_first(&fs_info->defrag_inodes);
|
|
while (node) {
|
|
rb_erase(node, &fs_info->defrag_inodes);
|
|
defrag = rb_entry(node, struct inode_defrag, rb_node);
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
|
|
cond_resched_lock(&fs_info->defrag_inodes_lock);
|
|
|
|
node = rb_first(&fs_info->defrag_inodes);
|
|
}
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
}
|
|
|
|
#define BTRFS_DEFRAG_BATCH 1024
|
|
|
|
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_root *inode_root;
|
|
struct inode *inode;
|
|
struct btrfs_ioctl_defrag_range_args range;
|
|
int ret = 0;
|
|
u64 cur = 0;
|
|
|
|
again:
|
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
|
|
goto cleanup;
|
|
if (!__need_auto_defrag(fs_info))
|
|
goto cleanup;
|
|
|
|
/* Get the inode */
|
|
inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
|
|
if (IS_ERR(inode_root)) {
|
|
ret = PTR_ERR(inode_root);
|
|
goto cleanup;
|
|
}
|
|
|
|
inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
|
|
btrfs_put_root(inode_root);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cur >= i_size_read(inode)) {
|
|
iput(inode);
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Do a chunk of defrag */
|
|
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
|
|
memset(&range, 0, sizeof(range));
|
|
range.len = (u64)-1;
|
|
range.start = cur;
|
|
range.extent_thresh = defrag->extent_thresh;
|
|
|
|
sb_start_write(fs_info->sb);
|
|
ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
|
|
BTRFS_DEFRAG_BATCH);
|
|
sb_end_write(fs_info->sb);
|
|
iput(inode);
|
|
|
|
if (ret < 0)
|
|
goto cleanup;
|
|
|
|
cur = max(cur + fs_info->sectorsize, range.start);
|
|
goto again;
|
|
|
|
cleanup:
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Run through the list of inodes in the FS that need defragging.
|
|
*/
|
|
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
u64 first_ino = 0;
|
|
u64 root_objectid = 0;
|
|
|
|
atomic_inc(&fs_info->defrag_running);
|
|
while (1) {
|
|
/* Pause the auto defragger. */
|
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
|
|
break;
|
|
|
|
if (!__need_auto_defrag(fs_info))
|
|
break;
|
|
|
|
/* find an inode to defrag */
|
|
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
|
|
if (!defrag) {
|
|
if (root_objectid || first_ino) {
|
|
root_objectid = 0;
|
|
first_ino = 0;
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
first_ino = defrag->ino + 1;
|
|
root_objectid = defrag->root;
|
|
|
|
__btrfs_run_defrag_inode(fs_info, defrag);
|
|
}
|
|
atomic_dec(&fs_info->defrag_running);
|
|
|
|
/*
|
|
* During unmount, we use the transaction_wait queue to wait for the
|
|
* defragger to stop.
|
|
*/
|
|
wake_up(&fs_info->transaction_wait);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if two blocks addresses are close, used by defrag.
|
|
*/
|
|
static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
|
|
{
|
|
if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
|
|
return true;
|
|
if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Go through all the leaves pointed to by a node and reallocate them so that
|
|
* disk order is close to key order.
|
|
*/
|
|
static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *parent,
|
|
int start_slot, u64 *last_ret,
|
|
struct btrfs_key *progress)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
const u32 blocksize = fs_info->nodesize;
|
|
const int end_slot = btrfs_header_nritems(parent) - 1;
|
|
u64 search_start = *last_ret;
|
|
u64 last_block = 0;
|
|
int ret = 0;
|
|
bool progress_passed = false;
|
|
|
|
/*
|
|
* COWing must happen through a running transaction, which always
|
|
* matches the current fs generation (it's a transaction with a state
|
|
* less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
|
|
* into error state to prevent the commit of any transaction.
