mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 18:36:00 +00:00
39c13c204b
The JIT compiler emits ARM 32 bit instructions. Currently, It supports eBPF only. Classic BPF is supported because of the conversion by BPF core. This patch is essentially changing the current implementation of JIT compiler of Berkeley Packet Filter from classic to internal with almost all instructions from eBPF ISA supported except the following BPF_ALU64 | BPF_DIV | BPF_K BPF_ALU64 | BPF_DIV | BPF_X BPF_ALU64 | BPF_MOD | BPF_K BPF_ALU64 | BPF_MOD | BPF_X BPF_STX | BPF_XADD | BPF_W BPF_STX | BPF_XADD | BPF_DW Implementation is using scratch space to emulate 64 bit eBPF ISA on 32 bit ARM because of deficiency of general purpose registers on ARM. Currently, only LITTLE ENDIAN machines are supported in this eBPF JIT Compiler. Tested on ARMv7 with QEMU by me (Shubham Bansal). Testing results on ARMv7: 1) test_bpf: Summary: 341 PASSED, 0 FAILED, [312/333 JIT'ed] 2) test_tag: OK (40945 tests) 3) test_progs: Summary: 30 PASSED, 0 FAILED 4) test_lpm: OK 5) test_lru_map: OK Above tests are all done with following flags enabled discreatly. 1) bpf_jit_enable=1 a) CONFIG_FRAME_POINTER enabled b) CONFIG_FRAME_POINTER disabled 2) bpf_jit_enable=1 and bpf_jit_harden=2 a) CONFIG_FRAME_POINTER enabled b) CONFIG_FRAME_POINTER disabled See Documentation/networking/filter.txt for more information. Signed-off-by: Shubham Bansal <illusionist.neo@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1963 lines
52 KiB
C
1963 lines
52 KiB
C
/*
|
|
* Just-In-Time compiler for eBPF filters on 32bit ARM
|
|
*
|
|
* Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
|
|
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; version 2 of the License.
|
|
*/
|
|
|
|
#include <linux/bpf.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/opcodes.h>
|
|
|
|
#include "bpf_jit_32.h"
|
|
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
#define STACK_OFFSET(k) (k)
|
|
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
|
|
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
|
|
#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
|
|
|
|
/* Flags used for JIT optimization */
|
|
#define SEEN_CALL (1 << 0)
|
|
|
|
#define FLAG_IMM_OVERFLOW (1 << 0)
|
|
|
|
/*
|
|
* Map eBPF registers to ARM 32bit registers or stack scratch space.
|
|
*
|
|
* 1. First argument is passed using the arm 32bit registers and rest of the
|
|
* arguments are passed on stack scratch space.
|
|
* 2. First callee-saved arugument is mapped to arm 32 bit registers and rest
|
|
* arguments are mapped to scratch space on stack.
|
|
* 3. We need two 64 bit temp registers to do complex operations on eBPF
|
|
* registers.
|
|
*
|
|
* As the eBPF registers are all 64 bit registers and arm has only 32 bit
|
|
* registers, we have to map each eBPF registers with two arm 32 bit regs or
|
|
* scratch memory space and we have to build eBPF 64 bit register from those.
|
|
*
|
|
*/
|
|
static const u8 bpf2a32[][2] = {
|
|
/* return value from in-kernel function, and exit value from eBPF */
|
|
[BPF_REG_0] = {ARM_R1, ARM_R0},
|
|
/* arguments from eBPF program to in-kernel function */
|
|
[BPF_REG_1] = {ARM_R3, ARM_R2},
|
|
/* Stored on stack scratch space */
|
|
[BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
|
|
[BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
|
|
[BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
|
|
[BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
|
|
/* callee saved registers that in-kernel function will preserve */
|
|
[BPF_REG_6] = {ARM_R5, ARM_R4},
|
|
/* Stored on stack scratch space */
|
|
[BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
|
|
[BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
|
|
[BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
|
|
/* Read only Frame Pointer to access Stack */
|
|
[BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
|
|
/* Temporary Register for internal BPF JIT, can be used
|
|
* for constant blindings and others.
|
|
*/
|
|
[TMP_REG_1] = {ARM_R7, ARM_R6},
|
|
[TMP_REG_2] = {ARM_R10, ARM_R8},
|
|
/* Tail call count. Stored on stack scratch space. */
|
|
[TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
|
|
/* temporary register for blinding constants.
|
|
* Stored on stack scratch space.
|
|
*/
|
|
[BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
|
|
};
|
|
|
|
#define dst_lo dst[1]
|
|
#define dst_hi dst[0]
|
|
#define src_lo src[1]
|
|
#define src_hi src[0]
|
|
|
|
/*
|
|
* JIT Context:
|
|
*
|
|
* prog : bpf_prog
|
|
* idx : index of current last JITed instruction.
|
|
* prologue_bytes : bytes used in prologue.
|
|
* epilogue_offset : offset of epilogue starting.
|
|
* seen : bit mask used for JIT optimization.
|
|
* offsets : array of eBPF instruction offsets in
|
|
* JITed code.
|
|
* target : final JITed code.
|
|
* epilogue_bytes : no of bytes used in epilogue.
|
|
* imm_count : no of immediate counts used for global
|
|
* variables.
|
|
* imms : array of global variable addresses.
|
|
*/
|
|
|
|
struct jit_ctx {
|
|
const struct bpf_prog *prog;
|
|
unsigned int idx;
|
|
unsigned int prologue_bytes;
|
|
unsigned int epilogue_offset;
|
|
u32 seen;
|
|
u32 flags;
|
|
u32 *offsets;
|
|
u32 *target;
|
|
u32 stack_size;
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
u16 epilogue_bytes;
|
|
u16 imm_count;
|
|
u32 *imms;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Wrappers which handle both OABI and EABI and assures Thumb2 interworking
|
|
* (where the assembly routines like __aeabi_uidiv could cause problems).
|
|
*/
|
|
static u32 jit_udiv32(u32 dividend, u32 divisor)
|
|
{
|
|
return dividend / divisor;
|
|
}
|
|
|
|
static u32 jit_mod32(u32 dividend, u32 divisor)
|
|
{
|
|
return dividend % divisor;
|
|
}
|
|
|
|
static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
|
|
{
|
|
inst |= (cond << 28);
|
|
inst = __opcode_to_mem_arm(inst);
|
|
|
|
if (ctx->target != NULL)
|
|
ctx->target[ctx->idx] = inst;
|
|
|
|
ctx->idx++;
|
|
}
|
|
|
|
/*
|
|
* Emit an instruction that will be executed unconditionally.
|
|
*/
|
|
static inline void emit(u32 inst, struct jit_ctx *ctx)
|
|
{
|
|
_emit(ARM_COND_AL, inst, ctx);
|
|
}
|
|
|
|
/*
|
|
* Checks if immediate value can be converted to imm12(12 bits) value.
|
|
*/
|
|
static int16_t imm8m(u32 x)
|
|
{
|
|
u32 rot;
|
|
|
|
for (rot = 0; rot < 16; rot++)
|
|
if ((x & ~ror32(0xff, 2 * rot)) == 0)
|
|
return rol32(x, 2 * rot) | (rot << 8);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Initializes the JIT space with undefined instructions.
|
|
*/
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
u32 *ptr;
|
|
/* We are guaranteed to have aligned memory. */
|
|
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
|
|
*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
|
|
}
|
|
|
|
/* Stack must be multiples of 16 Bytes */
|
|
#define STACK_ALIGN(sz) (((sz) + 3) & ~3)
|
|
|
|
/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
|
|
* BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
|
|
* BPF_REG_FP and Tail call counts.
