linux/kernel/cgroup.c
Tejun Heo 3c9c825b8b cgroup: rename cgroupfs_root->number_of_cgroups to ->nr_cgrps and make it atomic_t
root->number_of_cgroups is currently an integer protected with
cgroup_mutex.  Except for sanity checks and proc reporting, the only
place it's used is to check whether the root has any child during
remount; however, this is a bit flawed as the counter is not
decremented when the cgroup is unlinked but when it's released,
meaning that there could be an extended period where all cgroups are
removed but remount is still not allowed because some internal objects
are lingering.  While not perfect either, it'd be better to use
emptiness test on root->top_cgroup.children.

This patch updates cgroup_remount() to test top_cgroup's children
instead, which makes number_of_cgroups only actual usage statistics
printing in proc implemented in proc_cgroupstats_show().  Let's
shorten its name and make it an atomic_t so that we don't have to
worry about its synchronization.  It's purely auxiliary at this point.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:50 -05:00

4766 lines
130 KiB
C

/*
* Generic process-grouping system.
*
* Based originally on the cpuset system, extracted by Paul Menage
* Copyright (C) 2006 Google, Inc
*
* Notifications support
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* Copyright notices from the original cpuset code:
* --------------------------------------------------
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
* ---------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/cgroup.h>
#include <linux/cred.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/sort.h>
#include <linux/kmod.h>
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
#include <linux/hashtable.h>
#include <linux/pid_namespace.h>
#include <linux/idr.h>
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
#include <linux/flex_array.h> /* used in cgroup_attach_task */
#include <linux/kthread.h>
#include <linux/atomic.h>
/*
* pidlists linger the following amount before being destroyed. The goal
* is avoiding frequent destruction in the middle of consecutive read calls
* Expiring in the middle is a performance problem not a correctness one.
* 1 sec should be enough.
*/
#define CGROUP_PIDLIST_DESTROY_DELAY HZ
#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
MAX_CFTYPE_NAME + 2)
/*
* cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
* creation/removal and hierarchy changing operations including cgroup
* creation, removal, css association and controller rebinding. This outer
* lock is needed mainly to resolve the circular dependency between kernfs
* active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
*/
static DEFINE_MUTEX(cgroup_tree_mutex);
/*
* cgroup_mutex is the master lock. Any modification to cgroup or its
* hierarchy must be performed while holding it.
*/
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
#else
static DEFINE_MUTEX(cgroup_mutex);
#endif
/*
* Protects cgroup_subsys->release_agent_path. Modifying it also requires
* cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
*/
static DEFINE_SPINLOCK(release_agent_path_lock);
#define cgroup_assert_mutexes_or_rcu_locked() \
rcu_lockdep_assert(rcu_read_lock_held() || \
lockdep_is_held(&cgroup_tree_mutex) || \
lockdep_is_held(&cgroup_mutex), \
"cgroup_[tree_]mutex or RCU read lock required");
/*
* cgroup destruction makes heavy use of work items and there can be a lot
* of concurrent destructions. Use a separate workqueue so that cgroup
* destruction work items don't end up filling up max_active of system_wq
* which may lead to deadlock.
*/
static struct workqueue_struct *cgroup_destroy_wq;
/*
* pidlist destructions need to be flushed on cgroup destruction. Use a
* separate workqueue as flush domain.
*/
static struct workqueue_struct *cgroup_pidlist_destroy_wq;
/* generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
static struct cgroup_subsys *cgroup_subsys[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/* array of cgroup subsystem names */
#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
static const char *cgroup_subsys_name[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/*
* The dummy hierarchy, reserved for the subsystems that are otherwise
* unattached - it never has more than a single cgroup, and all tasks are
* part of that cgroup.
*/
static struct cgroupfs_root cgroup_dummy_root;
/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
/* The list of hierarchy roots */
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
static DEFINE_IDR(cgroup_hierarchy_idr);
/*
* Assign a monotonically increasing serial number to cgroups. It
* guarantees cgroups with bigger numbers are newer than those with smaller
* numbers. Also, as cgroups are always appended to the parent's
* ->children list, it guarantees that sibling cgroups are always sorted in
* the ascending serial number order on the list. Protected by
* cgroup_mutex.
*/
static u64 cgroup_serial_nr_next = 1;
/* This flag indicates whether tasks in the fork and exit paths should
* check for fork/exit handlers to call. This avoids us having to do
* extra work in the fork/exit path if none of the subsystems need to
* be called.
*/
static int need_forkexit_callback __read_mostly;
static struct cftype cgroup_base_files[];
static void cgroup_put(struct cgroup *cgrp);
static int rebind_subsystems(struct cgroupfs_root *root,
unsigned long added_mask, unsigned removed_mask);
static void cgroup_destroy_css_killed(struct cgroup *cgrp);
static int cgroup_destroy_locked(struct cgroup *cgrp);
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
bool is_add);
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
/**
* cgroup_css - obtain a cgroup's css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest (%NULL returns the dummy_css)
*
* Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
* function must be called either under cgroup_mutex or rcu_read_lock() and
* the caller is responsible for pinning the returned css if it wants to
* keep accessing it outside the said locks. This function may return
* %NULL if @cgrp doesn't have @subsys_id enabled.
*/
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
if (ss)
return rcu_dereference_check(cgrp->subsys[ss->id],
lockdep_is_held(&cgroup_tree_mutex) ||
lockdep_is_held(&cgroup_mutex));
else
return &cgrp->dummy_css;
}
/* convenient tests for these bits */
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
{
return test_bit(CGRP_DEAD, &cgrp->flags);
}
struct cgroup_subsys_state *seq_css(struct seq_file *seq)
{
struct kernfs_open_file *of = seq->private;
struct cgroup *cgrp = of->kn->parent->priv;
struct cftype *cft = seq_cft(seq);
/*
* This is open and unprotected implementation of cgroup_css().
* seq_css() is only called from a kernfs file operation which has
* an active reference on the file. Because all the subsystem
* files are drained before a css is disassociated with a cgroup,
* the matching css from the cgroup's subsys table is guaranteed to
* be and stay valid until the enclosing operation is complete.
*/
if (cft->ss)
return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
else
return &cgrp->dummy_css;
}
EXPORT_SYMBOL_GPL(seq_css);
/**
* cgroup_is_descendant - test ancestry
* @cgrp: the cgroup to be tested
* @ancestor: possible ancestor of @cgrp
*
* Test whether @cgrp is a descendant of @ancestor. It also returns %true
* if @cgrp == @ancestor. This function is safe to call as long as @cgrp
* and @ancestor are accessible.
*/
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
while (cgrp) {
if (cgrp == ancestor)
return true;
cgrp = cgrp->parent;
}
return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
static int cgroup_is_releasable(const struct cgroup *cgrp)
{
const int bits =
(1 << CGRP_RELEASABLE) |
(1 << CGRP_NOTIFY_ON_RELEASE);
return (cgrp->flags & bits) == bits;
}
static int notify_on_release(const struct cgroup *cgrp)
{
return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}
/**
* for_each_css - iterate all css's of a cgroup
* @css: the iteration cursor
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
* @cgrp: the target cgroup to iterate css's of
*
* Should be called under cgroup_mutex.