|
|
*/
|
|
if (unlikely(trans->transaction != fs_info->running_transaction ||
|
|
trans->transid != fs_info->generation)) {
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
btrfs_crit(fs_info,
|
|
"unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
|
|
parent->start, btrfs_root_id(root), trans->transid,
|
|
fs_info->running_transaction->transid,
|
|
fs_info->generation);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (btrfs_header_nritems(parent) <= 1)
|
|
return 0;
|
|
|
|
for (int i = start_slot; i <= end_slot; i++) {
|
|
struct extent_buffer *cur;
|
|
struct btrfs_disk_key disk_key;
|
|
u64 blocknr;
|
|
u64 other;
|
|
bool close = true;
|
|
|
|
btrfs_node_key(parent, &disk_key, i);
|
|
if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
|
|
continue;
|
|
|
|
progress_passed = true;
|
|
blocknr = btrfs_node_blockptr(parent, i);
|
|
if (last_block == 0)
|
|
last_block = blocknr;
|
|
|
|
if (i > 0) {
|
|
other = btrfs_node_blockptr(parent, i - 1);
|
|
close = close_blocks(blocknr, other, blocksize);
|
|
}
|
|
if (!close && i < end_slot) {
|
|
other = btrfs_node_blockptr(parent, i + 1);
|
|
close = close_blocks(blocknr, other, blocksize);
|
|
}
|
|
if (close) {
|
|
last_block = blocknr;
|
|
continue;
|
|
}
|
|
|
|
cur = btrfs_read_node_slot(parent, i);
|
|
if (IS_ERR(cur))
|
|
return PTR_ERR(cur);
|
|
if (search_start == 0)
|
|
search_start = last_block;
|
|
|
|
btrfs_tree_lock(cur);
|
|
ret = btrfs_force_cow_block(trans, root, cur, parent, i,
|
|
&cur, search_start,
|
|
min(16 * blocksize,
|
|
(end_slot - i) * blocksize),
|
|
BTRFS_NESTING_COW);
|
|
if (ret) {
|
|
btrfs_tree_unlock(cur);
|
|
free_extent_buffer(cur);
|
|
break;
|
|
}
|
|
search_start = cur->start;
|
|
last_block = cur->start;
|
|
*last_ret = search_start;
|
|
btrfs_tree_unlock(cur);
|
|
free_extent_buffer(cur);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag all the leaves in a given btree.
|
|
* Read all the leaves and try to get key order to
|
|
* better reflect disk order
|
|
*/
|
|
|
|
static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_key key;
|
|
int ret = 0;
|
|
int wret;
|
|
int level;
|
|
int next_key_ret = 0;
|
|
u64 last_ret = 0;
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
goto out;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
level = btrfs_header_level(root->node);
|
|
|
|
if (level == 0)
|
|
goto out;
|
|
|
|
if (root->defrag_progress.objectid == 0) {
|
|
struct extent_buffer *root_node;
|
|
u32 nritems;
|
|
|
|
root_node = btrfs_lock_root_node(root);
|
|
nritems = btrfs_header_nritems(root_node);
|
|
root->defrag_max.objectid = 0;
|
|
/* from above we know this is not a leaf */
|
|
btrfs_node_key_to_cpu(root_node, &root->defrag_max,
|
|
nritems - 1);
|
|
btrfs_tree_unlock(root_node);
|
|
free_extent_buffer(root_node);
|
|
memset(&key, 0, sizeof(key));
|
|
} else {
|
|
memcpy(&key, &root->defrag_progress, sizeof(key));
|
|
}
|
|
|
|
path->keep_locks = 1;
|
|
|
|
ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
/*
|
|
* We don't need a lock on a leaf. btrfs_realloc_node() will lock all
|
|
* leafs from path->nodes[1], so set lowest_level to 1 to avoid later
|
|
* a deadlock (attempting to write lock an already write locked leaf).
|
|
*/
|
|
path->lowest_level = 1;
|
|
wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
goto out;
|
|
}
|
|
if (!path->nodes[1]) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
/*
|
|
* The node at level 1 must always be locked when our path has
|
|
* keep_locks set and lowest_level is 1, regardless of the value of
|
|
* path->slots[1].
|
|
*/
|
|
BUG_ON(path->locks[1] == 0);
|
|
ret = btrfs_realloc_node(trans, root,
|
|
path->nodes[1], 0,
|
|
&last_ret,
|
|
&root->defrag_progress);
|
|
if (ret) {
|
|
WARN_ON(ret == -EAGAIN);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Now that we reallocated the node we can find the next key. Note that
|
|
* btrfs_find_next_key() can release our path and do another search
|
|
* without COWing, this is because even with path->keep_locks = 1,
|
|
* btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
|
|
* node when path->slots[node_level - 1] does not point to the last
|
|
* item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
|
|
* we search for the next key after reallocating our node.