|
|
*/
|
|
#define SCRATCH_SIZE 80
|
|
|
|
/* total stack size used in JITed code */
|
|
#define _STACK_SIZE \
|
|
(ctx->prog->aux->stack_depth + \
|
|
+ SCRATCH_SIZE + \
|
|
+ 4 /* extra for skb_copy_bits buffer */)
|
|
|
|
#define STACK_SIZE STACK_ALIGN(_STACK_SIZE)
|
|
|
|
/* Get the offset of eBPF REGISTERs stored on scratch space. */
|
|
#define STACK_VAR(off) (STACK_SIZE-off-4)
|
|
|
|
/* Offset of skb_copy_bits buffer */
|
|
#define SKB_BUFFER STACK_VAR(SCRATCH_SIZE)
|
|
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
|
|
static u16 imm_offset(u32 k, struct jit_ctx *ctx)
|
|
{
|
|
unsigned int i = 0, offset;
|
|
u16 imm;
|
|
|
|
/* on the "fake" run we just count them (duplicates included) */
|
|
if (ctx->target == NULL) {
|
|
ctx->imm_count++;
|
|
return 0;
|
|
}
|
|
|
|
while ((i < ctx->imm_count) && ctx->imms[i]) {
|
|
if (ctx->imms[i] == k)
|
|
break;
|
|
i++;
|
|
}
|
|
|
|
if (ctx->imms[i] == 0)
|
|
ctx->imms[i] = k;
|
|
|
|
/* constants go just after the epilogue */
|
|
offset = ctx->offsets[ctx->prog->len - 1] * 4;
|
|
offset += ctx->prologue_bytes;
|
|
offset += ctx->epilogue_bytes;
|
|
offset += i * 4;
|
|
|
|
ctx->target[offset / 4] = k;
|
|
|
|
/* PC in ARM mode == address of the instruction + 8 */
|
|
imm = offset - (8 + ctx->idx * 4);
|
|
|
|
if (imm & ~0xfff) {
|
|
/*
|
|
* literal pool is too far, signal it into flags. we
|
|
* can only detect it on the second pass unfortunately.
|
|
*/
|
|
ctx->flags |= FLAG_IMM_OVERFLOW;
|
|
return 0;
|
|
}
|
|
|
|
return imm;
|
|
}
|
|
|
|
#endif /* __LINUX_ARM_ARCH__ */
|
|
|
|
static inline int bpf2a32_offset(int bpf_to, int bpf_from,
|
|
const struct jit_ctx *ctx) {
|
|
int to, from;
|
|
|
|
if (ctx->target == NULL)
|
|
return 0;
|
|
to = ctx->offsets[bpf_to];
|
|
from = ctx->offsets[bpf_from];
|
|
|
|
return to - from - 1;
|
|
}
|
|
|
|
/*
|
|
* Move an immediate that's not an imm8m to a core register.
|
|
*/
|
|
static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
|
|
#else
|
|
emit(ARM_MOVW(rd, val & 0xffff), ctx);
|
|
if (val > 0xffff)
|
|
emit(ARM_MOVT(rd, val >> 16), ctx);
|
|
#endif
|
|
}
|
|
|
|
static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
|
|
{
|
|
int imm12 = imm8m(val);
|
|
|
|
if (imm12 >= 0)
|
|
emit(ARM_MOV_I(rd, imm12), ctx);
|
|
else
|
|
emit_mov_i_no8m(rd, val, ctx);
|
|
}
|
|
|
|
static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
|
|
{
|
|
ctx->seen |= SEEN_CALL;
|
|
#if __LINUX_ARM_ARCH__ < 5
|
|
emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
|
|
|
|
if (elf_hwcap & HWCAP_THUMB)
|
|
emit(ARM_BX(tgt_reg), ctx);
|
|
else
|
|
emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
|
|
#else
|
|
emit(ARM_BLX_R(tgt_reg), ctx);
|
|
#endif
|
|
}
|
|
|
|
static inline int epilogue_offset(const struct jit_ctx *ctx)
|
|
{
|
|
int to, from;
|
|
/* No need for 1st dummy run */
|
|
if (ctx->target == NULL)
|
|
return 0;
|
|
to = ctx->epilogue_offset;
|
|
from = ctx->idx;
|
|
|
|
return to - from - 2;
|
|
}
|
|
|
|
static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
|
|
{
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
s32 jmp_offset;
|
|
|
|
/* checks if divisor is zero or not. If it is, then
|
|
* exit directly.
|
|
*/
|
|
emit(ARM_CMP_I(rn, 0), ctx);
|
|
_emit(ARM_COND_EQ, ARM_MOV_I(ARM_R0, 0), ctx);
|
|
jmp_offset = epilogue_offset(ctx);
|
|
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
|
|
#if __LINUX_ARM_ARCH__ == 7
|
|
if (elf_hwcap & HWCAP_IDIVA) {
|
|
if (op == BPF_DIV)
|
|
emit(ARM_UDIV(rd, rm, rn), ctx);
|
|
else {
|
|
emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
|
|
emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* For BPF_ALU | BPF_DIV | BPF_K instructions
|
|
* As ARM_R1 and ARM_R0 contains 1st argument of bpf
|
|
* function, we need to save it on caller side to save
|
|
* it from getting destroyed within callee.
|
|
* After the return from the callee, we restore ARM_R0
|
|
* ARM_R1.
|
|
*/
|
|
if (rn != ARM_R1) {
|
|
emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
|
|
emit(ARM_MOV_R(ARM_R1, rn), ctx);
|
|
}
|
|
if (rm != ARM_R0) {
|
|
emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
|
|
emit(ARM_MOV_R(ARM_R0, rm), ctx);
|
|
}
|
|
|
|
/* Call appropriate function */
|
|
ctx->seen |= SEEN_CALL;
|
|
emit_mov_i(ARM_IP, op == BPF_DIV ?