*/
#define for_each_css(css, ssid, cgrp) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
if (!((css) = rcu_dereference_check( \
(cgrp)->subsys[(ssid)], \
lockdep_is_held(&cgroup_tree_mutex) || \
lockdep_is_held(&cgroup_mutex)))) { } \
else
/**
* for_each_subsys - iterate all enabled cgroup subsystems
* @ss: the iteration cursor
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
*/
#define for_each_subsys(ss, ssid) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
(((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
/* iterate across the active hierarchies */
#define for_each_active_root(root) \
list_for_each_entry((root), &cgroup_roots, root_list)
/**
* cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
* @cgrp: the cgroup to be checked for liveness
*
* On success, returns true; the mutex should be later unlocked. On
* failure returns false with no lock held.
*/
static bool cgroup_lock_live_group(struct cgroup *cgrp)
{
mutex_lock(&cgroup_mutex);
if (cgroup_is_dead(cgrp)) {
mutex_unlock(&cgroup_mutex);
return false;
}
return true;
}
/* the list of cgroups eligible for automatic release. Protected by
* release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_RAW_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
static void check_for_release(struct cgroup *cgrp);
/*
* A cgroup can be associated with multiple css_sets as different tasks may
* belong to different cgroups on different hierarchies. In the other
* direction, a css_set is naturally associated with multiple cgroups.
* This M:N relationship is represented by the following link structure
* which exists for each association and allows traversing the associations
* from both sides.
*/
struct cgrp_cset_link {
/* the cgroup and css_set this link associates */
struct cgroup *cgrp;
struct css_set *cset;
/* list of cgrp_cset_links anchored at cgrp->cset_links */
struct list_head cset_link;
/* list of cgrp_cset_links anchored at css_set->cgrp_links */
struct list_head cgrp_link;
};
/* The default css_set - used by init and its children prior to any
* hierarchies being mounted. It contains a pointer to the root state
* for each subsystem. Also used to anchor the list of css_sets. Not
* reference-counted, to improve performance when child cgroups
* haven't been created.
*/
static struct css_set init_css_set;
static struct cgrp_cset_link init_cgrp_cset_link;
/*
* css_set_lock protects the list of css_set objects, and the chain of
* tasks off each css_set. Nests outside task->alloc_lock due to
* css_task_iter_start().
*/
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;
/*
* hash table for cgroup groups. This improves the performance to find
* an existing css_set. This hash doesn't (currently) take into
* account cgroups in empty hierarchies.
*/
#define CSS_SET_HASH_BITS 7
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
{
unsigned long key = 0UL;
struct cgroup_subsys *ss;
int i;
for_each_subsys(ss, i)
key += (unsigned long)css[i];
key = (key >> 16) ^ key;
return key;
}
/*
* We don't maintain the lists running through each css_set to its task
* until after the first call to css_task_iter_start(). This reduces the
* fork()/exit() overhead for people who have cgroups compiled into their
* kernel but not actually in use.
*/
static int use_task_css_set_links __read_mostly;
static void __put_css_set(struct css_set *cset, int taskexit)
{
struct cgrp_cset_link *link, *tmp_link;
/*
* Ensure that the refcount doesn't hit zero while any readers
* can see it. Similar to atomic_dec_and_lock(), but for an
* rwlock
*/
if (atomic_add_unless(&cset->refcount, -1, 1))
return;
write_lock(&css_set_lock);
if (!atomic_dec_and_test(&cset->refcount)) {
write_unlock(&css_set_lock);
return;
}
/* This css_set is dead. unlink it and release cgroup refcounts */
hash_del(&cset->hlist);
css_set_count--;
list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
struct cgroup *cgrp = link->cgrp;
list_del(&link->cset_link);
list_del(&link->cgrp_link);
/* @cgrp can't go away while we're holding css_set_lock */
if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
if (taskexit)
set_bit(CGRP_RELEASABLE, &cgrp->flags);
check_for_release(cgrp);
}
kfree(link);
}
write_unlock(&css_set_lock);
kfree_rcu(cset, rcu_head);
}
/*
* refcounted get/put for css_set objects
*/
static inline void get_css_set(struct css_set *cset)
{
atomic_inc(&cset->refcount);
}
static inline void put_css_set(struct css_set *cset)
{
__put_css_set(cset, 0);
}
static inline void put_css_set_taskexit(struct css_set *cset)
{
__put_css_set(cset, 1);
}
/**
* compare_css_sets - helper function for find_existing_css_set().
* @cset: candidate css_set being tested
* @old_cset: existing css_set for a task
* @new_cgrp: cgroup that's being entered by the task
* @template: desired set of css pointers in css_set (pre-calculated)
*
* Returns true if "cset" matches "old_cset" except for the hierarchy
* which "new_cgrp" belongs to, for which it should match "new_cgrp".
*/
static bool compare_css_sets(struct css_set *cset,
struct css_set *old_cset,
struct cgroup *new_cgrp,
struct cgroup_subsys_state *template[])
{
struct list_head *l1, *l2;
if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
/* Not all subsystems matched */
return false;
}
/*
* Compare cgroup pointers in order to distinguish between
* different cgroups in heirarchies with no subsystems. We
* could get by with just this check alone (and skip the
* memcmp above) but on most setups the memcmp check will
* avoid the need for this more expensive check on almost all
* candidates.
*/
l1 = &cset->cgrp_links;
l2 = &old_cset->cgrp_links;
while (1) {
struct cgrp_cset_link *link1, *link2;
struct cgroup *cgrp1, *cgrp2;
l1 = l1->next;
l2 = l2->next;
/* See if we reached the end - both lists are equal length. */
if (l1 == &cset->cgrp_links) {
BUG_ON(l2 != &old_cset->cgrp_links);
break;
} else {
BUG_ON(l2 == &old_cset->cgrp_links);
}
/* Locate the cgroups associated with these links. */
link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
cgrp1 = link1->cgrp;
cgrp2 = link2->cgrp;
/* Hierarchies should be linked in the same order. */
BUG_ON(cgrp1->root != cgrp2->root);
/*
* If this hierarchy is the hierarchy of the cgroup
* that's changing, then we need to check that this
* css_set points to the new cgroup; if it's any other
* hierarchy, then this css_set should point to the
* same cgroup as the old css_set.
*/
if (cgrp1->root == new_cgrp->root) {
if (cgrp1 != new_cgrp)
return false;
} else {
if (cgrp1 != cgrp2)
return false;
}
}
return true;
}
/**
* find_existing_css_set - init css array and find the matching css_set
* @old_cset: the css_set that we're using before the cgroup transition
* @cgrp: the cgroup that we're moving into
* @template: out param for the new set of csses, should be clear on entry
*/
static struct css_set *find_existing_css_set(struct css_set *old_cset,
struct cgroup *cgrp,
struct cgroup_subsys_state *template[])
{
struct cgroupfs_root *root = cgrp->root;
struct cgroup_subsys *ss;
struct css_set *cset;
unsigned long key;
int i;
/*
* Build the set of subsystem state objects that we want to see in the
* new css_set. while subsystems can change globally, the entries here
* won't change, so no need for locking.