|
|
*/
|
|
path->slots[1] = btrfs_header_nritems(path->nodes[1]);
|
|
next_key_ret = btrfs_find_next_key(root, path, &key, 1,
|
|
BTRFS_OLDEST_GENERATION);
|
|
if (next_key_ret == 0) {
|
|
memcpy(&root->defrag_progress, &key, sizeof(key));
|
|
ret = -EAGAIN;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (ret == -EAGAIN) {
|
|
if (root->defrag_max.objectid > root->defrag_progress.objectid)
|
|
goto done;
|
|
if (root->defrag_max.type > root->defrag_progress.type)
|
|
goto done;
|
|
if (root->defrag_max.offset > root->defrag_progress.offset)
|
|
goto done;
|
|
ret = 0;
|
|
}
|
|
done:
|
|
if (ret != -EAGAIN)
|
|
memset(&root->defrag_progress, 0,
|
|
sizeof(root->defrag_progress));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag a given btree. Every leaf in the btree is read and defragmented.
|
|
*/
|
|
int btrfs_defrag_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
|
|
return 0;
|
|
|
|
while (1) {
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_defrag_leaves(trans, root);
|
|
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
cond_resched();
|
|
|
|
if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
btrfs_debug(fs_info, "defrag_root cancelled");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag specific helper to get an extent map.
|
|
*
|
|
* Differences between this and btrfs_get_extent() are:
|
|
*
|
|
* - No extent_map will be added to inode->extent_tree
|
|
* To reduce memory usage in the long run.
|
|
*
|
|
* - Extra optimization to skip file extents older than @newer_than
|
|
* By using btrfs_search_forward() we can skip entire file ranges that
|
|
* have extents created in past transactions, because btrfs_search_forward()
|
|
* will not visit leaves and nodes with a generation smaller than given
|
|
* minimal generation threshold (@newer_than).
|
|
*
|
|
* Return valid em if we find a file extent matching the requirement.
|
|
* Return NULL if we can not find a file extent matching the requirement.
|
|
*
|
|
* Return ERR_PTR() for error.
|
|
*/
|
|
static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
|
|
u64 start, u64 newer_than)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_path path = { 0 };
|
|
struct extent_map *em;
|
|
struct btrfs_key key;
|
|
u64 ino = btrfs_ino(inode);
|
|
int ret;
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
key.objectid = ino;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = start;
|
|
|
|
if (newer_than) {
|
|
ret = btrfs_search_forward(root, &key, &path, newer_than);
|
|
if (ret < 0)
|
|
goto err;
|
|
/* Can't find anything newer */
|
|
if (ret > 0)
|
|
goto not_found;
|
|
} else {
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
|
|
/*
|
|
* If btrfs_search_slot() makes path to point beyond nritems,
|
|
* we should not have an empty leaf, as this inode must at
|
|
* least have its INODE_ITEM.
|
|
*/
|
|
ASSERT(btrfs_header_nritems(path.nodes[0]));
|
|
path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
|
|
}
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
/* Perfect match, no need to go one slot back */
|
|
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
|
|
key.offset == start)
|
|
goto iterate;
|
|
|
|
/* We didn't find a perfect match, needs to go one slot back */
|
|
if (path.slots[0] > 0) {
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path.slots[0]--;
|
|
}
|
|
|
|
iterate:
|
|
/* Iterate through the path to find a file extent covering @start */
|
|
while (true) {
|
|
u64 extent_end;
|
|
|
|
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
|
|
goto next;
|
|
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
|
|
/*
|
|
* We may go one slot back to INODE_REF/XATTR item, then
|
|
* need to go forward until we reach an EXTENT_DATA.
|
|
* But we should still has the correct ino as key.objectid.
|
|
*/
|
|
if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
|
|
goto next;
|
|
|
|
/* It's beyond our target range, definitely not extent found */
|
|
if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
|
|
goto not_found;
|
|
|
|
/*
|
|
* | |<- File extent ->|
|
|
* \- start
|
|
*
|
|
* This means there is a hole between start and key.offset.
|
|
*/
|
|
if (key.offset > start) {
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
em->len = key.offset - start;
|
|
break;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_end = btrfs_file_extent_end(&path);
|
|
|
|
/*
|
|
* |<- file extent ->| |
|
|
* \- start
|
|
*
|
|
* We haven't reached start, search next slot.
