linux/drivers/leds/leds-lp55xx-common.c
Krzysztof Kozlowski 9d4cfee092 leds: lp55xx: Simplify with scoped for each OF child loop
Use scoped for_each_available_child_of_node_scoped() when iterating over
device nodes to make code a bit simpler.

Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Link: https://lore.kernel.org/r/20240816-cleanup-h-of-node-put-var-v1-10-1d0292802470@linaro.org
Signed-off-by: Lee Jones <lee@kernel.org>
2024-08-22 14:23:06 +01:00

1366 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* LP5521/LP5523/LP55231/LP5562 Common Driver
*
* Copyright 2012 Texas Instruments
*
* Author: Milo(Woogyom) Kim <milo.kim@ti.com>
*
* Derived from leds-lp5521.c, leds-lp5523.c
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/platform_data/leds-lp55xx.h>
#include <linux/slab.h>
#include <linux/gpio/consumer.h>
#include <dt-bindings/leds/leds-lp55xx.h>
#include "leds-lp55xx-common.h"
/* OP MODE require at least 153 us to clear regs */
#define LP55XX_CMD_SLEEP 200
#define LP55xx_PROGRAM_PAGES 16
#define LP55xx_MAX_PROGRAM_LENGTH (LP55xx_BYTES_PER_PAGE * 4) /* 128 bytes (4 pages) */
/*
* Program Memory Operations
* Same Mask for each engine for both mode and exec
* ENG1 GENMASK(3, 2)
* ENG2 GENMASK(5, 4)
* ENG3 GENMASK(7, 6)
*/
#define LP55xx_MODE_DISABLE_ALL_ENG 0x0
#define LP55xx_MODE_ENG_MASK GENMASK(1, 0)
#define LP55xx_MODE_DISABLE_ENG FIELD_PREP_CONST(LP55xx_MODE_ENG_MASK, 0x0)
#define LP55xx_MODE_LOAD_ENG FIELD_PREP_CONST(LP55xx_MODE_ENG_MASK, 0x1)
#define LP55xx_MODE_RUN_ENG FIELD_PREP_CONST(LP55xx_MODE_ENG_MASK, 0x2)
#define LP55xx_MODE_HALT_ENG FIELD_PREP_CONST(LP55xx_MODE_ENG_MASK, 0x3)
#define LP55xx_MODE_ENGn_SHIFT(n, shift) ((shift) + (2 * (3 - (n))))
#define LP55xx_MODE_ENGn_MASK(n, shift) (LP55xx_MODE_ENG_MASK << LP55xx_MODE_ENGn_SHIFT(n, shift))
#define LP55xx_MODE_ENGn_GET(n, mode, shift) \
(((mode) >> LP55xx_MODE_ENGn_SHIFT(n, shift)) & LP55xx_MODE_ENG_MASK)
#define LP55xx_EXEC_ENG_MASK GENMASK(1, 0)
#define LP55xx_EXEC_HOLD_ENG FIELD_PREP_CONST(LP55xx_EXEC_ENG_MASK, 0x0)
#define LP55xx_EXEC_STEP_ENG FIELD_PREP_CONST(LP55xx_EXEC_ENG_MASK, 0x1)
#define LP55xx_EXEC_RUN_ENG FIELD_PREP_CONST(LP55xx_EXEC_ENG_MASK, 0x2)
#define LP55xx_EXEC_ONCE_ENG FIELD_PREP_CONST(LP55xx_EXEC_ENG_MASK, 0x3)
#define LP55xx_EXEC_ENGn_SHIFT(n, shift) ((shift) + (2 * (3 - (n))))
#define LP55xx_EXEC_ENGn_MASK(n, shift) (LP55xx_EXEC_ENG_MASK << LP55xx_EXEC_ENGn_SHIFT(n, shift))
/* Memory Page Selection */
#define LP55xx_REG_PROG_PAGE_SEL 0x4f
/* If supported, each ENGINE have an equal amount of pages offset from page 0 */
#define LP55xx_PAGE_OFFSET(n, pages) (((n) - 1) * (pages))
#define LED_ACTIVE(mux, led) (!!((mux) & (0x0001 << (led))))
/* MASTER FADER common property */
#define LP55xx_FADER_MAPPING_MASK GENMASK(7, 6)
/* External clock rate */
#define LP55XX_CLK_32K 32768
static struct lp55xx_led *cdev_to_lp55xx_led(struct led_classdev *cdev)
{
return container_of(cdev, struct lp55xx_led, cdev);
}
static struct lp55xx_led *dev_to_lp55xx_led(struct device *dev)
{
return cdev_to_lp55xx_led(dev_get_drvdata(dev));
}
static struct lp55xx_led *mcled_cdev_to_led(struct led_classdev_mc *mc_cdev)
{
return container_of(mc_cdev, struct lp55xx_led, mc_cdev);
}
static void lp55xx_wait_opmode_done(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
int __always_unused ret;
u8 val;
/*
* Recent chip supports BUSY bit for engine.