*/
for_each_subsys(ss, i) {
if (root->subsys_mask & (1UL << i)) {
/* Subsystem is in this hierarchy. So we want
* the subsystem state from the new
* cgroup */
template[i] = cgroup_css(cgrp, ss);
} else {
/* Subsystem is not in this hierarchy, so we
* don't want to change the subsystem state */
template[i] = old_cset->subsys[i];
}
}
key = css_set_hash(template);
hash_for_each_possible(css_set_table, cset, hlist, key) {
if (!compare_css_sets(cset, old_cset, cgrp, template))
continue;
/* This css_set matches what we need */
return cset;
}
/* No existing cgroup group matched */
return NULL;
}
static void free_cgrp_cset_links(struct list_head *links_to_free)
{
struct cgrp_cset_link *link, *tmp_link;
list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
list_del(&link->cset_link);
kfree(link);
}
}
/**
* allocate_cgrp_cset_links - allocate cgrp_cset_links
* @count: the number of links to allocate
* @tmp_links: list_head the allocated links are put on
*
* Allocate @count cgrp_cset_link structures and chain them on @tmp_links
* through ->cset_link. Returns 0 on success or -errno.
*/
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
{
struct cgrp_cset_link *link;
int i;
INIT_LIST_HEAD(tmp_links);
for (i = 0; i < count; i++) {
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link) {
free_cgrp_cset_links(tmp_links);
return -ENOMEM;
}
list_add(&link->cset_link, tmp_links);
}
return 0;
}
/**
* link_css_set - a helper function to link a css_set to a cgroup
* @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
* @cset: the css_set to be linked
* @cgrp: the destination cgroup
*/
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
struct cgroup *cgrp)
{
struct cgrp_cset_link *link;
BUG_ON(list_empty(tmp_links));
link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
link->cset = cset;
link->cgrp = cgrp;
list_move(&link->cset_link, &cgrp->cset_links);
/*
* Always add links to the tail of the list so that the list
* is sorted by order of hierarchy creation
*/
list_add_tail(&link->cgrp_link, &cset->cgrp_links);
}
/**
* find_css_set - return a new css_set with one cgroup updated
* @old_cset: the baseline css_set
* @cgrp: the cgroup to be updated
*
* Return a new css_set that's equivalent to @old_cset, but with @cgrp
* substituted into the appropriate hierarchy.
*/
static struct css_set *find_css_set(struct css_set *old_cset,
struct cgroup *cgrp)
{
struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
struct css_set *cset;
struct list_head tmp_links;
struct cgrp_cset_link *link;
unsigned long key;
lockdep_assert_held(&cgroup_mutex);
/* First see if we already have a cgroup group that matches
* the desired set */
read_lock(&css_set_lock);
cset = find_existing_css_set(old_cset, cgrp, template);
if (cset)
get_css_set(cset);
read_unlock(&css_set_lock);
if (cset)
return cset;
cset = kzalloc(sizeof(*cset), GFP_KERNEL);
if (!cset)
return NULL;
/* Allocate all the cgrp_cset_link objects that we'll need */
if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
kfree(cset);
return NULL;
}
atomic_set(&cset->refcount, 1);
INIT_LIST_HEAD(&cset->cgrp_links);
INIT_LIST_HEAD(&cset->tasks);
INIT_HLIST_NODE(&cset->hlist);
/* Copy the set of subsystem state objects generated in
* find_existing_css_set() */
memcpy(cset->subsys, template, sizeof(cset->subsys));
write_lock(&css_set_lock);
/* Add reference counts and links from the new css_set. */
list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == cgrp->root)
c = cgrp;
link_css_set(&tmp_links, cset, c);
}
BUG_ON(!list_empty(&tmp_links));
css_set_count++;
/* Add this cgroup group to the hash table */
key = css_set_hash(cset->subsys);
hash_add(css_set_table, &cset->hlist, key);
write_unlock(&css_set_lock);
return cset;
}
static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
{
struct cgroup *top_cgrp = kf_root->kn->priv;
return top_cgrp->root;
}
static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
{
int id;
lockdep_assert_held(&cgroup_mutex);
id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
GFP_KERNEL);
if (id < 0)
return id;
root->hierarchy_id = id;
return 0;
}
static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
lockdep_assert_held(&cgroup_mutex);
if (root->hierarchy_id) {
idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
root->hierarchy_id = 0;
}
}
static void cgroup_free_root(struct cgroupfs_root *root)
{
if (root) {
/* hierarhcy ID shoulid already have been released */
WARN_ON_ONCE(root->hierarchy_id);
idr_destroy(&root->cgroup_idr);
kfree(root);
}
}
static void cgroup_get_root(struct cgroupfs_root *root)
{
/*
* The caller must ensure that @root is alive, which can be
* achieved by holding a ref on one of the member cgroups or
* following a registered reference to @root while holding
* cgroup_tree_mutex.
*/
WARN_ON_ONCE(atomic_read(&root->refcnt) <= 0);
atomic_inc(&root->refcnt);
}
static void cgroup_put_root(struct cgroupfs_root *root)
{
struct cgroup *cgrp = &root->top_cgroup;
struct cgrp_cset_link *link, *tmp_link;
int ret;
/*
* @root's refcnt reaching zero and its deregistration should be
* atomic w.r.t. cgroup_tree_mutex. This ensures that
* cgroup_get_root() is safe to invoke if @root is registered.
*/
mutex_lock(&cgroup_tree_mutex);
if (!atomic_dec_and_test(&root->refcnt)) {
mutex_unlock(&cgroup_tree_mutex);
return;
}
mutex_lock(&cgroup_mutex);
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
BUG_ON(!list_empty(&cgrp->children));
/* Rebind all subsystems back to the default hierarchy */
if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
ret = rebind_subsystems(root, 0, root->subsys_mask);
/* Shouldn't be able to fail ... */
BUG_ON(ret);
}
/*
* Release all the links from cset_links to this hierarchy's
* root cgroup
*/
write_lock(&css_set_lock);
list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
list_del(&link->cset_link);
list_del(&link->cgrp_link);
kfree(link);
}
write_unlock(&css_set_lock);
if (!list_empty(&root->root_list)) {
list_del(&root->root_list);
cgroup_root_count--;
}
cgroup_exit_root_id(root);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
kernfs_destroy_root(root->kf_root);
cgroup_free_root(root);
}
/*
* Return the cgroup for "task" from the given hierarchy. Must be
* called with cgroup_mutex held.
*/
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroupfs_root *root)
{
struct css_set *cset;
struct cgroup *res = NULL;
BUG_ON(!mutex_is_locked(&cgroup_mutex));
read_lock(&css_set_lock);
/*
* No need to lock the task - since we hold cgroup_mutex the
* task can't change groups, so the only thing that can happen
* is that it exits and its css is set back to init_css_set.
*/
cset = task_css_set(task);
if (cset == &init_css_set) {
res = &root->top_cgroup;
} else {
struct cgrp_cset_link *link;
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == root) {
res = c;
break;
}
}
}
read_unlock(&css_set_lock);
BUG_ON(!res);
return res;
}
/*
* There is one global cgroup mutex. We also require taking
* task_lock() when dereferencing a task's cgroup subsys pointers.
* See "The task_lock() exception", at the end of this comment.
*
* A task must hold cgroup_mutex to modify cgroups.
*
* Any task can increment and decrement the count field without lock.