|
|
(u32)jit_udiv32 : (u32)jit_mod32, ctx);
|
|
emit_blx_r(ARM_IP, ctx);
|
|
|
|
/* Save return value */
|
|
if (rd != ARM_R0)
|
|
emit(ARM_MOV_R(rd, ARM_R0), ctx);
|
|
|
|
/* Restore ARM_R0 and ARM_R1 */
|
|
if (rn != ARM_R1)
|
|
emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
|
|
if (rm != ARM_R0)
|
|
emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
|
|
}
|
|
|
|
/* Checks whether BPF register is on scratch stack space or not. */
|
|
static inline bool is_on_stack(u8 bpf_reg)
|
|
{
|
|
static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
|
|
BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
|
|
BPF_REG_2, BPF_REG_FP};
|
|
int i, reg_len = sizeof(stack_regs);
|
|
|
|
for (i = 0 ; i < reg_len ; i++) {
|
|
if (bpf_reg == stack_regs[i])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline void emit_a32_mov_i(const u8 dst, const u32 val,
|
|
bool dstk, struct jit_ctx *ctx)
|
|
{
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
|
|
if (dstk) {
|
|
emit_mov_i(tmp[1], val, ctx);
|
|
emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
|
|
} else {
|
|
emit_mov_i(dst, val, ctx);
|
|
}
|
|
}
|
|
|
|
/* Sign extended move */
|
|
static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
|
|
const u32 val, bool dstk,
|
|
struct jit_ctx *ctx) {
|
|
u32 hi = 0;
|
|
|
|
if (is64 && (val & (1<<31)))
|
|
hi = (u32)~0;
|
|
emit_a32_mov_i(dst_lo, val, dstk, ctx);
|
|
emit_a32_mov_i(dst_hi, hi, dstk, ctx);
|
|
}
|
|
|
|
static inline void emit_a32_add_r(const u8 dst, const u8 src,
|
|
const bool is64, const bool hi,
|
|
struct jit_ctx *ctx) {
|
|
/* 64 bit :
|
|
* adds dst_lo, dst_lo, src_lo
|
|
* adc dst_hi, dst_hi, src_hi
|
|
* 32 bit :
|
|
* add dst_lo, dst_lo, src_lo
|
|
*/
|
|
if (!hi && is64)
|
|
emit(ARM_ADDS_R(dst, dst, src), ctx);
|
|
else if (hi && is64)
|
|
emit(ARM_ADC_R(dst, dst, src), ctx);
|
|
else
|
|
emit(ARM_ADD_R(dst, dst, src), ctx);
|
|
}
|
|
|
|
static inline void emit_a32_sub_r(const u8 dst, const u8 src,
|
|
const bool is64, const bool hi,
|
|
struct jit_ctx *ctx) {
|
|
/* 64 bit :
|
|
* subs dst_lo, dst_lo, src_lo
|
|
* sbc dst_hi, dst_hi, src_hi
|
|
* 32 bit :
|
|
* sub dst_lo, dst_lo, src_lo
|
|
*/
|
|
if (!hi && is64)
|
|
emit(ARM_SUBS_R(dst, dst, src), ctx);
|
|
else if (hi && is64)
|
|
emit(ARM_SBC_R(dst, dst, src), ctx);
|
|
else
|
|
emit(ARM_SUB_R(dst, dst, src), ctx);
|
|
}
|
|
|
|
static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
|
|
const bool hi, const u8 op, struct jit_ctx *ctx){
|
|
switch (BPF_OP(op)) {
|
|
/* dst = dst + src */
|
|
case BPF_ADD:
|
|
emit_a32_add_r(dst, src, is64, hi, ctx);
|
|
break;
|
|
/* dst = dst - src */
|
|
case BPF_SUB:
|
|
emit_a32_sub_r(dst, src, is64, hi, ctx);
|
|
break;
|
|
/* dst = dst | src */
|
|
case BPF_OR:
|
|
emit(ARM_ORR_R(dst, dst, src), ctx);
|
|
break;
|
|
/* dst = dst & src */
|
|
case BPF_AND:
|
|
emit(ARM_AND_R(dst, dst, src), ctx);
|
|
break;
|
|
/* dst = dst ^ src */
|
|
case BPF_XOR:
|
|
emit(ARM_EOR_R(dst, dst, src), ctx);
|
|
break;
|
|
/* dst = dst * src */
|
|
case BPF_MUL:
|
|
emit(ARM_MUL(dst, dst, src), ctx);
|
|
break;
|
|
/* dst = dst << src */
|
|
case BPF_LSH:
|
|
emit(ARM_LSL_R(dst, dst, src), ctx);
|
|
break;
|
|
/* dst = dst >> src */
|
|
case BPF_RSH:
|
|
emit(ARM_LSR_R(dst, dst, src), ctx);
|
|
break;
|
|
/* dst = dst >> src (signed)*/
|
|
case BPF_ARSH:
|
|
emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ALU operation (32 bit)
|
|
* dst = dst (op) src
|
|
*/
|
|
static inline void emit_a32_alu_r(const u8 dst, const u8 src,
|
|
bool dstk, bool sstk,
|
|
struct jit_ctx *ctx, const bool is64,
|
|
const bool hi, const u8 op) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
u8 rn = sstk ? tmp[1] : src;
|
|
|
|
if (sstk)
|
|
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
|
|
|
|
/* ALU operation */
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
|
|
emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
|
|
emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
|
|
} else {
|
|
emit_alu_r(dst, rn, is64, hi, op, ctx);
|
|
}
|
|
}
|
|
|
|
/* ALU operation (64 bit) */
|
|
static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
|
|
const u8 src[], bool dstk,
|
|
bool sstk, struct jit_ctx *ctx,
|
|
const u8 op) {
|
|
emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
|
|
if (is64)
|
|
emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
|
|
else
|
|
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
|
|
}
|
|
|
|
/* dst = imm (4 bytes)*/
|
|
static inline void emit_a32_mov_r(const u8 dst, const u8 src,
|
|
bool dstk, bool sstk,
|
|
struct jit_ctx *ctx) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
u8 rt = sstk ? tmp[0] : src;
|
|
|
|
if (sstk)
|
|
emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
|
|
if (dstk)
|
|
emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
|
|
else
|
|
emit(ARM_MOV_R(dst, rt), ctx);
|
|
}
|
|
|
|
/* dst = src */
|
|
static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
|
|
const u8 src[], bool dstk,
|
|
bool sstk, struct jit_ctx *ctx) {
|
|
emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
|
|
if (is64) {
|
|
/* complete 8 byte move */
|
|
emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
|
|
} else {
|
|
/* Zero out high 4 bytes */
|
|
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
|
|
}
|
|
}
|
|
|
|
/* Shift operations */
|
|
static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
|
|
struct jit_ctx *ctx, const u8 op) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
u8 rd = dstk ? tmp[0] : dst;
|
|
|
|
if (dstk)
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
|
|
|
|
/* Do shift operation */
|
|
switch (op) {
|
|
case BPF_LSH:
|
|
emit(ARM_LSL_I(rd, rd, val), ctx);
|
|
break;
|
|
case BPF_RSH:
|
|
emit(ARM_LSR_I(rd, rd, val), ctx);
|
|
break;
|
|
case BPF_NEG:
|
|
emit(ARM_RSB_I(rd, rd, val), ctx);
|
|
break;
|
|
}
|
|
|
|
if (dstk)
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
|
|
}
|
|
|
|
/* dst = ~dst (64 bit) */
|
|
static inline void emit_a32_neg64(const u8 dst[], bool dstk,
|
|
struct jit_ctx *ctx){
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
u8 rd = dstk ? tmp[1] : dst[1];
|
|
u8 rm = dstk ? tmp[0] : dst[0];
|
|
|
|
/* Setup Operand */
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do Negate Operation */
|
|
emit(ARM_RSBS_I(rd, rd, 0), ctx);
|
|
emit(ARM_RSC_I(rm, rm, 0), ctx);
|
|
|
|
if (dstk) {
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
}
|
|
|
|
/* dst = dst << src */
|
|
static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
|
|
bool sstk, struct jit_ctx *ctx) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
|
|
/* Setup Operands */
|
|
u8 rt = sstk ? tmp2[1] : src_lo;
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
|
|
if (sstk)
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do LSH operation */
|
|
emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
|
|
emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
|
|
/* As we are using ARM_LR */
|
|
ctx->seen |= SEEN_CALL;
|
|
emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
|
|
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
|
|
emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
|
|
emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
|
|
|
|
if (dstk) {
|
|
emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
} else {
|
|
emit(ARM_MOV_R(rd, ARM_LR), ctx);
|
|
emit(ARM_MOV_R(rm, ARM_IP), ctx);
|
|
}
|
|
}
|
|
|
|
/* dst = dst >> src (signed)*/
|
|
static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
|
|
bool sstk, struct jit_ctx *ctx) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
/* Setup Operands */
|
|
u8 rt = sstk ? tmp2[1] : src_lo;
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
|
|
if (sstk)
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do the ARSH operation */
|
|
emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
|
|
emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
|
|
/* As we are using ARM_LR */
|
|
ctx->seen |= SEEN_CALL;
|
|
emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
|
|
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
|
|
_emit(ARM_COND_MI, ARM_B(0), ctx);
|
|
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
|
|
emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
|
|
if (dstk) {
|
|
emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
} else {
|
|
emit(ARM_MOV_R(rd, ARM_LR), ctx);
|
|
emit(ARM_MOV_R(rm, ARM_IP), ctx);
|
|
}
|
|
}
|
|
|
|
/* dst = dst >> src */
|
|
static inline void emit_a32_lsr_r64(const u8 dst[], const u8 src[], bool dstk,
|
|
bool sstk, struct jit_ctx *ctx) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
/* Setup Operands */
|
|
u8 rt = sstk ? tmp2[1] : src_lo;
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
|
|
if (sstk)
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do LSH operation */
|
|
emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
|
|
emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
|
|
/* As we are using ARM_LR */
|
|
ctx->seen |= SEEN_CALL;
|
|
emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
|
|
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
|
|
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
|
|
emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
|
|
if (dstk) {
|
|
emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
} else {
|
|
emit(ARM_MOV_R(rd, ARM_LR), ctx);
|
|
emit(ARM_MOV_R(rm, ARM_IP), ctx);
|
|
}
|
|
}
|
|
|
|
/* dst = dst << val */
|
|
static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
|
|
const u32 val, struct jit_ctx *ctx){
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
/* Setup operands */
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do LSH operation */
|
|
if (val < 32) {
|
|
emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
|
|
emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
|
|
emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
|
|
} else {
|
|
if (val == 32)
|
|
emit(ARM_MOV_R(rm, rd), ctx);
|
|
else
|
|
emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
|
|
emit(ARM_EOR_R(rd, rd, rd), ctx);
|
|
}
|
|
|
|
if (dstk) {
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
}
|
|
|
|
/* dst = dst >> val */
|
|
static inline void emit_a32_lsr_i64(const u8 dst[], bool dstk,
|
|
const u32 val, struct jit_ctx *ctx) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
/* Setup operands */
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do LSR operation */
|
|
if (val < 32) {
|
|
emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
|
|
emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
|
|
emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
|
|
} else if (val == 32) {
|
|
emit(ARM_MOV_R(rd, rm), ctx);
|
|
emit(ARM_MOV_I(rm, 0), ctx);
|
|
} else {
|
|
emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
|
|
emit(ARM_MOV_I(rm, 0), ctx);
|
|
}
|
|
|
|
if (dstk) {
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
}
|
|
|
|
/* dst = dst >> val (signed) */
|
|
static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
|
|
const u32 val, struct jit_ctx *ctx){
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
/* Setup operands */
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Do ARSH operation */
|
|
if (val < 32) {
|
|
emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
|
|
emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
|
|
emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
|
|
} else if (val == 32) {
|
|
emit(ARM_MOV_R(rd, rm), ctx);
|
|
emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
|
|
} else {
|
|
emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
|
|
emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
|
|
}
|
|
|
|
if (dstk) {
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
}
|
|
|
|
static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
|
|
bool sstk, struct jit_ctx *ctx) {
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
/* Setup operands for multiplication */
|
|
u8 rd = dstk ? tmp[1] : dst_lo;
|
|
u8 rm = dstk ? tmp[0] : dst_hi;
|
|
u8 rt = sstk ? tmp2[1] : src_lo;
|
|
u8 rn = sstk ? tmp2[0] : src_hi;
|
|
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
if (sstk) {
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
|
|
}
|
|
|
|
/* Do Multiplication */
|
|
emit(ARM_MUL(ARM_IP, rd, rn), ctx);
|
|
emit(ARM_MUL(ARM_LR, rm, rt), ctx);
|
|
/* As we are using ARM_LR */
|
|
ctx->seen |= SEEN_CALL;
|
|
emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
|
|
|
|
emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
|
|
emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
|
|
if (dstk) {
|
|
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
} else {
|
|
emit(ARM_MOV_R(rd, ARM_IP), ctx);
|
|
}
|
|
}
|
|
|
|
/* *(size *)(dst + off) = src */
|
|
static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
|
|
const s32 off, struct jit_ctx *ctx, const u8 sz){
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
u8 rd = dstk ? tmp[1] : dst;
|
|
|
|
if (dstk)
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
|
|
if (off) {
|
|
emit_a32_mov_i(tmp[0], off, false, ctx);
|
|
emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
|
|
rd = tmp[0];
|
|
}
|
|
switch (sz) {
|
|
case BPF_W:
|
|
/* Store a Word */
|
|
emit(ARM_STR_I(src, rd, 0), ctx);
|
|
break;
|
|
case BPF_H:
|
|
/* Store a HalfWord */
|
|
emit(ARM_STRH_I(src, rd, 0), ctx);
|
|
break;
|
|
case BPF_B:
|
|
/* Store a Byte */
|
|
emit(ARM_STRB_I(src, rd, 0), ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* dst = *(size*)(src + off) */
|
|
static inline void emit_ldx_r(const u8 dst, const u8 src, bool dstk,
|
|
const s32 off, struct jit_ctx *ctx, const u8 sz){
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
u8 rd = dstk ? tmp[1] : dst;
|
|
u8 rm = src;
|
|
|
|
if (off) {
|
|
emit_a32_mov_i(tmp[0], off, false, ctx);
|
|
emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
|
|
rm = tmp[0];
|
|
}
|
|
switch (sz) {
|
|
case BPF_W:
|
|
/* Load a Word */
|
|
emit(ARM_LDR_I(rd, rm, 0), ctx);
|
|
break;
|
|
case BPF_H:
|
|
/* Load a HalfWord */
|
|
emit(ARM_LDRH_I(rd, rm, 0), ctx);
|
|
break;
|
|
case BPF_B:
|
|
/* Load a Byte */
|
|
emit(ARM_LDRB_I(rd, rm, 0), ctx);
|
|
break;
|
|
}
|
|
if (dstk)
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
|
|
}
|
|
|
|
/* Arithmatic Operation */
|
|
static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
|
|
const u8 rn, struct jit_ctx *ctx, u8 op) {
|
|
switch (op) {
|
|
case BPF_JSET:
|
|
ctx->seen |= SEEN_CALL;
|
|
emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
|
|
emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
|
|
emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
|
|
break;
|
|
case BPF_JEQ:
|
|
case BPF_JNE:
|
|
case BPF_JGT:
|
|
case BPF_JGE:
|
|
case BPF_JLE:
|
|
case BPF_JLT:
|
|
emit(ARM_CMP_R(rd, rm), ctx);
|
|
_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
|
|
break;
|
|
case BPF_JSLE:
|
|
case BPF_JSGT:
|
|
emit(ARM_CMP_R(rn, rt), ctx);
|
|
emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
|
|
break;
|
|
case BPF_JSLT:
|
|
case BPF_JSGE:
|
|
emit(ARM_CMP_R(rt, rn), ctx);
|
|
emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int out_offset = -1; /* initialized on the first pass of build_body() */
|
|
static int emit_bpf_tail_call(struct jit_ctx *ctx)
|
|
{
|
|
|
|
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
|
|
const u8 *r2 = bpf2a32[BPF_REG_2];
|
|
const u8 *r3 = bpf2a32[BPF_REG_3];
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
const u8 *tcc = bpf2a32[TCALL_CNT];
|
|
const int idx0 = ctx->idx;
|
|
#define cur_offset (ctx->idx - idx0)
|
|
#define jmp_offset (out_offset - (cur_offset))
|
|
u32 off, lo, hi;
|
|
|
|
/* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
*/
|
|
off = offsetof(struct bpf_array, map.max_entries);
|
|
/* array->map.max_entries */
|
|
emit_a32_mov_i(tmp[1], off, false, ctx);
|
|
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
|
|
emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
|
|
/* index (64 bit) */
|
|
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
|
|
/* index >= array->map.max_entries */
|
|
emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
|
|
_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
|
|
|
|
/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
* tail_call_cnt++;
|
|
*/
|
|
lo = (u32)MAX_TAIL_CALL_CNT;
|
|
hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
|
|
emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
|
|
emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
|
|
emit(ARM_CMP_I(tmp[0], hi), ctx);
|
|
_emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
|
|
_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
|
|
emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
|
|
emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
|
|
emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
|
|
emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
|
|
|
|
/* prog = array->ptrs[index]
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
*/
|
|
off = offsetof(struct bpf_array, ptrs);
|
|
emit_a32_mov_i(tmp[1], off, false, ctx);
|
|
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
|
|
emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
|
|
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
|
|
emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
|
|
emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
|
|
emit(ARM_CMP_I(tmp[1], 0), ctx);
|
|
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
|
|
|
|
/* goto *(prog->bpf_func + prologue_size); */
|
|
off = offsetof(struct bpf_prog, bpf_func);
|
|
emit_a32_mov_i(tmp2[1], off, false, ctx);
|
|
emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
|
|
emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
|
|
emit(ARM_BX(tmp[1]), ctx);
|
|
|
|
/* out: */
|
|
if (out_offset == -1)
|
|
out_offset = cur_offset;
|
|
if (cur_offset != out_offset) {
|
|
pr_err_once("tail_call out_offset = %d, expected %d!\n",
|
|
cur_offset, out_offset);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#undef cur_offset
|
|
#undef jmp_offset
|
|
}
|
|
|
|
/* 0xabcd => 0xcdab */
|
|
static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ < 6
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
|
|
emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
|
|
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
|
|
emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
|
|
emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
|
|
#else /* ARMv6+ */
|
|
emit(ARM_REV16(rd, rn), ctx);
|
|
#endif
|
|
}
|
|
|
|
/* 0xabcdefgh => 0xghefcdab */
|
|
static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ < 6
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
|
|
emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
|
|
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
|
|
emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
|
|
|
|
emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
|
|
emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
|
|
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
|
|
emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
|
|
emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
|
|
emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
|
|
emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
|
|
|
|
#else /* ARMv6+ */
|
|
emit(ARM_REV(rd, rn), ctx);
|
|
#endif
|
|
}
|
|
|
|
// push the scratch stack register on top of the stack
|
|
static inline void emit_push_r64(const u8 src[], const u8 shift,
|
|
struct jit_ctx *ctx)
|
|
{
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
u16 reg_set = 0;
|
|
|
|
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
|
|
emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
|
|
|
|
reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
|
|
emit(ARM_PUSH(reg_set), ctx);
|
|
}
|
|
|
|
static void build_prologue(struct jit_ctx *ctx)
|
|
{
|
|
const u8 r0 = bpf2a32[BPF_REG_0][1];
|
|
const u8 r2 = bpf2a32[BPF_REG_1][1];
|
|
const u8 r3 = bpf2a32[BPF_REG_1][0];
|
|
const u8 r4 = bpf2a32[BPF_REG_6][1];
|
|
const u8 r5 = bpf2a32[BPF_REG_6][0];
|
|
const u8 r6 = bpf2a32[TMP_REG_1][1];
|
|
const u8 r7 = bpf2a32[TMP_REG_1][0];
|
|
const u8 r8 = bpf2a32[TMP_REG_2][1];
|
|
const u8 r10 = bpf2a32[TMP_REG_2][0];
|
|
const u8 fplo = bpf2a32[BPF_REG_FP][1];
|
|
const u8 fphi = bpf2a32[BPF_REG_FP][0];
|
|
const u8 sp = ARM_SP;
|
|
const u8 *tcc = bpf2a32[TCALL_CNT];
|
|
|
|
u16 reg_set = 0;
|
|
|
|
/*
|
|
* eBPF prog stack layout
|
|
*
|
|
* high
|
|
* original ARM_SP => +-----+ eBPF prologue
|
|
* |FP/LR|
|
|
* current ARM_FP => +-----+
|
|
* | ... | callee saved registers
|
|
* eBPF fp register => +-----+ <= (BPF_FP)
|
|
* | ... | eBPF JIT scratch space
|
|
* | | eBPF prog stack
|
|
* +-----+
|
|
* |RSVD | JIT scratchpad
|
|
* current A64_SP => +-----+ <= (BPF_FP - STACK_SIZE)
|
|
* | |
|
|
* | ... | Function call stack
|
|
* | |
|
|
* +-----+
|
|
* low
|
|
*/
|
|
|
|
/* Save callee saved registers. */
|
|
reg_set |= (1<<r4) | (1<<r5) | (1<<r6) | (1<<r7) | (1<<r8) | (1<<r10);
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
reg_set |= (1<<ARM_FP) | (1<<ARM_IP) | (1<<ARM_LR) | (1<<ARM_PC);
|
|
emit(ARM_MOV_R(ARM_IP, sp), ctx);
|
|
emit(ARM_PUSH(reg_set), ctx);
|
|
emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
|
|
#else
|
|
/* Check if call instruction exists in BPF body */
|
|
if (ctx->seen & SEEN_CALL)
|
|
reg_set |= (1<<ARM_LR);
|
|
emit(ARM_PUSH(reg_set), ctx);
|
|
#endif
|
|
/* Save frame pointer for later */
|
|
emit(ARM_SUB_I(ARM_IP, sp, SCRATCH_SIZE), ctx);
|
|
|
|
ctx->stack_size = imm8m(STACK_SIZE);
|
|
|
|
/* Set up function call stack */
|
|
emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
|
|
|
|
/* Set up BPF prog stack base register */
|
|
emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
|
|
emit_a32_mov_i(fphi, 0, true, ctx);
|
|
|
|
/* mov r4, 0 */
|
|
emit(ARM_MOV_I(r4, 0), ctx);
|
|
|
|
/* Move BPF_CTX to BPF_R1 */
|
|
emit(ARM_MOV_R(r3, r4), ctx);
|
|
emit(ARM_MOV_R(r2, r0), ctx);
|
|
/* Initialize Tail Count */
|
|
emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
|
|
emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
|
|
/* end of prologue */
|
|
}
|
|
|
|
static void build_epilogue(struct jit_ctx *ctx)
|
|
{
|
|
const u8 r4 = bpf2a32[BPF_REG_6][1];
|
|
const u8 r5 = bpf2a32[BPF_REG_6][0];
|
|
const u8 r6 = bpf2a32[TMP_REG_1][1];
|
|
const u8 r7 = bpf2a32[TMP_REG_1][0];
|
|
const u8 r8 = bpf2a32[TMP_REG_2][1];
|
|
const u8 r10 = bpf2a32[TMP_REG_2][0];
|
|
u16 reg_set = 0;
|
|
|
|
/* unwind function call stack */
|
|
emit(ARM_ADD_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
|
|
|
|
/* restore callee saved registers. */
|
|
reg_set |= (1<<r4) | (1<<r5) | (1<<r6) | (1<<r7) | (1<<r8) | (1<<r10);
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
/* the first instruction of the prologue was: mov ip, sp */
|
|
reg_set |= (1<<ARM_FP) | (1<<ARM_SP) | (1<<ARM_PC);
|
|
emit(ARM_LDM(ARM_SP, reg_set), ctx);
|
|
#else
|
|
if (ctx->seen & SEEN_CALL)
|
|
reg_set |= (1<<ARM_PC);
|
|
/* Restore callee saved registers. */
|
|
emit(ARM_POP(reg_set), ctx);
|
|
/* Return back to the callee function */
|
|
if (!(ctx->seen & SEEN_CALL))
|
|
emit(ARM_BX(ARM_LR), ctx);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Convert an eBPF instruction to native instruction, i.e
|
|
* JITs an eBPF instruction.
|
|
* Returns :
|
|
* 0 - Successfully JITed an 8-byte eBPF instruction
|
|
* >0 - Successfully JITed a 16-byte eBPF instruction
|
|
* <0 - Failed to JIT.