|
|
*/
|
|
if (extent_end <= start)
|
|
goto next;
|
|
|
|
/* Now this extent covers @start, convert it to em */
|
|
btrfs_extent_item_to_extent_map(inode, &path, fi, em);
|
|
break;
|
|
next:
|
|
ret = btrfs_next_item(root, &path);
|
|
if (ret < 0)
|
|
goto err;
|
|
if (ret > 0)
|
|
goto not_found;
|
|
}
|
|
btrfs_release_path(&path);
|
|
return em;
|
|
|
|
not_found:
|
|
btrfs_release_path(&path);
|
|
free_extent_map(em);
|
|
return NULL;
|
|
|
|
err:
|
|
btrfs_release_path(&path);
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
|
|
u64 newer_than, bool locked)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em;
|
|
const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
|
|
|
|
/*
|
|
* Hopefully we have this extent in the tree already, try without the
|
|
* full extent lock.
|
|
*/
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, sectorsize);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
/*
|
|
* We can get a merged extent, in that case, we need to re-search
|
|
* tree to get the original em for defrag.
|
|
*
|
|
* If @newer_than is 0 or em::generation < newer_than, we can trust
|
|
* this em, as either we don't care about the generation, or the
|
|
* merged extent map will be rejected anyway.
|
|
*/
|
|
if (em && (em->flags & EXTENT_FLAG_MERGED) &&
|
|
newer_than && em->generation >= newer_than) {
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
|
|
if (!em) {
|
|
struct extent_state *cached = NULL;
|
|
u64 end = start + sectorsize - 1;
|
|
|
|
/* Get the big lock and read metadata off disk. */
|
|
if (!locked)
|
|
lock_extent(io_tree, start, end, &cached);
|
|
em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
|
|
if (!locked)
|
|
unlock_extent(io_tree, start, end, &cached);
|
|
|
|
if (IS_ERR(em))
|
|
return NULL;
|
|
}
|
|
|
|
return em;
|
|
}
|
|
|
|
static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
|
|
const struct extent_map *em)
|
|
{
|
|
if (extent_map_is_compressed(em))
|
|
return BTRFS_MAX_COMPRESSED;
|
|
return fs_info->max_extent_size;
|
|
}
|
|
|
|
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
|
|
u32 extent_thresh, u64 newer_than, bool locked)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *next;
|
|
bool ret = false;
|
|
|
|
/* This is the last extent */
|
|
if (em->start + em->len >= i_size_read(inode))
|
|
return false;
|
|
|
|
/*
|
|
* Here we need to pass @newer_then when checking the next extent, or
|
|
* we will hit a case we mark current extent for defrag, but the next
|
|
* one will not be a target.
|
|
* This will just cause extra IO without really reducing the fragments.
|
|
*/
|
|
next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
|
|
/* No more em or hole */
|
|
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
|
|
goto out;
|
|
if (next->flags & EXTENT_FLAG_PREALLOC)
|
|
goto out;
|
|
/*
|
|
* If the next extent is at its max capacity, defragging current extent
|
|
* makes no sense, as the total number of extents won't change.
|
|
*/
|
|
if (next->len >= get_extent_max_capacity(fs_info, em))
|
|
goto out;
|
|
/* Skip older extent */
|
|
if (next->generation < newer_than)
|
|
goto out;
|
|
/* Also check extent size */
|
|
if (next->len >= extent_thresh)
|
|
goto out;
|
|
|
|
ret = true;
|
|
out:
|
|
free_extent_map(next);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prepare one page to be defragged.
|
|
*
|
|
* This will ensure:
|
|
*
|
|
* - Returned page is locked and has been set up properly.
|
|
* - No ordered extent exists in the page.
|
|
* - The page is uptodate.
|
|
*
|
|
* NOTE: Caller should also wait for page writeback after the cluster is
|
|
* prepared, here we don't do writeback wait for each page.
|
|
*/
|
|
static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->vfs_inode.i_mapping;
|
|
gfp_t mask = btrfs_alloc_write_mask(mapping);
|
|
u64 page_start = (u64)index << PAGE_SHIFT;
|
|
u64 page_end = page_start + PAGE_SIZE - 1;
|
|
struct extent_state *cached_state = NULL;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
again:
|
|
page = find_or_create_page(mapping, index, mask);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Since we can defragment files opened read-only, we can encounter
|
|
* transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
|
|
* can't do I/O using huge pages yet, so return an error for now.
|
|
* Filesystem transparent huge pages are typically only used for
|
|
* executables that explicitly enable them, so this isn't very
|
|
* restrictive.
|
|
*/
|
|
if (PageCompound(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-ETXTBSY);
|
|
}
|
|
|
|
ret = set_page_extent_mapped(page);
|
|
if (ret < 0) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* Wait for any existing ordered extent in the range */
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
|
|
ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
|
|
unlock_extent(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
if (!ordered)
|
|
break;
|
|
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
lock_page(page);
|
|
/*
|
|
* We unlocked the page above, so we need check if it was
|
|
* released or not.