* So in general, code holding cgroup_mutex can't rely on the count
* field not changing. However, if the count goes to zero, then only
* cgroup_attach_task() can increment it again. Because a count of zero
* means that no tasks are currently attached, therefore there is no
* way a task attached to that cgroup can fork (the other way to
* increment the count). So code holding cgroup_mutex can safely
* assume that if the count is zero, it will stay zero. Similarly, if
* a task holds cgroup_mutex on a cgroup with zero count, it
* knows that the cgroup won't be removed, as cgroup_rmdir()
* needs that mutex.
*
* The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
* (usually) take cgroup_mutex. These are the two most performance
* critical pieces of code here. The exception occurs on cgroup_exit(),
* when a task in a notify_on_release cgroup exits. Then cgroup_mutex
* is taken, and if the cgroup count is zero, a usermode call made
* to the release agent with the name of the cgroup (path relative to
* the root of cgroup file system) as the argument.
*
* A cgroup can only be deleted if both its 'count' of using tasks
* is zero, and its list of 'children' cgroups is empty. Since all
* tasks in the system use _some_ cgroup, and since there is always at
* least one task in the system (init, pid == 1), therefore, top_cgroup
* always has either children cgroups and/or using tasks. So we don't
* need a special hack to ensure that top_cgroup cannot be deleted.
*
* The task_lock() exception
*
* The need for this exception arises from the action of
* cgroup_attach_task(), which overwrites one task's cgroup pointer with
* another. It does so using cgroup_mutex, however there are
* several performance critical places that need to reference
* task->cgroup without the expense of grabbing a system global
* mutex. Therefore except as noted below, when dereferencing or, as
* in cgroup_attach_task(), modifying a task's cgroup pointer we use
* task_lock(), which acts on a spinlock (task->alloc_lock) already in
* the task_struct routinely used for such matters.
*
* P.S. One more locking exception. RCU is used to guard the
* update of a tasks cgroup pointer by cgroup_attach_task()
*/
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
static const struct file_operations proc_cgroupstats_operations;
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
char *buf)
{
if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
!(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
cft->ss->name, cft->name);
else
strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
return buf;
}
/**
* cgroup_file_mode - deduce file mode of a control file
* @cft: the control file in question
*
* returns cft->mode if ->mode is not 0
* returns S_IRUGO|S_IWUSR if it has both a read and a write handler
* returns S_IRUGO if it has only a read handler
* returns S_IWUSR if it has only a write hander
*/
static umode_t cgroup_file_mode(const struct cftype *cft)
{
umode_t mode = 0;
if (cft->mode)
return cft->mode;
if (cft->read_u64 || cft->read_s64 || cft->seq_show)
mode |= S_IRUGO;
if (cft->write_u64 || cft->write_s64 || cft->write_string ||
cft->trigger)
mode |= S_IWUSR;
return mode;
}
static void cgroup_free_fn(struct work_struct *work)
{
struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
atomic_dec(&cgrp->root->nr_cgrps);
/*
* We get a ref to the parent, and put the ref when this cgroup is
* being freed, so it's guaranteed that the parent won't be
* destroyed before its children.
*/
cgroup_put(cgrp->parent);
/* put the root reference that we took when we created the cgroup */
cgroup_put_root(cgrp->root);
cgroup_pidlist_destroy_all(cgrp);
kernfs_put(cgrp->kn);
kfree(cgrp);
}
static void cgroup_free_rcu(struct rcu_head *head)
{
struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
}
static void cgroup_get(struct cgroup *cgrp)
{
WARN_ON_ONCE(cgroup_is_dead(cgrp));
WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
atomic_inc(&cgrp->refcnt);
}
static void cgroup_put(struct cgroup *cgrp)
{
if (!atomic_dec_and_test(&cgrp->refcnt))
return;
if (WARN_ON_ONCE(!cgroup_is_dead(cgrp)))
return;
/*
* XXX: cgrp->id is only used to look up css's. As cgroup and
* css's lifetimes will be decoupled, it should be made
* per-subsystem and moved to css->id so that lookups are
* successful until the target css is released.
*/
mutex_lock(&cgroup_mutex);
idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
mutex_unlock(&cgroup_mutex);
cgrp->id = -1;
call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
}
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
char name[CGROUP_FILE_NAME_MAX];
lockdep_assert_held(&cgroup_tree_mutex);
kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
}
/**
* cgroup_clear_dir - remove subsys files in a cgroup directory
* @cgrp: target cgroup
* @subsys_mask: mask of the subsystem ids whose files should be removed
*/
static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
{
struct cgroup_subsys *ss;
int i;
for_each_subsys(ss, i) {
struct cftype *cfts;
if (!test_bit(i, &subsys_mask))
continue;
list_for_each_entry(cfts, &ss->cfts, node)
cgroup_addrm_files(cgrp, cfts, false);
}
}
static int rebind_subsystems(struct cgroupfs_root *root,
unsigned long added_mask, unsigned removed_mask)
{
struct cgroup *cgrp = &root->top_cgroup;
struct cgroup_subsys *ss;
int i, ret;
lockdep_assert_held(&cgroup_tree_mutex);
lockdep_assert_held(&cgroup_mutex);
/* Check that any added subsystems are currently free */
for_each_subsys(ss, i)
if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
return -EBUSY;
ret = cgroup_populate_dir(cgrp, added_mask);
if (ret)
return ret;
/*
* Nothing can fail from this point on. Remove files for the
* removed subsystems and rebind each subsystem.
*/
mutex_unlock(&cgroup_mutex);
cgroup_clear_dir(cgrp, removed_mask);
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i) {
unsigned long bit = 1UL << i;
if (bit & added_mask) {
/* We're binding this subsystem to this hierarchy */
BUG_ON(cgroup_css(cgrp, ss));
BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
rcu_assign_pointer(cgrp->subsys[i],
cgroup_css(cgroup_dummy_top, ss));
cgroup_css(cgrp, ss)->cgroup = cgrp;
ss->root = root;
if (ss->bind)
ss->bind(cgroup_css(cgrp, ss));
/* refcount was already taken, and we're keeping it */
root->subsys_mask |= bit;
} else if (bit & removed_mask) {
/* We're removing this subsystem */
BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
if (ss->bind)
ss->bind(cgroup_css(cgroup_dummy_top, ss));
cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
RCU_INIT_POINTER(cgrp->subsys[i], NULL);
cgroup_subsys[i]->root = &cgroup_dummy_root;
root->subsys_mask &= ~bit;
}
}
/*
* Mark @root has finished binding subsystems. @root->subsys_mask
* now matches the bound subsystems.