|
|
*/
|
|
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
|
|
{
|
|
const u8 code = insn->code;
|
|
const u8 *dst = bpf2a32[insn->dst_reg];
|
|
const u8 *src = bpf2a32[insn->src_reg];
|
|
const u8 *tmp = bpf2a32[TMP_REG_1];
|
|
const u8 *tmp2 = bpf2a32[TMP_REG_2];
|
|
const s16 off = insn->off;
|
|
const s32 imm = insn->imm;
|
|
const int i = insn - ctx->prog->insnsi;
|
|
const bool is64 = BPF_CLASS(code) == BPF_ALU64;
|
|
const bool dstk = is_on_stack(insn->dst_reg);
|
|
const bool sstk = is_on_stack(insn->src_reg);
|
|
u8 rd, rt, rm, rn;
|
|
s32 jmp_offset;
|
|
|
|
#define check_imm(bits, imm) do { \
|
|
if ((((imm) > 0) && ((imm) >> (bits))) || \
|
|
(((imm) < 0) && (~(imm) >> (bits)))) { \
|
|
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
|
|
i, imm, imm); \
|
|
return -EINVAL; \
|
|
} \
|
|
} while (0)
|
|
#define check_imm24(imm) check_imm(24, imm)
|
|
|
|
switch (code) {
|
|
/* ALU operations */
|
|
|
|
/* dst = src */
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
|
|
break;
|
|
case BPF_K:
|
|
/* Sign-extend immediate value to destination reg */
|
|
emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
|
|
break;
|
|
}
|
|
break;
|
|
/* dst = dst + src/imm */
|
|
/* dst = dst - src/imm */
|
|
/* dst = dst | src/imm */
|
|
/* dst = dst & src/imm */
|
|
/* dst = dst ^ src/imm */
|
|
/* dst = dst * src/imm */
|
|
/* dst = dst << src */
|
|
/* dst = dst >> src */
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_a32_alu_r64(is64, dst, src, dstk, sstk,
|
|
ctx, BPF_OP(code));
|
|
break;
|
|
case BPF_K:
|
|
/* Move immediate value to the temporary register
|
|
* and then do the ALU operation on the temporary
|
|
* register as this will sign-extend the immediate
|
|
* value into temporary reg and then it would be
|
|
* safe to do the operation on it.
|
|
*/
|
|
emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
|
|
emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
|
|
ctx, BPF_OP(code));
|
|
break;
|
|
}
|
|
break;
|
|
/* dst = dst / src(imm) */
|
|
/* dst = dst % src(imm) */
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
rt = src_lo;
|
|
rd = dstk ? tmp2[1] : dst_lo;
|
|
if (dstk)
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
rt = sstk ? tmp2[0] : rt;
|
|
if (sstk)
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
|
|
ctx);
|
|
break;
|
|
case BPF_K:
|
|
rt = tmp2[0];
|
|
emit_a32_mov_i(rt, imm, false, ctx);
|
|
break;
|
|
}
|
|
emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
|
|
if (dstk)
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
|
|
break;
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
goto notyet;
|
|
/* dst = dst >> imm */
|
|
/* dst = dst << imm */
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
if (unlikely(imm > 31))
|
|
return -EINVAL;
|
|
if (imm)
|
|
emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
|
|
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
|
|
break;
|
|
/* dst = dst << imm */
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
if (unlikely(imm > 63))
|
|
return -EINVAL;
|
|
emit_a32_lsh_i64(dst, dstk, imm, ctx);
|
|
break;
|
|
/* dst = dst >> imm */
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
if (unlikely(imm > 63))
|
|
return -EINVAL;
|
|
emit_a32_lsr_i64(dst, dstk, imm, ctx);
|
|
break;
|
|
/* dst = dst << src */
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
|
|
break;
|
|
/* dst = dst >> src */
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
emit_a32_lsr_r64(dst, src, dstk, sstk, ctx);
|
|
break;
|
|
/* dst = dst >> src (signed) */
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
|
|
break;
|
|
/* dst = dst >> imm (signed) */
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
if (unlikely(imm > 63))
|
|
return -EINVAL;
|
|
emit_a32_arsh_i64(dst, dstk, imm, ctx);
|
|
break;
|
|
/* dst = ~dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
|
|
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
|
|
break;
|
|
/* dst = ~dst (64 bit) */
|
|
case BPF_ALU64 | BPF_NEG:
|
|
emit_a32_neg64(dst, dstk, ctx);
|
|
break;
|
|
/* dst = dst * src/imm */
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
|
|
break;
|
|
case BPF_K:
|
|
/* Move immediate value to the temporary register
|
|
* and then do the multiplication on it as this
|
|
* will sign-extend the immediate value into temp
|
|
* reg then it would be safe to do the operation
|
|
* on it.
|
|
*/
|
|
emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
|
|
emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
|
|
break;
|
|
}
|
|
break;
|
|
/* dst = htole(dst) */
|
|
/* dst = htobe(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
rd = dstk ? tmp[0] : dst_hi;
|
|
rt = dstk ? tmp[1] : dst_lo;
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
if (BPF_SRC(code) == BPF_FROM_LE)
|
|
goto emit_bswap_uxt;
|
|
switch (imm) {
|
|
case 16:
|
|
emit_rev16(rt, rt, ctx);
|
|
goto emit_bswap_uxt;
|
|
case 32:
|
|
emit_rev32(rt, rt, ctx);
|
|
goto emit_bswap_uxt;
|
|
case 64:
|
|
/* Because of the usage of ARM_LR */
|
|
ctx->seen |= SEEN_CALL;
|
|
emit_rev32(ARM_LR, rt, ctx);
|
|
emit_rev32(rt, rd, ctx);
|
|
emit(ARM_MOV_R(rd, ARM_LR), ctx);
|
|
break;
|
|
}
|
|
goto exit;
|
|
emit_bswap_uxt:
|
|
switch (imm) {
|
|
case 16:
|
|
/* zero-extend 16 bits into 64 bits */
|
|
#if __LINUX_ARM_ARCH__ < 6
|
|
emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
|
|
emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
|
|
#else /* ARMv6+ */
|
|
emit(ARM_UXTH(rt, rt), ctx);
|
|
#endif
|
|
emit(ARM_EOR_R(rd, rd, rd), ctx);
|
|
break;
|
|
case 32:
|
|
/* zero-extend 32 bits into 64 bits */
|
|
emit(ARM_EOR_R(rd, rd, rd), ctx);
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
}
|
|
exit:
|
|
if (dstk) {
|
|
emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
break;
|
|
/* dst = imm64 */
|
|
case BPF_LD | BPF_IMM | BPF_DW:
|
|
{
|
|
const struct bpf_insn insn1 = insn[1];
|
|
u32 hi, lo = imm;
|
|
|
|
hi = insn1.imm;
|
|
emit_a32_mov_i(dst_lo, lo, dstk, ctx);
|
|
emit_a32_mov_i(dst_hi, hi, dstk, ctx);
|
|
|
|
return 1;
|
|
}
|
|
/* LDX: dst = *(size *)(src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
rn = sstk ? tmp2[1] : src_lo;
|
|
if (sstk)
|
|
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
/* Load a Word */
|
|
case BPF_H:
|
|
/* Load a Half-Word */
|
|
case BPF_B:
|
|
/* Load a Byte */
|
|
emit_ldx_r(dst_lo, rn, dstk, off, ctx, BPF_SIZE(code));
|
|
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
|
|
break;
|
|
case BPF_DW:
|
|
/* Load a double word */
|
|
emit_ldx_r(dst_lo, rn, dstk, off, ctx, BPF_W);
|
|
emit_ldx_r(dst_hi, rn, dstk, off+4, ctx, BPF_W);
|
|
break;
|
|
}
|
|
break;
|
|
/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
|
|
case BPF_LD | BPF_ABS | BPF_W:
|
|
case BPF_LD | BPF_ABS | BPF_H:
|
|
case BPF_LD | BPF_ABS | BPF_B:
|
|
/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
|
|
case BPF_LD | BPF_IND | BPF_W:
|
|
case BPF_LD | BPF_IND | BPF_H:
|
|