|
|
*/
|
|
if (page->mapping != mapping || !PagePrivate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now the page range has no ordered extent any more. Read the page to
|
|
* make it uptodate.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
btrfs_read_folio(NULL, page_folio(page));
|
|
lock_page(page);
|
|
if (page->mapping != mapping || !PagePrivate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
|
|
struct defrag_target_range {
|
|
struct list_head list;
|
|
u64 start;
|
|
u64 len;
|
|
};
|
|
|
|
/*
|
|
* Collect all valid target extents.
|
|
*
|
|
* @start: file offset to lookup
|
|
* @len: length to lookup
|
|
* @extent_thresh: file extent size threshold, any extent size >= this value
|
|
* will be ignored
|
|
* @newer_than: only defrag extents newer than this value
|
|
* @do_compress: whether the defrag is doing compression
|
|
* if true, @extent_thresh will be ignored and all regular
|
|
* file extents meeting @newer_than will be targets.
|
|
* @locked: if the range has already held extent lock
|
|
* @target_list: list of targets file extents
|
|
*/
|
|
static int defrag_collect_targets(struct btrfs_inode *inode,
|
|
u64 start, u64 len, u32 extent_thresh,
|
|
u64 newer_than, bool do_compress,
|
|
bool locked, struct list_head *target_list,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
bool last_is_target = false;
|
|
u64 cur = start;
|
|
int ret = 0;
|
|
|
|
while (cur < start + len) {
|
|
struct extent_map *em;
|
|
struct defrag_target_range *new;
|
|
bool next_mergeable = true;
|
|
u64 range_len;
|
|
|
|
last_is_target = false;
|
|
em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
|
|
if (!em)
|
|
break;
|
|
|
|
/*
|
|
* If the file extent is an inlined one, we may still want to
|
|
* defrag it (fallthrough) if it will cause a regular extent.
|
|
* This is for users who want to convert inline extents to
|
|
* regular ones through max_inline= mount option.
|
|
*/
|
|
if (em->block_start == EXTENT_MAP_INLINE &&
|
|
em->len <= inode->root->fs_info->max_inline)
|
|
goto next;
|
|
|
|
/* Skip holes and preallocated extents. */
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
(em->flags & EXTENT_FLAG_PREALLOC))
|
|
goto next;
|
|
|
|
/* Skip older extent */
|
|
if (em->generation < newer_than)
|
|
goto next;
|
|
|
|
/* This em is under writeback, no need to defrag */
|
|
if (em->generation == (u64)-1)
|
|
goto next;
|
|
|
|
/*
|
|
* Our start offset might be in the middle of an existing extent
|
|
* map, so take that into account.
|
|
*/
|
|
range_len = em->len - (cur - em->start);
|
|
/*
|
|
* If this range of the extent map is already flagged for delalloc,
|
|
* skip it, because:
|
|
*
|
|
* 1) We could deadlock later, when trying to reserve space for
|
|
* delalloc, because in case we can't immediately reserve space
|
|
* the flusher can start delalloc and wait for the respective
|
|
* ordered extents to complete. The deadlock would happen
|
|
* because we do the space reservation while holding the range
|
|
* locked, and starting writeback, or finishing an ordered
|
|
* extent, requires locking the range;
|
|
*
|
|
* 2) If there's delalloc there, it means there's dirty pages for
|
|
* which writeback has not started yet (we clean the delalloc
|
|
* flag when starting writeback and after creating an ordered
|
|
* extent). If we mark pages in an adjacent range for defrag,
|
|
* then we will have a larger contiguous range for delalloc,
|
|
* very likely resulting in a larger extent after writeback is
|
|
* triggered (except in a case of free space fragmentation).
|
|
*/
|
|
if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
|
|
EXTENT_DELALLOC))
|
|
goto next;
|
|
|
|
/*
|
|
* For do_compress case, we want to compress all valid file
|
|
* extents, thus no @extent_thresh or mergeable check.
|
|
*/
|
|
if (do_compress)
|
|
goto add;
|
|
|
|
/* Skip too large extent */
|
|
if (range_len >= extent_thresh)
|
|
goto next;
|
|
|
|
/*
|
|
* Skip extents already at its max capacity, this is mostly for
|
|
* compressed extents, which max cap is only 128K.