* Check support by checking if val is not 0.
* For legacy device, sleep at least 153 us.
*/
if (cfg->engine_busy.val) {
read_poll_timeout(lp55xx_read, ret, !(val & cfg->engine_busy.mask),
LP55XX_CMD_SLEEP, LP55XX_CMD_SLEEP * 10, false,
chip, cfg->engine_busy.addr, &val);
} else {
usleep_range(LP55XX_CMD_SLEEP, LP55XX_CMD_SLEEP * 2);
}
}
void lp55xx_stop_all_engine(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
lp55xx_write(chip, cfg->reg_op_mode.addr, LP55xx_MODE_DISABLE_ALL_ENG);
lp55xx_wait_opmode_done(chip);
}
EXPORT_SYMBOL_GPL(lp55xx_stop_all_engine);
void lp55xx_load_engine(struct lp55xx_chip *chip)
{
enum lp55xx_engine_index idx = chip->engine_idx;
const struct lp55xx_device_config *cfg = chip->cfg;
u8 mask, val;
mask = LP55xx_MODE_ENGn_MASK(idx, cfg->reg_op_mode.shift);
val = LP55xx_MODE_LOAD_ENG << LP55xx_MODE_ENGn_SHIFT(idx, cfg->reg_op_mode.shift);
lp55xx_update_bits(chip, cfg->reg_op_mode.addr, mask, val);
lp55xx_wait_opmode_done(chip);
/* Setup PAGE if supported (pages_per_engine not 0)*/
if (cfg->pages_per_engine)
lp55xx_write(chip, LP55xx_REG_PROG_PAGE_SEL,
LP55xx_PAGE_OFFSET(idx, cfg->pages_per_engine));
}
EXPORT_SYMBOL_GPL(lp55xx_load_engine);
int lp55xx_run_engine_common(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
u8 mode, exec;
int i, ret;
/* To run the engine, both OP MODE and EXEC needs to be put in RUN mode */
ret = lp55xx_read(chip, cfg->reg_op_mode.addr, &mode);
if (ret)
return ret;
ret = lp55xx_read(chip, cfg->reg_exec.addr, &exec);
if (ret)
return ret;
/* Switch to RUN only for engine that were put in LOAD previously */
for (i = LP55XX_ENGINE_1; i <= LP55XX_ENGINE_3; i++) {
if (LP55xx_MODE_ENGn_GET(i, mode, cfg->reg_op_mode.shift) != LP55xx_MODE_LOAD_ENG)
continue;
mode &= ~LP55xx_MODE_ENGn_MASK(i, cfg->reg_op_mode.shift);
mode |= LP55xx_MODE_RUN_ENG << LP55xx_MODE_ENGn_SHIFT(i, cfg->reg_op_mode.shift);
exec &= ~LP55xx_EXEC_ENGn_MASK(i, cfg->reg_exec.shift);
exec |= LP55xx_EXEC_RUN_ENG << LP55xx_EXEC_ENGn_SHIFT(i, cfg->reg_exec.shift);
}
lp55xx_write(chip, cfg->reg_op_mode.addr, mode);
lp55xx_wait_opmode_done(chip);
lp55xx_write(chip, cfg->reg_exec.addr, exec);
return 0;
}
EXPORT_SYMBOL_GPL(lp55xx_run_engine_common);
int lp55xx_update_program_memory(struct lp55xx_chip *chip,
const u8 *data, size_t size)
{
enum lp55xx_engine_index idx = chip->engine_idx;
const struct lp55xx_device_config *cfg = chip->cfg;
u8 pattern[LP55xx_MAX_PROGRAM_LENGTH] = { };
u8 start_addr = cfg->prog_mem_base.addr;
int page, i = 0, offset = 0;
int program_length, ret;
program_length = LP55xx_BYTES_PER_PAGE;
if (cfg->pages_per_engine)
program_length *= cfg->pages_per_engine;
while ((offset < size - 1) && (i < program_length)) {
unsigned int cmd;
int nrchars;
char c[3];
/* separate sscanfs because length is working only for %s */
ret = sscanf(data + offset, "%2s%n ", c, &nrchars);
if (ret != 1)
goto err;
ret = sscanf(c, "%2x", &cmd);
if (ret != 1)
goto err;
pattern[i] = (u8)cmd;
offset += nrchars;
i++;
}
/* Each instruction is 16bit long. Check that length is even */
if (i % 2)
goto err;
/*
* For legacy LED chip with no page support, engine base address are
* one after another at offset of 32.
* For LED chip that support page, PAGE is already set in load_engine.