case BPF_LD | BPF_IND | BPF_B:
|
|
{
|
|
const u8 r4 = bpf2a32[BPF_REG_6][1]; /* r4 = ptr to sk_buff */
|
|
const u8 r0 = bpf2a32[BPF_REG_0][1]; /*r0: struct sk_buff *skb*/
|
|
/* rtn value */
|
|
const u8 r1 = bpf2a32[BPF_REG_0][0]; /* r1: int k */
|
|
const u8 r2 = bpf2a32[BPF_REG_1][1]; /* r2: unsigned int size */
|
|
const u8 r3 = bpf2a32[BPF_REG_1][0]; /* r3: void *buffer */
|
|
const u8 r6 = bpf2a32[TMP_REG_1][1]; /* r6: void *(*func)(..) */
|
|
int size;
|
|
|
|
/* Setting up first argument */
|
|
emit(ARM_MOV_R(r0, r4), ctx);
|
|
|
|
/* Setting up second argument */
|
|
emit_a32_mov_i(r1, imm, false, ctx);
|
|
if (BPF_MODE(code) == BPF_IND)
|
|
emit_a32_alu_r(r1, src_lo, false, sstk, ctx,
|
|
false, false, BPF_ADD);
|
|
|
|
/* Setting up third argument */
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
size = 4;
|
|
break;
|
|
case BPF_H:
|
|
size = 2;
|
|
break;
|
|
case BPF_B:
|
|
size = 1;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
emit_a32_mov_i(r2, size, false, ctx);
|
|
|
|
/* Setting up fourth argument */
|
|
emit(ARM_ADD_I(r3, ARM_SP, imm8m(SKB_BUFFER)), ctx);
|
|
|
|
/* Setting up function pointer to call */
|
|
emit_a32_mov_i(r6, (unsigned int)bpf_load_pointer, false, ctx);
|
|
emit_blx_r(r6, ctx);
|
|
|
|
emit(ARM_EOR_R(r1, r1, r1), ctx);
|
|
/* Check if return address is NULL or not.
|
|
* if NULL then jump to epilogue
|
|
* else continue to load the value from retn address
|
|
*/
|
|
emit(ARM_CMP_I(r0, 0), ctx);
|
|
jmp_offset = epilogue_offset(ctx);
|
|
check_imm24(jmp_offset);
|
|
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
|
|
|
|
/* Load value from the address */
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
emit(ARM_LDR_I(r0, r0, 0), ctx);
|
|
emit_rev32(r0, r0, ctx);
|
|
break;
|
|
case BPF_H:
|
|
emit(ARM_LDRH_I(r0, r0, 0), ctx);
|
|
emit_rev16(r0, r0, ctx);
|
|
break;
|
|
case BPF_B:
|
|
emit(ARM_LDRB_I(r0, r0, 0), ctx);
|
|
/* No need to reverse */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
/* ST: *(size *)(dst + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_DW:
|
|
/* Sign-extend immediate value into temp reg */
|
|
emit_a32_mov_i64(true, tmp2, imm, false, ctx);
|
|
emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
|
|
emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
|
|
break;
|
|
case BPF_W:
|
|
case BPF_H:
|
|
case BPF_B:
|
|
emit_a32_mov_i(tmp2[1], imm, false, ctx);
|
|
emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
|
|
BPF_SIZE(code));
|
|
break;
|
|
}
|
|
break;
|
|
/* STX XADD: lock *(u32 *)(dst + off) += src */
|
|
case BPF_STX | BPF_XADD | BPF_W:
|
|
/* STX XADD: lock *(u64 *)(dst + off) += src */
|
|
case BPF_STX | BPF_XADD | BPF_DW:
|
|
goto notyet;
|
|
/* STX: *(size *)(dst + off) = src */
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
{
|
|
u8 sz = BPF_SIZE(code);
|
|
|
|
rn = sstk ? tmp2[1] : src_lo;
|
|
rm = sstk ? tmp2[0] : src_hi;
|
|
if (sstk) {
|
|
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
|
|
}
|
|
|
|
/* Store the value */
|
|
if (BPF_SIZE(code) == BPF_DW) {
|
|
emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
|
|
emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
|
|
} else {
|
|
emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
|
|
}
|
|
break;
|
|
}
|
|
/* PC += off if dst == src */
|
|
/* PC += off if dst > src */
|
|
/* PC += off if dst >= src */
|
|
/* PC += off if dst < src */
|
|
/* PC += off if dst <= src */
|
|
/* PC += off if dst != src */
|
|
/* PC += off if dst > src (signed) */
|
|
/* PC += off if dst >= src (signed) */
|
|
/* PC += off if dst < src (signed) */
|
|
/* PC += off if dst <= src (signed) */
|
|
/* PC += off if dst & src */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
/* Setup source registers */
|
|
rm = sstk ? tmp2[0] : src_hi;
|
|
rn = sstk ? tmp2[1] : src_lo;
|
|
if (sstk) {
|
|
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
|
|
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
|
|
}
|
|
goto go_jmp;
|
|
/* PC += off if dst == imm */
|
|
/* PC += off if dst > imm */
|
|
/* PC += off if dst >= imm */
|
|
/* PC += off if dst < imm */
|
|
/* PC += off if dst <= imm */
|
|
/* PC += off if dst != imm */
|
|
/* PC += off if dst > imm (signed) */
|
|
/* PC += off if dst >= imm (signed) */
|
|
/* PC += off if dst < imm (signed) */
|
|
/* PC += off if dst <= imm (signed) */
|
|
/* PC += off if dst & imm */
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
if (off == 0)
|
|
break;
|
|
rm = tmp2[0];
|
|
rn = tmp2[1];
|
|
/* Sign-extend immediate value */
|
|
emit_a32_mov_i64(true, tmp2, imm, false, ctx);
|
|
go_jmp:
|
|
/* Setup destination register */
|
|
rd = dstk ? tmp[0] : dst_hi;
|
|
rt = dstk ? tmp[1] : dst_lo;
|
|
if (dstk) {
|
|
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
|
|
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
|
|
}
|
|
|
|
/* Check for the condition */
|
|
emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
|
|
|
|
/* Setup JUMP instruction */
|
|
jmp_offset = bpf2a32_offset(i+off, i, ctx);
|
|
switch (BPF_OP(code)) {
|
|
case BPF_JNE:
|
|
case BPF_JSET:
|
|
_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JEQ:
|
|
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JGT:
|
|
_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JGE:
|
|
_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JSGT:
|
|
_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JSGE:
|
|
_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JLE:
|
|
_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JLT:
|
|
_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JSLT:
|
|
_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
case BPF_JSLE:
|
|
_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
|
|
break;
|
|
}
|
|
break;
|
|
/* JMP OFF */
|
|
case BPF_JMP | BPF_JA:
|
|
{
|
|
if (off == 0)
|
|
break;
|
|
jmp_offset = bpf2a32_offset(i+off, i, ctx);
|
|
check_imm24(jmp_offset);
|
|
emit(ARM_B(jmp_offset), ctx);
|
|
break;
|
|
}
|
|
/* tail call */
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
if (emit_bpf_tail_call(ctx))
|
|
return -EFAULT;
|
|
break;
|
|
/* function call */
|
|
case BPF_JMP | BPF_CALL:
|
|
{
|
|
const u8 *r0 = bpf2a32[BPF_REG_0];
|
|
const u8 *r1 = bpf2a32[BPF_REG_1];
|
|
const u8 *r2 = bpf2a32[BPF_REG_2];
|
|
const u8 *r3 = bpf2a32[BPF_REG_3];
|
|
const u8 *r4 = bpf2a32[BPF_REG_4];
|
|
const u8 *r5 = bpf2a32[BPF_REG_5];
|
|
const u32 func = (u32)__bpf_call_base + (u32)imm;
|
|
|
|
emit_a32_mov_r64(true, r0, r1, false, false, ctx);
|
|
emit_a32_mov_r64(true, r1, r2, false, true, ctx);
|
|
emit_push_r64(r5, 0, ctx);
|
|
emit_push_r64(r4, 8, ctx);
|
|
emit_push_r64(r3, 16, ctx);
|
|
|
|
emit_a32_mov_i(tmp[1], func, false, ctx);
|
|
emit_blx_r(tmp[1], ctx);
|
|
|
|
emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
|
|
break;
|
|
}
|
|
/* function return */
|
|
case BPF_JMP | BPF_EXIT:
|
|
/* Optimization: when last instruction is EXIT
|
|
* simply fallthrough to epilogue.