|
|
*/
|
|
if (em->len >= get_extent_max_capacity(fs_info, em))
|
|
goto next;
|
|
|
|
/*
|
|
* Normally there are no more extents after an inline one, thus
|
|
* @next_mergeable will normally be false and not defragged.
|
|
* So if an inline extent passed all above checks, just add it
|
|
* for defrag, and be converted to regular extents.
|
|
*/
|
|
if (em->block_start == EXTENT_MAP_INLINE)
|
|
goto add;
|
|
|
|
next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
|
|
extent_thresh, newer_than, locked);
|
|
if (!next_mergeable) {
|
|
struct defrag_target_range *last;
|
|
|
|
/* Empty target list, no way to merge with last entry */
|
|
if (list_empty(target_list))
|
|
goto next;
|
|
last = list_entry(target_list->prev,
|
|
struct defrag_target_range, list);
|
|
/* Not mergeable with last entry */
|
|
if (last->start + last->len != cur)
|
|
goto next;
|
|
|
|
/* Mergeable, fall through to add it to @target_list. */
|
|
}
|
|
|
|
add:
|
|
last_is_target = true;
|
|
range_len = min(extent_map_end(em), start + len) - cur;
|
|
/*
|
|
* This one is a good target, check if it can be merged into
|
|
* last range of the target list.
|
|
*/
|
|
if (!list_empty(target_list)) {
|
|
struct defrag_target_range *last;
|
|
|
|
last = list_entry(target_list->prev,
|
|
struct defrag_target_range, list);
|
|
ASSERT(last->start + last->len <= cur);
|
|
if (last->start + last->len == cur) {
|
|
/* Mergeable, enlarge the last entry */
|
|
last->len += range_len;
|
|
goto next;
|
|
}
|
|
/* Fall through to allocate a new entry */
|
|
}
|
|
|
|
/* Allocate new defrag_target_range */
|
|
new = kmalloc(sizeof(*new), GFP_NOFS);
|
|
if (!new) {
|
|
free_extent_map(em);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
new->start = cur;
|
|
new->len = range_len;
|
|
list_add_tail(&new->list, target_list);
|
|
|
|
next:
|
|
cur = extent_map_end(em);
|
|
free_extent_map(em);
|
|
}
|
|
if (ret < 0) {
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
|
|
list_for_each_entry_safe(entry, tmp, target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
}
|
|
if (!ret && last_scanned_ret) {
|
|
/*
|
|
* If the last extent is not a target, the caller can skip to
|
|
* the end of that extent.
|
|
* Otherwise, we can only go the end of the specified range.
|
|
*/
|
|
if (!last_is_target)
|
|
*last_scanned_ret = max(cur, *last_scanned_ret);
|
|
else
|
|
*last_scanned_ret = max(start + len, *last_scanned_ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define CLUSTER_SIZE (SZ_256K)
|
|
static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
|
|
|
|
/*
|
|
* Defrag one contiguous target range.
|
|
*
|
|
* @inode: target inode
|
|
* @target: target range to defrag
|
|
* @pages: locked pages covering the defrag range
|
|
* @nr_pages: number of locked pages
|
|
*
|
|
* Caller should ensure:
|
|
*
|
|
* - Pages are prepared
|
|
* Pages should be locked, no ordered extent in the pages range,
|
|
* no writeback.