*/
if (!cfg->pages_per_engine)
start_addr += LP55xx_BYTES_PER_PAGE * idx;
for (page = 0; page < program_length / LP55xx_BYTES_PER_PAGE; page++) {
/* Write to the next page each 32 bytes (if supported) */
if (cfg->pages_per_engine)
lp55xx_write(chip, LP55xx_REG_PROG_PAGE_SEL,
LP55xx_PAGE_OFFSET(idx, cfg->pages_per_engine) + page);
for (i = 0; i < LP55xx_BYTES_PER_PAGE; i++) {
ret = lp55xx_write(chip, start_addr + i,
pattern[i + (page * LP55xx_BYTES_PER_PAGE)]);
if (ret)
return -EINVAL;
}
}
return size;
err:
dev_err(&chip->cl->dev, "wrong pattern format\n");
return -EINVAL;
}
EXPORT_SYMBOL_GPL(lp55xx_update_program_memory);
void lp55xx_firmware_loaded_cb(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
const struct firmware *fw = chip->fw;
int program_length;
program_length = LP55xx_BYTES_PER_PAGE;
if (cfg->pages_per_engine)
program_length *= cfg->pages_per_engine;
/*
* the firmware is encoded in ascii hex character, with 2 chars
* per byte
*/
if (fw->size > program_length * 2) {
dev_err(&chip->cl->dev, "firmware data size overflow: %zu\n",
fw->size);
return;
}
/*
* Program memory sequence
* 1) set engine mode to "LOAD"
* 2) write firmware data into program memory
*/
lp55xx_load_engine(chip);
lp55xx_update_program_memory(chip, fw->data, fw->size);
}
EXPORT_SYMBOL_GPL(lp55xx_firmware_loaded_cb);
int lp55xx_led_brightness(struct lp55xx_led *led)
{
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
int ret;
guard(mutex)(&chip->lock);
ret = lp55xx_write(chip, cfg->reg_led_pwm_base.addr + led->chan_nr,
led->brightness);
return ret;
}
EXPORT_SYMBOL_GPL(lp55xx_led_brightness);
int lp55xx_multicolor_brightness(struct lp55xx_led *led)
{
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
int ret;
int i;
guard(mutex)(&chip->lock);
for (i = 0; i < led->mc_cdev.num_colors; i++) {
ret = lp55xx_write(chip,
cfg->reg_led_pwm_base.addr +
led->mc_cdev.subled_info[i].channel,
led->mc_cdev.subled_info[i].brightness);
if (ret)
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(lp55xx_multicolor_brightness);
void lp55xx_set_led_current(struct lp55xx_led *led, u8 led_current)
{
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
led->led_current = led_current;
lp55xx_write(led->chip, cfg->reg_led_current_base.addr + led->chan_nr,
led_current);
}
EXPORT_SYMBOL_GPL(lp55xx_set_led_current);
void lp55xx_turn_off_channels(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
int i;
for (i = 0; i < cfg->max_channel; i++)
lp55xx_write(chip, cfg->reg_led_pwm_base.addr + i, 0);
}
EXPORT_SYMBOL_GPL(lp55xx_turn_off_channels);
void lp55xx_stop_engine(struct lp55xx_chip *chip)
{
enum lp55xx_engine_index idx = chip->engine_idx;
const struct lp55xx_device_config *cfg = chip->cfg;
u8 mask;
mask = LP55xx_MODE_ENGn_MASK(idx, cfg->reg_op_mode.shift);
lp55xx_update_bits(chip, cfg->reg_op_mode.addr, mask, 0);
lp55xx_wait_opmode_done(chip);
}
EXPORT_SYMBOL_GPL(lp55xx_stop_engine);
static void lp55xx_reset_device(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
u8 addr = cfg->reset.addr;
u8 val = cfg->reset.val;
/* no error checking here because no ACK from the device after reset */
lp55xx_write(chip, addr, val);
}
static int lp55xx_detect_device(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
u8 addr = cfg->enable.addr;
u8 val = cfg->enable.val;
int ret;
ret = lp55xx_write(chip, addr, val);
if (ret)
return ret;
usleep_range(1000, 2000);
ret = lp55xx_read(chip, addr, &val);
if (ret)
return ret;
if (val != cfg->enable.val)
return -ENODEV;
return 0;
}
static int lp55xx_post_init_device(struct lp55xx_chip *chip)
{
const struct lp55xx_device_config *cfg = chip->cfg;
if (!cfg->post_init_device)
return 0;
return cfg->post_init_device(chip);
}
static ssize_t led_current_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lp55xx_led *led = dev_to_lp55xx_led(dev);
return sysfs_emit(buf, "%d\n", led->led_current);
}
static ssize_t led_current_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct lp55xx_led *led = dev_to_lp55xx_led(dev);
struct lp55xx_chip *chip = led->chip;
unsigned long curr;
if (kstrtoul(buf, 0, &curr))
return -EINVAL;
if (curr > led->max_current)
return -EINVAL;
if (!chip->cfg->set_led_current)
return len;