*/
root->flags |= CGRP_ROOT_SUBSYS_BOUND;
kernfs_activate(cgrp->kn);
return 0;
}
static int cgroup_show_options(struct seq_file *seq,
struct kernfs_root *kf_root)
{
struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_subsys *ss;
int ssid;
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_printf(seq, ",%s", ss->name);
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
seq_puts(seq, ",sane_behavior");
if (root->flags & CGRP_ROOT_NOPREFIX)
seq_puts(seq, ",noprefix");
if (root->flags & CGRP_ROOT_XATTR)
seq_puts(seq, ",xattr");
spin_lock(&release_agent_path_lock);
if (strlen(root->release_agent_path))
seq_printf(seq, ",release_agent=%s", root->release_agent_path);
spin_unlock(&release_agent_path_lock);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
seq_puts(seq, ",clone_children");
if (strlen(root->name))
seq_printf(seq, ",name=%s", root->name);
return 0;
}
struct cgroup_sb_opts {
unsigned long subsys_mask;
unsigned long flags;
char *release_agent;
bool cpuset_clone_children;
char *name;
/* User explicitly requested empty subsystem */
bool none;
};
/*
* Convert a hierarchy specifier into a bitmask of subsystems and
* flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
* array. This function takes refcounts on subsystems to be used, unless it
* returns error, in which case no refcounts are taken.
*/
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
{
char *token, *o = data;
bool all_ss = false, one_ss = false;
unsigned long mask = (unsigned long)-1;
struct cgroup_subsys *ss;
int i;
BUG_ON(!mutex_is_locked(&cgroup_mutex));
#ifdef CONFIG_CPUSETS
mask = ~(1UL << cpuset_cgrp_id);
#endif
memset(opts, 0, sizeof(*opts));
while ((token = strsep(&o, ",")) != NULL) {
if (!*token)
return -EINVAL;
if (!strcmp(token, "none")) {
/* Explicitly have no subsystems */
opts->none = true;
continue;
}
if (!strcmp(token, "all")) {
/* Mutually exclusive option 'all' + subsystem name */
if (one_ss)
return -EINVAL;
all_ss = true;
continue;
}
if (!strcmp(token, "__DEVEL__sane_behavior")) {
opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
continue;
}
if (!strcmp(token, "noprefix")) {
opts->flags |= CGRP_ROOT_NOPREFIX;
continue;
}
if (!strcmp(token, "clone_children")) {
opts->cpuset_clone_children = true;
continue;
}
if (!strcmp(token, "xattr")) {
opts->flags |= CGRP_ROOT_XATTR;
continue;
}
if (!strncmp(token, "release_agent=", 14)) {
/* Specifying two release agents is forbidden */
if (opts->release_agent)
return -EINVAL;
opts->release_agent =
kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
if (!opts->release_agent)
return -ENOMEM;
continue;
}
if (!strncmp(token, "name=", 5)) {
const char *name = token + 5;
/* Can't specify an empty name */
if (!strlen(name))
return -EINVAL;
/* Must match [\w.-]+ */
for (i = 0; i < strlen(name); i++) {
char c = name[i];
if (isalnum(c))
continue;
if ((c == '.') || (c == '-') || (c == '_'))
continue;
return -EINVAL;
}
/* Specifying two names is forbidden */
if (opts->name)
return -EINVAL;
opts->name = kstrndup(name,
MAX_CGROUP_ROOT_NAMELEN - 1,
GFP_KERNEL);
if (!opts->name)
return -ENOMEM;
continue;
}
for_each_subsys(ss, i) {
if (strcmp(token, ss->name))
continue;
if (ss->disabled)
continue;
/* Mutually exclusive option 'all' + subsystem name */
if (all_ss)
return -EINVAL;
set_bit(i, &opts->subsys_mask);
one_ss = true;
break;
}
if (i == CGROUP_SUBSYS_COUNT)
return -ENOENT;
}
/*
* If the 'all' option was specified select all the subsystems,
* otherwise if 'none', 'name=' and a subsystem name options
* were not specified, let's default to 'all'
*/
if (all_ss || (!one_ss && !opts->none && !opts->name))
for_each_subsys(ss, i)
if (!ss->disabled)
set_bit(i, &opts->subsys_mask);
/* Consistency checks */
if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
if (opts->flags & CGRP_ROOT_NOPREFIX) {
pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
return -EINVAL;
}
if (opts->cpuset_clone_children) {
pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
return -EINVAL;
}
if (opts->flags & CGRP_ROOT_XATTR)
pr_warning("cgroup: sane_behavior: xattr is always available, flag unnecessary\n");
}
/*
* Option noprefix was introduced just for backward compatibility
* with the old cpuset, so we allow noprefix only if mounting just
* the cpuset subsystem.
*/
if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
return -EINVAL;
/* Can't specify "none" and some subsystems */
if (opts->subsys_mask && opts->none)
return -EINVAL;
/*
* We either have to specify by name or by subsystems. (So all
* empty hierarchies must have a name).
*/
if (!opts->subsys_mask && !opts->name)
return -EINVAL;
return 0;
}
static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
{
int ret = 0;
struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_sb_opts opts;
unsigned long added_mask, removed_mask;
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
pr_err("cgroup: sane_behavior: remount is not allowed\n");
return -EINVAL;
}
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
/* See what subsystems are wanted */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
task_tgid_nr(current), current->comm);
added_mask = opts.subsys_mask & ~root->subsys_mask;
removed_mask = root->subsys_mask & ~opts.subsys_mask;
/* Don't allow flags or name to change at remount */
if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
(opts.name && strcmp(opts.name, root->name))) {
pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
root->flags & CGRP_ROOT_OPTION_MASK, root->name);
ret = -EINVAL;
goto out_unlock;
}
/* remounting is not allowed for populated hierarchies */
if (!list_empty(&root->top_cgroup.children)) {
ret = -EBUSY;
goto out_unlock;
}
ret = rebind_subsystems(root, added_mask, removed_mask);
if (ret)
goto out_unlock;
if (opts.release_agent) {
spin_lock(&release_agent_path_lock);
strcpy(root->release_agent_path, opts.release_agent);
spin_unlock(&release_agent_path_lock);
}
out_unlock:
kfree(opts.release_agent);
kfree(opts.name);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
return ret;
}
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
atomic_set(&cgrp->refcnt, 1);
INIT_LIST_HEAD(&cgrp->sibling);
INIT_LIST_HEAD(&cgrp->children);
INIT_LIST_HEAD(&cgrp->cset_links);
INIT_LIST_HEAD(&cgrp->release_list);
INIT_LIST_HEAD(&cgrp->pidlists);
mutex_init(&cgrp->pidlist_mutex);
cgrp->dummy_css.cgroup = cgrp;
}
static void init_cgroup_root(struct cgroupfs_root *root)
{
struct cgroup *cgrp = &root->top_cgroup;
atomic_set(&root->refcnt, 1);
INIT_LIST_HEAD(&root->root_list);
atomic_set(&root->nr_cgrps, 1);
cgrp->root = root;
init_cgroup_housekeeping(cgrp);
idr_init(&root->cgroup_idr);
}
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
struct cgroupfs_root *root;
if (!opts->subsys_mask && !opts->none)
return ERR_PTR(-EINVAL);
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
init_cgroup_root(root);
/*
* We need to set @root->subsys_mask now so that @root can be
* matched by cgroup_test_super() before it finishes
* initialization; otherwise, competing mounts with the same
* options may try to bind the same subsystems instead of waiting
* for the first one leading to unexpected mount errors.
* SUBSYS_BOUND will be set once actual binding is complete.