|
|
*
|
|
* - Extent bits are locked
|
|
*/
|
|
static int defrag_one_locked_target(struct btrfs_inode *inode,
|
|
struct defrag_target_range *target,
|
|
struct page **pages, int nr_pages,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
const u64 start = target->start;
|
|
const u64 len = target->len;
|
|
unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
|
|
unsigned long start_index = start >> PAGE_SHIFT;
|
|
unsigned long first_index = page_index(pages[0]);
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ASSERT(last_index - first_index + 1 <= nr_pages);
|
|
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
clear_extent_bit(&inode->io_tree, start, start + len - 1,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, cached_state);
|
|
set_extent_bit(&inode->io_tree, start, start + len - 1,
|
|
EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
|
|
|
|
/* Update the page status */
|
|
for (i = start_index - first_index; i <= last_index - first_index; i++) {
|
|
ClearPageChecked(pages[i]);
|
|
btrfs_folio_clamp_set_dirty(fs_info, page_folio(pages[i]), start, len);
|
|
}
|
|
btrfs_delalloc_release_extents(inode, len);
|
|
extent_changeset_free(data_reserved);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
|
|
u32 extent_thresh, u64 newer_than, bool do_compress,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
LIST_HEAD(target_list);
|
|
struct page **pages;
|
|
const u32 sectorsize = inode->root->fs_info->sectorsize;
|
|
u64 last_index = (start + len - 1) >> PAGE_SHIFT;
|
|
u64 start_index = start >> PAGE_SHIFT;
|
|
unsigned int nr_pages = last_index - start_index + 1;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
|
|
ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
|
|
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
/* Prepare all pages */
|
|
for (i = 0; i < nr_pages; i++) {
|
|
pages[i] = defrag_prepare_one_page(inode, start_index + i);
|
|
if (IS_ERR(pages[i])) {
|
|
ret = PTR_ERR(pages[i]);
|
|
pages[i] = NULL;
|
|
goto free_pages;
|
|
}
|
|
}
|
|
for (i = 0; i < nr_pages; i++)
|
|
wait_on_page_writeback(pages[i]);
|
|
|
|
/* Lock the pages range */
|
|
lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
|
|
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
|
|
&cached_state);
|
|
/*
|
|
* Now we have a consistent view about the extent map, re-check
|
|
* which range really needs to be defragged.
|
|
*
|
|
* And this time we have extent locked already, pass @locked = true
|
|
* so that we won't relock the extent range and cause deadlock.
|
|
*/
|
|
ret = defrag_collect_targets(inode, start, len, extent_thresh,
|
|
newer_than, do_compress, true,
|
|
&target_list, last_scanned_ret);
|
|
if (ret < 0)
|
|
goto unlock_extent;
|
|
|
|
list_for_each_entry(entry, &target_list, list) {
|
|
ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
|
|
&cached_state);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
list_for_each_entry_safe(entry, tmp, &target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
unlock_extent:
|
|
unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
|
|
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
|
|
&cached_state);
|
|
free_pages:
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (pages[i]) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
}
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
static int defrag_one_cluster(struct btrfs_inode *inode,
|
|
struct file_ra_state *ra,
|
|
u64 start, u32 len, u32 extent_thresh,
|
|
u64 newer_than, bool do_compress,
|
|
unsigned long *sectors_defragged,
|
|
unsigned long max_sectors,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
const u32 sectorsize = inode->root->fs_info->sectorsize;
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
LIST_HEAD(target_list);
|
|
int ret;
|
|
|
|
ret = defrag_collect_targets(inode, start, len, extent_thresh,
|
|
newer_than, do_compress, false,
|
|
&target_list, NULL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
list_for_each_entry(entry, &target_list, list) {
|
|
u32 range_len = entry->len;
|
|
|
|
/* Reached or beyond the limit */
|
|
if (max_sectors && *sectors_defragged >= max_sectors) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
if (max_sectors)
|
|
range_len = min_t(u32, range_len,
|
|
(max_sectors - *sectors_defragged) * sectorsize);
|
|
|
|
/*
|
|
* If defrag_one_range() has updated last_scanned_ret,
|
|
* our range may already be invalid (e.g. hole punched).
|
|
* Skip if our range is before last_scanned_ret, as there is
|
|
* no need to defrag the range anymore.
|
|
*/
|
|
if (entry->start + range_len <= *last_scanned_ret)
|
|
continue;
|
|
|
|
if (ra)
|
|
page_cache_sync_readahead(inode->vfs_inode.i_mapping,
|
|
ra, NULL, entry->start >> PAGE_SHIFT,
|
|
((entry->start + range_len - 1) >> PAGE_SHIFT) -
|
|
(entry->start >> PAGE_SHIFT) + 1);
|
|
/*
|
|
* Here we may not defrag any range if holes are punched before
|
|
* we locked the pages.
|
|
* But that's fine, it only affects the @sectors_defragged
|
|
* accounting.
|
|
*/
|
|
ret = defrag_one_range(inode, entry->start, range_len,
|
|
extent_thresh, newer_than, do_compress,
|
|
last_scanned_ret);
|
|
if (ret < 0)
|
|
break;
|
|
*sectors_defragged += range_len >>
|
|
inode->root->fs_info->sectorsize_bits;
|
|
}
|
|
out:
|
|
list_for_each_entry_safe(entry, tmp, &target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
if (ret >= 0)
|
|
*last_scanned_ret = max(*last_scanned_ret, start + len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Entry point to file defragmentation.