guard(mutex)(&chip->lock);
chip->cfg->set_led_current(led, (u8)curr);
return len;
}
static ssize_t max_current_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lp55xx_led *led = dev_to_lp55xx_led(dev);
return sysfs_emit(buf, "%d\n", led->max_current);
}
static DEVICE_ATTR_RW(led_current);
static DEVICE_ATTR_RO(max_current);
static struct attribute *lp55xx_led_attrs[] = {
&dev_attr_led_current.attr,
&dev_attr_max_current.attr,
NULL,
};
ATTRIBUTE_GROUPS(lp55xx_led);
static int lp55xx_set_mc_brightness(struct led_classdev *cdev,
enum led_brightness brightness)
{
struct led_classdev_mc *mc_dev = lcdev_to_mccdev(cdev);
struct lp55xx_led *led = mcled_cdev_to_led(mc_dev);
const struct lp55xx_device_config *cfg = led->chip->cfg;
led_mc_calc_color_components(&led->mc_cdev, brightness);
return cfg->multicolor_brightness_fn(led);
}
static int lp55xx_set_brightness(struct led_classdev *cdev,
enum led_brightness brightness)
{
struct lp55xx_led *led = cdev_to_lp55xx_led(cdev);
const struct lp55xx_device_config *cfg = led->chip->cfg;
led->brightness = (u8)brightness;
return cfg->brightness_fn(led);
}
static int lp55xx_init_led(struct lp55xx_led *led,
struct lp55xx_chip *chip, int chan)
{
struct lp55xx_platform_data *pdata = chip->pdata;
const struct lp55xx_device_config *cfg = chip->cfg;
struct device *dev = &chip->cl->dev;
int max_channel = cfg->max_channel;
struct mc_subled *mc_led_info;
struct led_classdev *led_cdev;
char name[32];
int i;
int ret;
if (chan >= max_channel) {
dev_err(dev, "invalid channel: %d / %d\n", chan, max_channel);
return -EINVAL;
}
if (pdata->led_config[chan].led_current == 0)
return 0;
if (pdata->led_config[chan].name) {
led->cdev.name = pdata->led_config[chan].name;
} else {
snprintf(name, sizeof(name), "%s:channel%d",
pdata->label ? : chip->cl->name, chan);
led->cdev.name = name;
}
if (pdata->led_config[chan].num_colors > 1) {
mc_led_info = devm_kcalloc(dev,
pdata->led_config[chan].num_colors,
sizeof(*mc_led_info), GFP_KERNEL);
if (!mc_led_info)
return -ENOMEM;
led_cdev = &led->mc_cdev.led_cdev;
led_cdev->name = led->cdev.name;
led_cdev->brightness_set_blocking = lp55xx_set_mc_brightness;
led->mc_cdev.num_colors = pdata->led_config[chan].num_colors;
for (i = 0; i < led->mc_cdev.num_colors; i++) {
mc_led_info[i].color_index =
pdata->led_config[chan].color_id[i];
mc_led_info[i].channel =
pdata->led_config[chan].output_num[i];
}
led->mc_cdev.subled_info = mc_led_info;
} else {
led->cdev.brightness_set_blocking = lp55xx_set_brightness;
}
led->cdev.groups = lp55xx_led_groups;
led->cdev.default_trigger = pdata->led_config[chan].default_trigger;
led->led_current = pdata->led_config[chan].led_current;
led->max_current = pdata->led_config[chan].max_current;
led->chan_nr = pdata->led_config[chan].chan_nr;
if (led->chan_nr >= max_channel) {
dev_err(dev, "Use channel numbers between 0 and %d\n",
max_channel - 1);
return -EINVAL;
}
if (pdata->led_config[chan].num_colors > 1)
ret = devm_led_classdev_multicolor_register(dev, &led->mc_cdev);
else
ret = devm_led_classdev_register(dev, &led->cdev);
if (ret) {
dev_err(dev, "led register err: %d\n", ret);
return ret;
}
return 0;
}
static void lp55xx_firmware_loaded(const struct firmware *fw, void *context)
{
struct lp55xx_chip *chip = context;
struct device *dev = &chip->cl->dev;
enum lp55xx_engine_index idx = chip->engine_idx;
if (!fw) {
dev_err(dev, "firmware request failed\n");
return;
}
/* handling firmware data is chip dependent */
scoped_guard(mutex, &chip->lock) {
chip->engines[idx - 1].mode = LP55XX_ENGINE_LOAD;
chip->fw = fw;
if (chip->cfg->firmware_cb)
chip->cfg->firmware_cb(chip);
}
/* firmware should be released for other channel use */
release_firmware(chip->fw);
chip->fw = NULL;
}
static int lp55xx_request_firmware(struct lp55xx_chip *chip)
{
const char *name = chip->cl->name;
struct device *dev = &chip->cl->dev;
return request_firmware_nowait(THIS_MODULE, false, name, dev,
GFP_KERNEL, chip, lp55xx_firmware_loaded);
}
static ssize_t select_engine_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
return sprintf(buf, "%d\n", chip->engine_idx);
}
static ssize_t select_engine_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
unsigned long val;