*/
root->subsys_mask = opts->subsys_mask;
root->flags = opts->flags;
if (opts->release_agent)
strcpy(root->release_agent_path, opts->release_agent);
if (opts->name)
strcpy(root->name, opts->name);
if (opts->cpuset_clone_children)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
return root;
}
static int cgroup_setup_root(struct cgroupfs_root *root)
{
LIST_HEAD(tmp_links);
struct cgroup *root_cgrp = &root->top_cgroup;
struct css_set *cset;
int i, ret;
lockdep_assert_held(&cgroup_tree_mutex);
lockdep_assert_held(&cgroup_mutex);
ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
if (ret < 0)
goto out;
root_cgrp->id = ret;
/*
* We're accessing css_set_count without locking css_set_lock here,
* but that's OK - it can only be increased by someone holding
* cgroup_lock, and that's us. The worst that can happen is that we
* have some link structures left over
*/
ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
if (ret)
goto out;
/* ID 0 is reserved for dummy root, 1 for unified hierarchy */
ret = cgroup_init_root_id(root, 2, 0);
if (ret)
goto out;
root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
KERNFS_ROOT_CREATE_DEACTIVATED,
root_cgrp);
if (IS_ERR(root->kf_root)) {
ret = PTR_ERR(root->kf_root);
goto exit_root_id;
}
root_cgrp->kn = root->kf_root->kn;
ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
if (ret)
goto destroy_root;
ret = rebind_subsystems(root, root->subsys_mask, 0);
if (ret)
goto destroy_root;
/*
* There must be no failure case after here, since rebinding takes
* care of subsystems' refcounts, which are explicitly dropped in
* the failure exit path.
*/
list_add(&root->root_list, &cgroup_roots);
cgroup_root_count++;
/*
* Link the top cgroup in this hierarchy into all the css_set
* objects.
*/
write_lock(&css_set_lock);
hash_for_each(css_set_table, i, cset, hlist)
link_css_set(&tmp_links, cset, root_cgrp);
write_unlock(&css_set_lock);
BUG_ON(!list_empty(&root_cgrp->children));
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
kernfs_activate(root_cgrp->kn);
ret = 0;
goto out;
destroy_root:
kernfs_destroy_root(root->kf_root);
root->kf_root = NULL;
exit_root_id:
cgroup_exit_root_id(root);
out:
free_cgrp_cset_links(&tmp_links);
return ret;
}
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
struct cgroupfs_root *root;
struct cgroup_sb_opts opts;
struct dentry *dentry;
int ret;
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
/* First find the desired set of subsystems */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
/* look for a matching existing root */
for_each_active_root(root) {
bool name_match = false;
/*
* If we asked for a name then it must match. Also, if
* name matches but sybsys_mask doesn't, we should fail.
* Remember whether name matched.
*/
if (opts.name) {
if (strcmp(opts.name, root->name))
continue;
name_match = true;
}
/*
* If we asked for subsystems (or explicitly for no
* subsystems) then they must match.
*/
if ((opts.subsys_mask || opts.none) &&
(opts.subsys_mask != root->subsys_mask)) {
if (!name_match)
continue;
ret = -EBUSY;
goto out_unlock;
}
if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
ret = -EINVAL;
goto out_unlock;
} else {
pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
}
}
cgroup_get_root(root);
goto out_unlock;
}
/* no such thing, create a new one */
root = cgroup_root_from_opts(&opts);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out_unlock;
}
ret = cgroup_setup_root(root);
if (ret)
cgroup_free_root(root);
out_unlock:
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
kfree(opts.release_agent);
kfree(opts.name);
if (ret)
return ERR_PTR(ret);
dentry = kernfs_mount(fs_type, flags, root->kf_root);
if (IS_ERR(dentry))
cgroup_put_root(root);
return dentry;
}
static void cgroup_kill_sb(struct super_block *sb)
{
struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
cgroup_put_root(root);
kernfs_kill_sb(sb);
}
static struct file_system_type cgroup_fs_type = {
.name = "cgroup",
.mount = cgroup_mount,
.kill_sb = cgroup_kill_sb,
};
static struct kobject *cgroup_kobj;
/**
* task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
* @task: target task
* @buf: the buffer to write the path into
* @buflen: the length of the buffer
*
* Determine @task's cgroup on the first (the one with the lowest non-zero
* hierarchy_id) cgroup hierarchy and copy its path into @buf. This
* function grabs cgroup_mutex and shouldn't be used inside locks used by
* cgroup controller callbacks.
*
* Return value is the same as kernfs_path().
*/
char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
{
struct cgroupfs_root *root;
struct cgroup *cgrp;
int hierarchy_id = 1;
char *path = NULL;
mutex_lock(&cgroup_mutex);
root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
if (root) {
cgrp = task_cgroup_from_root(task, root);
path = cgroup_path(cgrp, buf, buflen);
} else {
/* if no hierarchy exists, everyone is in "/" */
if (strlcpy(buf, "/", buflen) < buflen)
path = buf;
}
mutex_unlock(&cgroup_mutex);
return path;
}
EXPORT_SYMBOL_GPL(task_cgroup_path);
/*
* Control Group taskset
*/
struct task_and_cgroup {
struct task_struct *task;
struct cgroup *cgrp;
struct css_set *cset;
};
struct cgroup_taskset {
struct task_and_cgroup single;
struct flex_array *tc_array;
int tc_array_len;
int idx;
struct cgroup *cur_cgrp;
};
/**
* cgroup_taskset_first - reset taskset and return the first task
* @tset: taskset of interest
*
* @tset iteration is initialized and the first task is returned.
*/
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
if (tset->tc_array) {
tset->idx = 0;
return cgroup_taskset_next(tset);
} else {
tset->cur_cgrp = tset->single.cgrp;
return tset->single.task;
}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);
/**
* cgroup_taskset_next - iterate to the next task in taskset
* @tset: taskset of interest
*
* Return the next task in @tset. Iteration must have been initialized
* with cgroup_taskset_first().
*/
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
struct task_and_cgroup *tc;
if (!tset->tc_array || tset->idx >= tset->tc_array_len)
return NULL;
tc = flex_array_get(tset->tc_array, tset->idx++);
tset->cur_cgrp = tc->cgrp;
return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);
/**
* cgroup_taskset_cur_css - return the matching css for the current task
* @tset: taskset of interest
* @subsys_id: the ID of the target subsystem
*
* Return the css for the current (last returned) task of @tset for
* subsystem specified by @subsys_id. This function must be preceded by
* either cgroup_taskset_first() or cgroup_taskset_next().
*/
struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
int subsys_id)
{
return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
/**
* cgroup_taskset_size - return the number of tasks in taskset
* @tset: taskset of interest
*/
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);
/*
* cgroup_task_migrate - move a task from one cgroup to another.
*
* Must be called with cgroup_mutex and threadgroup locked.
*/
static void cgroup_task_migrate(struct cgroup *old_cgrp,
struct task_struct *tsk,
struct css_set *new_cset)
{
struct css_set *old_cset;
/*
* We are synchronized through threadgroup_lock() against PF_EXITING
* setting such that we can't race against cgroup_exit() changing the
* css_set to init_css_set and dropping the old one.
*/
WARN_ON_ONCE(tsk->flags & PF_EXITING);
old_cset = task_css_set(tsk);
task_lock(tsk);
rcu_assign_pointer(tsk->cgroups, new_cset);
task_unlock(tsk);
/* Update the css_set linked lists if we're using them */
write_lock(&css_set_lock);
if (!list_empty(&tsk->cg_list))
list_move(&tsk->cg_list, &new_cset->tasks);
write_unlock(&css_set_lock);
/*
* We just gained a reference on old_cset by taking it from the
* task. As trading it for new_cset is protected by cgroup_mutex,
* we're safe to drop it here; it will be freed under RCU.