|
|
*
|
|
* @inode: inode to be defragged
|
|
* @ra: readahead state (can be NUL)
|
|
* @range: defrag options including range and flags
|
|
* @newer_than: minimum transid to defrag
|
|
* @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
|
|
* will be defragged.
|
|
*
|
|
* Return <0 for error.
|
|
* Return >=0 for the number of sectors defragged, and range->start will be updated
|
|
* to indicate the file offset where next defrag should be started at.
|
|
* (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
|
|
* defragging all the range).
|
|
*/
|
|
int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
u64 newer_than, unsigned long max_to_defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
unsigned long sectors_defragged = 0;
|
|
u64 isize = i_size_read(inode);
|
|
u64 cur;
|
|
u64 last_byte;
|
|
bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
|
|
bool ra_allocated = false;
|
|
int compress_type = BTRFS_COMPRESS_ZLIB;
|
|
int ret = 0;
|
|
u32 extent_thresh = range->extent_thresh;
|
|
pgoff_t start_index;
|
|
|
|
if (isize == 0)
|
|
return 0;
|
|
|
|
if (range->start >= isize)
|
|
return -EINVAL;
|
|
|
|
if (do_compress) {
|
|
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
|
|
return -EINVAL;
|
|
if (range->compress_type)
|
|
compress_type = range->compress_type;
|
|
}
|
|
|
|
if (extent_thresh == 0)
|
|
extent_thresh = SZ_256K;
|
|
|
|
if (range->start + range->len > range->start) {
|
|
/* Got a specific range */
|
|
last_byte = min(isize, range->start + range->len);
|
|
} else {
|
|
/* Defrag until file end */
|
|
last_byte = isize;
|
|
}
|
|
|
|
/* Align the range */
|
|
cur = round_down(range->start, fs_info->sectorsize);
|
|
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
|
|
|
|
/*
|
|
* If we were not given a ra, allocate a readahead context. As
|
|
* readahead is just an optimization, defrag will work without it so
|
|
* we don't error out.
|
|
*/
|
|
if (!ra) {
|
|
ra_allocated = true;
|
|
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
|
|
if (ra)
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
}
|
|
|
|
/*
|
|
* Make writeback start from the beginning of the range, so that the
|
|
* defrag range can be written sequentially.
|
|
*/
|
|
start_index = cur >> PAGE_SHIFT;
|
|
if (start_index < inode->i_mapping->writeback_index)
|
|
inode->i_mapping->writeback_index = start_index;
|
|
|
|
while (cur < last_byte) {
|
|
const unsigned long prev_sectors_defragged = sectors_defragged;
|
|
u64 last_scanned = cur;
|
|
u64 cluster_end;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/* We want the cluster end at page boundary when possible */
|
|
cluster_end = (((cur >> PAGE_SHIFT) +
|
|
(SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
|
|
cluster_end = min(cluster_end, last_byte);
|
|
|
|
btrfs_inode_lock(BTRFS_I(inode), 0);
|
|
if (IS_SWAPFILE(inode)) {
|
|
ret = -ETXTBSY;
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
break;
|
|
}
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
break;
|
|
}
|
|
if (do_compress)
|
|
BTRFS_I(inode)->defrag_compress = compress_type;
|
|
ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
|
|
cluster_end + 1 - cur, extent_thresh,
|
|
newer_than, do_compress, §ors_defragged,
|
|
max_to_defrag, &last_scanned);
|
|
|
|
if (sectors_defragged > prev_sectors_defragged)
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
if (ret < 0)
|
|
break;
|
|
cur = max(cluster_end + 1, last_scanned);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
if (ra_allocated)
|
|
kfree(ra);
|
|
/*
|
|
* Update range.start for autodefrag, this will indicate where to start
|
|
* in next run.
|
|
*/
|
|
range->start = cur;
|
|
if (sectors_defragged) {
|
|
/*
|
|
* We have defragged some sectors, for compression case they
|
|
* need to be written back immediately.
|
|
*/
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
}
|
|
if (range->compress_type == BTRFS_COMPRESS_LZO)
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
|
|
else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
|
|
ret = sectors_defragged;
|
|
}
|
|
if (do_compress) {
|
|
btrfs_inode_lock(BTRFS_I(inode), 0);
|
|
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void __cold btrfs_auto_defrag_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_inode_defrag_cachep);
|
|
}
|
|
|
|
int __init btrfs_auto_defrag_init(void)
|
|
{
|
|
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
|
|
sizeof(struct inode_defrag), 0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_inode_defrag_cachep)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|