int ret;
if (kstrtoul(buf, 0, &val))
return -EINVAL;
/* select the engine to be run */
switch (val) {
case LP55XX_ENGINE_1:
case LP55XX_ENGINE_2:
case LP55XX_ENGINE_3:
scoped_guard(mutex, &chip->lock) {
chip->engine_idx = val;
ret = lp55xx_request_firmware(chip);
}
break;
default:
dev_err(dev, "%lu: invalid engine index. (1, 2, 3)\n", val);
return -EINVAL;
}
if (ret) {
dev_err(dev, "request firmware err: %d\n", ret);
return ret;
}
return len;
}
static inline void lp55xx_run_engine(struct lp55xx_chip *chip, bool start)
{
if (chip->cfg->run_engine)
chip->cfg->run_engine(chip, start);
}
static ssize_t run_engine_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
unsigned long val;
if (kstrtoul(buf, 0, &val))
return -EINVAL;
/* run or stop the selected engine */
if (val <= 0) {
lp55xx_run_engine(chip, false);
return len;
}
guard(mutex)(&chip->lock);
lp55xx_run_engine(chip, true);
return len;
}
static DEVICE_ATTR_RW(select_engine);
static DEVICE_ATTR_WO(run_engine);
ssize_t lp55xx_show_engine_mode(struct device *dev,
struct device_attribute *attr,
char *buf, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
enum lp55xx_engine_mode mode = chip->engines[nr - 1].mode;
switch (mode) {
case LP55XX_ENGINE_RUN:
return sysfs_emit(buf, "run\n");
case LP55XX_ENGINE_LOAD:
return sysfs_emit(buf, "load\n");
case LP55XX_ENGINE_DISABLED:
default:
return sysfs_emit(buf, "disabled\n");
}
}
EXPORT_SYMBOL_GPL(lp55xx_show_engine_mode);
ssize_t lp55xx_store_engine_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
struct lp55xx_engine *engine = &chip->engines[nr - 1];
guard(mutex)(&chip->lock);
chip->engine_idx = nr;
if (!strncmp(buf, "run", 3)) {
cfg->run_engine(chip, true);
engine->mode = LP55XX_ENGINE_RUN;
} else if (!strncmp(buf, "load", 4)) {
lp55xx_stop_engine(chip);
lp55xx_load_engine(chip);
engine->mode = LP55XX_ENGINE_LOAD;
} else if (!strncmp(buf, "disabled", 8)) {
lp55xx_stop_engine(chip);
engine->mode = LP55XX_ENGINE_DISABLED;
}
return len;
}
EXPORT_SYMBOL_GPL(lp55xx_store_engine_mode);
ssize_t lp55xx_store_engine_load(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
int ret;
guard(mutex)(&chip->lock);
chip->engine_idx = nr;
lp55xx_load_engine(chip);
ret = lp55xx_update_program_memory(chip, buf, len);
return ret;
}
EXPORT_SYMBOL_GPL(lp55xx_store_engine_load);
static int lp55xx_mux_parse(struct lp55xx_chip *chip, const char *buf,
u16 *mux, size_t len)
{
const struct lp55xx_device_config *cfg = chip->cfg;
u16 tmp_mux = 0;
int i;
len = min_t(int, len, cfg->max_channel);
for (i = 0; i < len; i++) {
switch (buf[i]) {
case '1':
tmp_mux |= (1 << i);
break;
case '0':
break;
case '\n':
i = len;
break;
default:
return -1;
}
}
*mux = tmp_mux;
return 0;
}
ssize_t lp55xx_show_engine_leds(struct device *dev,
struct device_attribute *attr,
char *buf, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
unsigned int led_active;
int i, pos = 0;
for (i = 0; i < cfg->max_channel; i++) {
led_active = LED_ACTIVE(chip->engines[nr - 1].led_mux, i);
pos += sysfs_emit_at(buf, pos, "%x", led_active);
}
pos += sysfs_emit_at(buf, pos, "\n");
return pos;
}
EXPORT_SYMBOL_GPL(lp55xx_show_engine_leds);
static int lp55xx_load_mux(struct lp55xx_chip *chip, u16 mux, int nr)
{
struct lp55xx_engine *engine = &chip->engines[nr - 1];
const struct lp55xx_device_config *cfg = chip->cfg;
u8 mux_page;
int ret;
lp55xx_load_engine(chip);
/* Derive the MUX page offset by starting at the end of the ENGINE pages */
mux_page = cfg->pages_per_engine * LP55XX_ENGINE_MAX + (nr - 1);
ret = lp55xx_write(chip, LP55xx_REG_PROG_PAGE_SEL, mux_page);
if (ret)
return ret;
ret = lp55xx_write(chip, cfg->prog_mem_base.addr, (u8)(mux >> 8));
if (ret)
return ret;
ret = lp55xx_write(chip, cfg->prog_mem_base.addr + 1, (u8)(mux));
if (ret)
return ret;
engine->led_mux = mux;
return 0;
}
ssize_t lp55xx_store_engine_leds(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
struct lp55xx_engine *engine = &chip->engines[nr - 1];
u16 mux = 0;
if (lp55xx_mux_parse(chip, buf, &mux, len))
return -EINVAL;
guard(mutex)(&chip->lock);
chip->engine_idx = nr;
if (engine->mode != LP55XX_ENGINE_LOAD)
return -EINVAL;
if (lp55xx_load_mux(chip, mux, nr))
return -EINVAL;
return len;
}