*/
set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
put_css_set(old_cset);
}
/**
* cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
* @cgrp: the cgroup to attach to
* @tsk: the task or the leader of the threadgroup to be attached
* @threadgroup: attach the whole threadgroup?
*
* Call holding cgroup_mutex and the group_rwsem of the leader. Will take
* task_lock of @tsk or each thread in the threadgroup individually in turn.
*/
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
bool threadgroup)
{
int retval, i, group_size;
struct cgroupfs_root *root = cgrp->root;
struct cgroup_subsys_state *css, *failed_css = NULL;
/* threadgroup list cursor and array */
struct task_struct *leader = tsk;
struct task_and_cgroup *tc;
struct flex_array *group;
struct cgroup_taskset tset = { };
/*
* step 0: in order to do expensive, possibly blocking operations for
* every thread, we cannot iterate the thread group list, since it needs
* rcu or tasklist locked. instead, build an array of all threads in the
* group - group_rwsem prevents new threads from appearing, and if
* threads exit, this will just be an over-estimate.
*/
if (threadgroup)
group_size = get_nr_threads(tsk);
else
group_size = 1;
/* flex_array supports very large thread-groups better than kmalloc. */
group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
if (!group)
return -ENOMEM;
/* pre-allocate to guarantee space while iterating in rcu read-side. */
retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
if (retval)
goto out_free_group_list;
i = 0;
/*
* Prevent freeing of tasks while we take a snapshot. Tasks that are
* already PF_EXITING could be freed from underneath us unless we
* take an rcu_read_lock.
*/
rcu_read_lock();
do {
struct task_and_cgroup ent;
/* @tsk either already exited or can't exit until the end */
if (tsk->flags & PF_EXITING)
goto next;
/* as per above, nr_threads may decrease, but not increase. */
BUG_ON(i >= group_size);
ent.task = tsk;
ent.cgrp = task_cgroup_from_root(tsk, root);
/* nothing to do if this task is already in the cgroup */
if (ent.cgrp == cgrp)
goto next;
/*
* saying GFP_ATOMIC has no effect here because we did prealloc
* earlier, but it's good form to communicate our expectations.
*/
retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
BUG_ON(retval != 0);
i++;
next:
if (!threadgroup)
break;
} while_each_thread(leader, tsk);
rcu_read_unlock();
/* remember the number of threads in the array for later. */
group_size = i;
tset.tc_array = group;
tset.tc_array_len = group_size;
/* methods shouldn't be called if no task is actually migrating */
retval = 0;
if (!group_size)
goto out_free_group_list;
/*
* step 1: check that we can legitimately attach to the cgroup.
*/
for_each_css(css, i, cgrp) {
if (css->ss->can_attach) {
retval = css->ss->can_attach(css, &tset);
if (retval) {
failed_css = css;
goto out_cancel_attach;
}
}
}
/*
* step 2: make sure css_sets exist for all threads to be migrated.
* we use find_css_set, which allocates a new one if necessary.
*/
for (i = 0; i < group_size; i++) {
struct css_set *old_cset;
tc = flex_array_get(group, i);
old_cset = task_css_set(tc->task);
tc->cset = find_css_set(old_cset, cgrp);
if (!tc->cset) {
retval = -ENOMEM;
goto out_put_css_set_refs;
}
}
/*
* step 3: now that we're guaranteed success wrt the css_sets,
* proceed to move all tasks to the new cgroup. There are no
* failure cases after here, so this is the commit point.
*/
for (i = 0; i < group_size; i++) {
tc = flex_array_get(group, i);
cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
}
/* nothing is sensitive to fork() after this point. */
/*
* step 4: do subsystem attach callbacks.
*/
for_each_css(css, i, cgrp)
if (css->ss->attach)
css->ss->attach(css, &tset);
/*
* step 5: success! and cleanup
*/
retval = 0;
out_put_css_set_refs:
if (retval) {
for (i = 0; i < group_size; i++) {
tc = flex_array_get(group, i);
if (!tc->cset)
break;
put_css_set(tc->cset);
}
}
out_cancel_attach:
if (retval) {
for_each_css(css, i, cgrp) {
if (css == failed_css)
break;
if (css->ss->cancel_attach)
css->ss->cancel_attach(css, &tset);
}
}
out_free_group_list:
flex_array_free(group);
return retval;
}
/*
* Find the task_struct of the task to attach by vpid and pass it along to the
* function to attach either it or all tasks in its threadgroup. Will lock
* cgroup_mutex and threadgroup; may take task_lock of task.
*/
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
{
struct task_struct *tsk;
const struct cred *cred = current_cred(), *tcred;
int ret;
if (!cgroup_lock_live_group(cgrp))
return -ENODEV;
retry_find_task:
rcu_read_lock();
if (pid) {
tsk = find_task_by_vpid(pid);
if (!tsk) {
rcu_read_unlock();
ret = -ESRCH;
goto out_unlock_cgroup;
}
/*
* even if we're attaching all tasks in the thread group, we
* only need to check permissions on one of them.
*/
tcred = __task_cred(tsk);
if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
!uid_eq(cred->euid, tcred->uid) &&
!uid_eq(cred->euid, tcred->suid)) {
rcu_read_unlock();
ret = -EACCES;
goto out_unlock_cgroup;
}
} else
tsk = current;
if (threadgroup)
tsk = tsk->group_leader;
/*
* Workqueue threads may acquire PF_NO_SETAFFINITY and become
* trapped in a cpuset, or RT worker may be born in a cgroup
* with no rt_runtime allocated. Just say no.
*/
if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
rcu_read_unlock();
goto out_unlock_cgroup;
}
get_task_struct(tsk);
rcu_read_unlock();
threadgroup_lock(tsk);
if (threadgroup) {
if (!thread_group_leader(tsk)) {
/*
* a race with de_thread from another thread's exec()
* may strip us of our leadership, if this happens,
* there is no choice but to throw this task away and
* try again; this is
* "double-double-toil-and-trouble-check locking".
*/
threadgroup_unlock(tsk);
put_task_struct(tsk);
goto retry_find_task;
}
}
ret = cgroup_attach_task(cgrp, tsk, threadgroup);
threadgroup_unlock(tsk);
put_task_struct(tsk);
out_unlock_cgroup:
mutex_unlock(&cgroup_mutex);
return ret;
}
/**
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
struct cgroupfs_root *root;
int retval = 0;
mutex_lock(&cgroup_mutex);
for_each_active_root(root) {
struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
retval = cgroup_attach_task(from_cgrp, tsk, false);
if (retval)
break;
}
mutex_unlock(&cgroup_mutex);
return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
static int cgroup_tasks_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 pid)
{
return attach_task_by_pid(css->cgroup, pid, false);
}
static int cgroup_procs_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 tgid)
{
return attach_task_by_pid(css->cgroup, tgid, true);
}
static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
struct cftype *cft, const char *buffer)
{
struct cgroupfs_root *root = css->cgroup->root;
BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
if (!cgroup_lock_live_group(css->cgroup))
return -ENODEV;
spin_lock(&release_agent_path_lock);
strlcpy(root->release_agent_path, buffer,
sizeof(root->release_agent_path));
spin_unlock(&release_agent_path_lock);
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
if (!cgroup_lock_live_group(cgrp))
return -ENODEV;
seq_puts(seq, cgrp->root->release_agent_path);
seq_putc(seq, '\n');
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
return 0;
}
static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct cgroup *cgrp = of->kn->parent->priv;
struct cftype *cft = of->kn->priv;
struct cgroup_subsys_state *css;
int ret;
/*
* kernfs guarantees that a file isn't deleted with operations in
* flight, which means that the matching css is and stays alive and
* doesn't need to be pinned. The RCU locking is not necessary
* either. It's just for the convenience of using cgroup_css().