|
|
*/
|
|
if (i == ctx->prog->len - 1)
|
|
break;
|
|
jmp_offset = epilogue_offset(ctx);
|
|
check_imm24(jmp_offset);
|
|
emit(ARM_B(jmp_offset), ctx);
|
|
break;
|
|
notyet:
|
|
pr_info_once("*** NOT YET: opcode %02x ***\n", code);
|
|
return -EFAULT;
|
|
default:
|
|
pr_err_once("unknown opcode %02x\n", code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ctx->flags & FLAG_IMM_OVERFLOW)
|
|
/*
|
|
* this instruction generated an overflow when
|
|
* trying to access the literal pool, so
|
|
* delegate this filter to the kernel interpreter.
|
|
*/
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int build_body(struct jit_ctx *ctx)
|
|
{
|
|
const struct bpf_prog *prog = ctx->prog;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < prog->len; i++) {
|
|
const struct bpf_insn *insn = &(prog->insnsi[i]);
|
|
int ret;
|
|
|
|
ret = build_insn(insn, ctx);
|
|
|
|
/* It's used with loading the 64 bit immediate value. */
|
|
if (ret > 0) {
|
|
i++;
|
|
if (ctx->target == NULL)
|
|
ctx->offsets[i] = ctx->idx;
|
|
continue;
|
|
}
|
|
|
|
if (ctx->target == NULL)
|
|
ctx->offsets[i] = ctx->idx;
|
|
|
|
/* If unsuccesfull, return with error code */
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int validate_code(struct jit_ctx *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ctx->idx; i++) {
|
|
if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bpf_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
/* Nothing to do here. We support Internal BPF. */
|
|
}
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog *tmp, *orig_prog = prog;
|
|
struct bpf_binary_header *header;
|
|
bool tmp_blinded = false;
|
|
struct jit_ctx ctx;
|
|
unsigned int tmp_idx;
|
|
unsigned int image_size;
|
|
u8 *image_ptr;
|
|
|
|
/* If BPF JIT was not enabled then we must fall back to
|
|
* the interpreter.
|
|
*/
|
|
if (!bpf_jit_enable)
|
|
return orig_prog;
|
|
|
|
/* If constant blinding was enabled and we failed during blinding
|
|
* then we must fall back to the interpreter. Otherwise, we save
|
|
* the new JITed code.
|
|
*/
|
|
tmp = bpf_jit_blind_constants(prog);
|
|
|
|
if (IS_ERR(tmp))
|
|
return orig_prog;
|
|
if (tmp != prog) {
|
|
tmp_blinded = true;
|
|
prog = tmp;
|
|
}
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ctx.prog = prog;
|
|
|
|
/* Not able to allocate memory for offsets[] , then
|
|
* we must fall back to the interpreter
|
|
*/
|
|
ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
|
|
if (ctx.offsets == NULL) {
|
|
prog = orig_prog;
|
|
goto out;
|
|
}
|
|
|
|
/* 1) fake pass to find in the length of the JITed code,
|
|
* to compute ctx->offsets and other context variables
|
|
* needed to compute final JITed code.
|
|
* Also, calculate random starting pointer/start of JITed code
|
|
* which is prefixed by random number of fault instructions.
|
|
*
|
|
* If the first pass fails then there is no chance of it
|
|
* being successful in the second pass, so just fall back
|
|
* to the interpreter.
|
|
*/
|
|
if (build_body(&ctx)) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
tmp_idx = ctx.idx;
|
|
build_prologue(&ctx);
|
|
ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
|
|
|
|
ctx.epilogue_offset = ctx.idx;
|
|
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
tmp_idx = ctx.idx;
|
|
build_epilogue(&ctx);
|
|
ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
|
|
|
|
ctx.idx += ctx.imm_count;
|
|
if (ctx.imm_count) {
|
|
ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
|
|
if (ctx.imms == NULL) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
}
|
|
#else
|
|
/* there's nothing about the epilogue on ARMv7 */
|
|
build_epilogue(&ctx);
|
|
#endif
|
|
/* Now we can get the actual image size of the JITed arm code.
|
|
* Currently, we are not considering the THUMB-2 instructions
|
|
* for jit, although it can decrease the size of the image.
|
|
*
|
|
* As each arm instruction is of length 32bit, we are translating
|
|
* number of JITed intructions into the size required to store these
|
|
* JITed code.
|
|
*/
|
|
image_size = sizeof(u32) * ctx.idx;
|
|
|
|
/* Now we know the size of the structure to make */
|
|
header = bpf_jit_binary_alloc(image_size, &image_ptr,
|
|
sizeof(u32), jit_fill_hole);
|
|
/* Not able to allocate memory for the structure then
|
|
* we must fall back to the interpretation
|
|
*/
|
|
if (header == NULL) {
|
|
prog = orig_prog;
|
|
goto out_imms;
|
|
}
|
|
|
|
/* 2.) Actual pass to generate final JIT code */
|
|
ctx.target = (u32 *) image_ptr;
|
|
ctx.idx = 0;
|
|
|
|
build_prologue(&ctx);
|
|
|
|
/* If building the body of the JITed code fails somehow,
|
|
* we fall back to the interpretation.
|
|
*/
|
|
if (build_body(&ctx) < 0) {
|
|
image_ptr = NULL;
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_imms;
|
|
}
|
|
build_epilogue(&ctx);
|
|
|
|
/* 3.) Extra pass to validate JITed Code */
|
|
if (validate_code(&ctx)) {
|
|
image_ptr = NULL;
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_imms;
|
|
}
|
|
flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
|
|
|
|
if (bpf_jit_enable > 1)
|
|
/* there are 2 passes here */
|
|
bpf_jit_dump(prog->len, image_size, 2, ctx.target);
|
|
|
|
set_memory_ro((unsigned long)header, header->pages);
|
|
prog->bpf_func = (void *)ctx.target;
|
|
prog->jited = 1;
|
|
prog->jited_len = image_size;
|
|
|
|
out_imms:
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
if (ctx.imm_count)
|
|
kfree(ctx.imms);
|
|
#endif
|
|
out_off:
|
|
kfree(ctx.offsets);
|
|
out:
|
|
if (tmp_blinded)
|
|
bpf_jit_prog_release_other(prog, prog == orig_prog ?
|
|
tmp : orig_prog);
|
|
return prog;
|
|
}
|
|
|