EXPORT_SYMBOL_GPL(lp55xx_store_engine_leds);
ssize_t lp55xx_show_master_fader(struct device *dev,
struct device_attribute *attr,
char *buf, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
int ret;
u8 val;
guard(mutex)(&chip->lock);
ret = lp55xx_read(chip, cfg->reg_master_fader_base.addr + nr - 1, &val);
return ret ? ret : sysfs_emit(buf, "%u\n", val);
}
EXPORT_SYMBOL_GPL(lp55xx_show_master_fader);
ssize_t lp55xx_store_master_fader(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
int ret;
unsigned long val;
if (kstrtoul(buf, 0, &val))
return -EINVAL;
if (val > 0xff)
return -EINVAL;
guard(mutex)(&chip->lock);
ret = lp55xx_write(chip, cfg->reg_master_fader_base.addr + nr - 1,
(u8)val);
return ret ? ret : len;
}
EXPORT_SYMBOL_GPL(lp55xx_store_master_fader);
ssize_t lp55xx_show_master_fader_leds(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
int i, ret, pos = 0;
u8 val;
guard(mutex)(&chip->lock);
for (i = 0; i < cfg->max_channel; i++) {
ret = lp55xx_read(chip, cfg->reg_led_ctrl_base.addr + i, &val);
if (ret)
return ret;
val = FIELD_GET(LP55xx_FADER_MAPPING_MASK, val);
if (val > FIELD_MAX(LP55xx_FADER_MAPPING_MASK)) {
return -EINVAL;
}
buf[pos++] = val + '0';
}
buf[pos++] = '\n';
return pos;
}
EXPORT_SYMBOL_GPL(lp55xx_show_master_fader_leds);
ssize_t lp55xx_store_master_fader_leds(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
const struct lp55xx_device_config *cfg = chip->cfg;
int i, n, ret;
u8 val;
n = min_t(int, len, cfg->max_channel);
guard(mutex)(&chip->lock);
for (i = 0; i < n; i++) {
if (buf[i] >= '0' && buf[i] <= '3') {
val = (buf[i] - '0') << __bf_shf(LP55xx_FADER_MAPPING_MASK);
ret = lp55xx_update_bits(chip,
cfg->reg_led_ctrl_base.addr + i,
LP55xx_FADER_MAPPING_MASK,
val);
if (ret)
return ret;
} else {
return -EINVAL;
}
}
return len;
}
EXPORT_SYMBOL_GPL(lp55xx_store_master_fader_leds);
static struct attribute *lp55xx_engine_attributes[] = {
&dev_attr_select_engine.attr,
&dev_attr_run_engine.attr,
NULL,
};
static const struct attribute_group lp55xx_engine_attr_group = {
.attrs = lp55xx_engine_attributes,
};
int lp55xx_write(struct lp55xx_chip *chip, u8 reg, u8 val)
{
return i2c_smbus_write_byte_data(chip->cl, reg, val);
}
EXPORT_SYMBOL_GPL(lp55xx_write);
int lp55xx_read(struct lp55xx_chip *chip, u8 reg, u8 *val)
{
s32 ret;
ret = i2c_smbus_read_byte_data(chip->cl, reg);
if (ret < 0)
return ret;
*val = ret;
return 0;
}
EXPORT_SYMBOL_GPL(lp55xx_read);
int lp55xx_update_bits(struct lp55xx_chip *chip, u8 reg, u8 mask, u8 val)
{
int ret;
u8 tmp;
ret = lp55xx_read(chip, reg, &tmp);
if (ret)
return ret;
tmp &= ~mask;
tmp |= val & mask;
return lp55xx_write(chip, reg, tmp);
}
EXPORT_SYMBOL_GPL(lp55xx_update_bits);
bool lp55xx_is_extclk_used(struct lp55xx_chip *chip)
{
struct clk *clk;
int err;
clk = devm_clk_get(&chip->cl->dev, "32k_clk");
if (IS_ERR(clk))
goto use_internal_clk;
err = clk_prepare_enable(clk);
if (err)
goto use_internal_clk;
if (clk_get_rate(clk) != LP55XX_CLK_32K) {
clk_disable_unprepare(clk);
goto use_internal_clk;
}
dev_info(&chip->cl->dev, "%dHz external clock used\n", LP55XX_CLK_32K);
chip->clk = clk;
return true;
use_internal_clk:
dev_info(&chip->cl->dev, "internal clock used\n");
return false;
}
EXPORT_SYMBOL_GPL(lp55xx_is_extclk_used);
static void lp55xx_deinit_device(struct lp55xx_chip *chip)
{
struct lp55xx_platform_data *pdata = chip->pdata;
if (chip->clk)
clk_disable_unprepare(chip->clk);
if (pdata->enable_gpiod)
gpiod_set_value(pdata->enable_gpiod, 0);
}
static int lp55xx_init_device(struct lp55xx_chip *chip)
{
struct lp55xx_platform_data *pdata;
const struct lp55xx_device_config *cfg;
struct device *dev = &chip->cl->dev;
int ret = 0;
WARN_ON(!chip);
pdata = chip->pdata;
cfg = chip->cfg;
if (!pdata || !cfg)
return -EINVAL;
if (pdata->enable_gpiod) {
gpiod_direction_output(pdata->enable_gpiod, 0);
gpiod_set_consumer_name(pdata->enable_gpiod, "LP55xx enable");
gpiod_set_value_cansleep(pdata->enable_gpiod, 0);
usleep_range(1000, 2000); /* Keep enable down at least 1ms */
gpiod_set_value_cansleep(pdata->enable_gpiod, 1);
usleep_range(1000, 2000); /* 500us abs min. */
}
lp55xx_reset_device(chip);
/*
* Exact value is not available. 10 - 20ms
* appears to be enough for reset.
*/
usleep_range(10000, 20000);
ret = lp55xx_detect_device(chip);
if (ret) {
dev_err(dev, "device detection err: %d\n", ret);
goto err;
}
/* chip specific initialization */
ret = lp55xx_post_init_device(chip);
if (ret) {
dev_err(dev, "post init device err: %d\n", ret);
goto err_post_init;
}
return 0;
err_post_init:
lp55xx_deinit_device(chip);
err:
return ret;
}
static int lp55xx_register_leds(struct lp55xx_led *led, struct lp55xx_chip *chip)
{
struct lp55xx_platform_data *pdata = chip->pdata;
const struct lp55xx_device_config *cfg = chip->cfg;
int num_channels = pdata->num_channels;
struct lp55xx_led *each;
u8 led_current;
int ret;
int i;
if (!cfg->brightness_fn) {
dev_err(&chip->cl->dev, "empty brightness configuration\n");
return -EINVAL;
}
for (i = 0; i < num_channels; i++) {
/* do not initialize channels that are not connected */
if (pdata->led_config[i].led_current == 0)
continue;
led_current = pdata->led_config[i].led_current;
each = led + i;
ret = lp55xx_init_led(each, chip, i);
if (ret)
goto err_init_led;
chip->num_leds++;
each->chip = chip;
/* setting led current at each channel */
if (cfg->set_led_current)
cfg->set_led_current(each, led_current);
}
return 0;
err_init_led:
return ret;
}
static int lp55xx_register_sysfs(struct lp55xx_chip *chip)
{
struct device *dev = &chip->cl->dev;
const struct lp55xx_device_config *cfg = chip->cfg;
int ret;
if (!cfg->run_engine || !cfg->firmware_cb)
goto dev_specific_attrs;
ret = sysfs_create_group(&dev->kobj, &lp55xx_engine_attr_group);
if (ret)
return ret;
dev_specific_attrs:
return cfg->dev_attr_group ?
sysfs_create_group(&dev->kobj, cfg->dev_attr_group) : 0;
}
static void lp55xx_unregister_sysfs(struct lp55xx_chip *chip)
{
struct device *dev = &chip->cl->dev;
const struct lp55xx_device_config *cfg = chip->cfg;
if (cfg->dev_attr_group)
sysfs_remove_group(&dev->kobj, cfg->dev_attr_group);
sysfs_remove_group(&dev->kobj, &lp55xx_engine_attr_group);
}
static int lp55xx_parse_common_child(struct device_node *np,
struct lp55xx_led_config *cfg,
int led_number, int *chan_nr)
{
int ret;
of_property_read_string(np, "chan-name",
&cfg[led_number].name);
of_property_read_u8(np, "led-cur",
&cfg[led_number].led_current);
of_property_read_u8(np, "max-cur",
&cfg[led_number].max_current);
ret = of_property_read_u32(np, "reg", chan_nr);
if (ret)
return ret;
if (*chan_nr < 0 || *chan_nr > cfg->max_channel)
return -EINVAL;
return 0;
}
static int lp55xx_parse_multi_led_child(struct device_node *child,
struct lp55xx_led_config *cfg,
int child_number, int color_number)
{
int chan_nr, color_id, ret;
ret = lp55xx_parse_common_child(child, cfg, child_number, &chan_nr);
if (ret)
return ret;
ret = of_property_read_u32(child, "color", &color_id);
if (ret)
return ret;
cfg[child_number].color_id[color_number] = color_id;
cfg[child_number].output_num[color_number] = chan_nr;
return 0;
}
static int lp55xx_parse_multi_led(struct device_node *np,
struct lp55xx_led_config *cfg,
int child_number)
{
int num_colors = 0, ret;
for_each_available_child_of_node_scoped(np, child) {
ret = lp55xx_parse_multi_led_child(child, cfg, child_number,
num_colors);
if (ret)
return ret;
num_colors++;
}
cfg[child_number].num_colors = num_colors;
return 0;
}
static int lp55xx_parse_logical_led(struct device_node *np,
struct lp55xx_led_config *cfg,
int child_number)
{
int led_color, ret;
int chan_nr = 0;
cfg[child_number].default_trigger =
of_get_property(np, "linux,default-trigger", NULL);
ret = of_property_read_u32(np, "color", &led_color);
if (ret)
return ret;
if (led_color == LED_COLOR_ID_RGB)
return lp55xx_parse_multi_led(np, cfg, child_number);
ret = lp55xx_parse_common_child(np, cfg, child_number, &chan_nr);
if (ret < 0)
return ret;
cfg[child_number].chan_nr = chan_nr;
return ret;
}
static struct lp55xx_platform_data *lp55xx_of_populate_pdata(struct device *dev,
struct device_node *np,
struct lp55xx_chip *chip)
{
struct device_node *child;
struct lp55xx_platform_data *pdata;
struct lp55xx_led_config *cfg;
int num_channels;
int i = 0;
int ret;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
num_channels = of_get_available_child_count(np);
if (num_channels == 0) {
dev_err(dev, "no LED channels\n");
return ERR_PTR(-EINVAL);
}
cfg = devm_kcalloc(dev, num_channels, sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return ERR_PTR(-ENOMEM);
pdata->led_config = &cfg[0];
pdata->num_channels = num_channels;
cfg->max_channel = chip->cfg->max_channel;
for_each_available_child_of_node(np, child) {
ret = lp55xx_parse_logical_led(child, cfg, i);
if (ret) {
of_node_put(child);
return ERR_PTR(-EINVAL);
}
i++;
}
if (of_property_read_u32(np, "ti,charge-pump-mode", &pdata->charge_pump_mode))
pdata->charge_pump_mode = LP55XX_CP_AUTO;
if (pdata->charge_pump_mode > LP55XX_CP_AUTO) {
dev_err(dev, "invalid charge pump mode %d\n", pdata->charge_pump_mode);
return ERR_PTR(-EINVAL);
}
of_property_read_string(np, "label", &pdata->label);
of_property_read_u8(np, "clock-mode", &pdata->clock_mode);
pdata->enable_gpiod = devm_gpiod_get_optional(dev, "enable",
GPIOD_ASIS);
if (IS_ERR(pdata->enable_gpiod))
return ERR_CAST(pdata->enable_gpiod);
/* LP8501 specific */
of_property_read_u8(np, "pwr-sel", (u8 *)&pdata->pwr_sel);
return pdata;
}
int lp55xx_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
int program_length, ret;
struct lp55xx_chip *chip;
struct lp55xx_led *led;
struct lp55xx_platform_data *pdata = dev_get_platdata(&client->dev);
struct device_node *np = dev_of_node(&client->dev);
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->cfg = i2c_get_match_data(client);
if (!pdata) {
if (np) {
pdata = lp55xx_of_populate_pdata(&client->dev, np,
chip);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
} else {
dev_err(&client->dev, "no platform data\n");
return -EINVAL;
}
}
/* Validate max program page */
program_length = LP55xx_BYTES_PER_PAGE;
if (chip->cfg->pages_per_engine)
program_length *= chip->cfg->pages_per_engine;
/* support a max of 128bytes */
if (program_length > LP55xx_MAX_PROGRAM_LENGTH) {
dev_err(&client->dev, "invalid pages_per_engine configured\n");
return -EINVAL;
}
led = devm_kcalloc(&client->dev,
pdata->num_channels, sizeof(*led), GFP_KERNEL);
if (!led)
return -ENOMEM;
chip->cl = client;
chip->pdata = pdata;
mutex_init(&chip->lock);
i2c_set_clientdata(client, led);
ret = lp55xx_init_device(chip);
if (ret)
goto err_init;
dev_info(&client->dev, "%s Programmable led chip found\n", id->name);
ret = lp55xx_register_leds(led, chip);
if (ret)
goto err_out;
ret = lp55xx_register_sysfs(chip);
if (ret) {
dev_err(&client->dev, "registering sysfs failed\n");
goto err_out;
}
return 0;
err_out:
lp55xx_deinit_device(chip);
err_init:
return ret;
}
EXPORT_SYMBOL_GPL(lp55xx_probe);
void lp55xx_remove(struct i2c_client *client)
{
struct lp55xx_led *led = i2c_get_clientdata(client);
struct lp55xx_chip *chip = led->chip;
lp55xx_stop_all_engine(chip);
lp55xx_unregister_sysfs(chip);
lp55xx_deinit_device(chip);
}
EXPORT_SYMBOL_GPL(lp55xx_remove);
MODULE_AUTHOR("Milo Kim <milo.kim@ti.com>");
MODULE_DESCRIPTION("LP55xx Common Driver");
MODULE_LICENSE("GPL");