*/
rcu_read_lock();
css = cgroup_css(cgrp, cft->ss);
rcu_read_unlock();
if (cft->write_string) {
ret = cft->write_string(css, cft, strstrip(buf));
} else if (cft->write_u64) {
unsigned long long v;
ret = kstrtoull(buf, 0, &v);
if (!ret)
ret = cft->write_u64(css, cft, v);
} else if (cft->write_s64) {
long long v;
ret = kstrtoll(buf, 0, &v);
if (!ret)
ret = cft->write_s64(css, cft, v);
} else if (cft->trigger) {
ret = cft->trigger(css, (unsigned int)cft->private);
} else {
ret = -EINVAL;
}
return ret ?: nbytes;
}
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
{
return seq_cft(seq)->seq_start(seq, ppos);
}
static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
{
return seq_cft(seq)->seq_next(seq, v, ppos);
}
static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
{
seq_cft(seq)->seq_stop(seq, v);
}
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
struct cftype *cft = seq_cft(m);
struct cgroup_subsys_state *css = seq_css(m);
if (cft->seq_show)
return cft->seq_show(m, arg);
if (cft->read_u64)
seq_printf(m, "%llu\n", cft->read_u64(css, cft));
else if (cft->read_s64)
seq_printf(m, "%lld\n", cft->read_s64(css, cft));
else
return -EINVAL;
return 0;
}
static struct kernfs_ops cgroup_kf_single_ops = {
.atomic_write_len = PAGE_SIZE,
.write = cgroup_file_write,
.seq_show = cgroup_seqfile_show,
};
static struct kernfs_ops cgroup_kf_ops = {
.atomic_write_len = PAGE_SIZE,
.write = cgroup_file_write,
.seq_start = cgroup_seqfile_start,
.seq_next = cgroup_seqfile_next,
.seq_stop = cgroup_seqfile_stop,
.seq_show = cgroup_seqfile_show,
};
/*
* cgroup_rename - Only allow simple rename of directories in place.
*/
static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name_str)
{
struct cgroup *cgrp = kn->priv;
int ret;
if (kernfs_type(kn) != KERNFS_DIR)
return -ENOTDIR;
if (kn->parent != new_parent)
return -EIO;
/*
* This isn't a proper migration and its usefulness is very
* limited. Disallow if sane_behavior.
*/
if (cgroup_sane_behavior(cgrp))
return -EPERM;
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
ret = kernfs_rename(kn, new_parent, new_name_str);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
return ret;
}
static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
{
char name[CGROUP_FILE_NAME_MAX];
struct kernfs_node *kn;
struct lock_class_key *key = NULL;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
key = &cft->lockdep_key;
#endif
kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
cgroup_file_mode(cft), 0, cft->kf_ops, cft,
NULL, false, key);
if (IS_ERR(kn))
return PTR_ERR(kn);
return 0;
}
/**
* cgroup_addrm_files - add or remove files to a cgroup directory
* @cgrp: the target cgroup
* @cfts: array of cftypes to be added
* @is_add: whether to add or remove
*
* Depending on @is_add, add or remove files defined by @cfts on @cgrp.
* For removals, this function never fails. If addition fails, this
* function doesn't remove files already added. The caller is responsible
* for cleaning up.
*/
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
bool is_add)
{
struct cftype *cft;
int ret;
lockdep_assert_held(&cgroup_tree_mutex);
for (cft = cfts; cft->name[0] != '\0'; cft++) {
/* does cft->flags tell us to skip this file on @cgrp? */
if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
continue;
if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
continue;
if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
continue;
if (is_add) {
ret = cgroup_add_file(cgrp, cft);
if (ret) {
pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
cft->name, ret);
return ret;
}
} else {
cgroup_rm_file(cgrp, cft);
}
}
return 0;
}
static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
{
LIST_HEAD(pending);
struct cgroup_subsys *ss = cfts[0].ss;
struct cgroup *root = &ss->root->top_cgroup;
struct cgroup_subsys_state *css;
int ret = 0;
lockdep_assert_held(&cgroup_tree_mutex);
/* don't bother if @ss isn't attached */
if (ss->root == &cgroup_dummy_root)
return 0;
/* add/rm files for all cgroups created before */
css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
struct cgroup *cgrp = css->cgroup;
if (cgroup_is_dead(cgrp))
continue;
ret = cgroup_addrm_files(cgrp, cfts, is_add);
if (ret)
break;
}
if (is_add && !ret)
kernfs_activate(root->kn);
return ret;
}
static void cgroup_exit_cftypes(struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
/* free copy for custom atomic_write_len, see init_cftypes() */
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
kfree(cft->kf_ops);
cft->kf_ops = NULL;
cft->ss = NULL;
}
}
static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
struct kernfs_ops *kf_ops;
WARN_ON(cft->ss || cft->kf_ops);
if (cft->seq_start)
kf_ops = &cgroup_kf_ops;
else
kf_ops = &cgroup_kf_single_ops;
/*
* Ugh... if @cft wants a custom max_write_len, we need to
* make a copy of kf_ops to set its atomic_write_len.
*/
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
if (!kf_ops) {
cgroup_exit_cftypes(cfts);
return -ENOMEM;
}
kf_ops->atomic_write_len = cft->max_write_len;
}
cft->kf_ops = kf_ops;
cft->ss = ss;
}
return 0;
}
static int cgroup_rm_cftypes_locked(struct cftype *cfts)
{
lockdep_assert_held(&cgroup_tree_mutex);
if (!cfts || !cfts[0].ss)
return -ENOENT;
list_del(&cfts->node);
cgroup_apply_cftypes(cfts, false);
cgroup_exit_cftypes(cfts);
return 0;
}
/**
* cgroup_rm_cftypes - remove an array of cftypes from a subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Unregister @cfts. Files described by @cfts are removed from all
* existing cgroups and all future cgroups won't have them either. This
* function can be called anytime whether @cfts' subsys is attached or not.
*
* Returns 0 on successful unregistration, -ENOENT if @cfts is not
* registered.
*/
int cgroup_rm_cftypes(struct cftype *cfts)
{
int ret;
mutex_lock(&cgroup_tree_mutex);
ret = cgroup_rm_cftypes_locked(cfts);
mutex_unlock(&cgroup_tree_mutex);
return ret;
}
/**
* cgroup_add_cftypes - add an array of cftypes to a subsystem
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Register @cfts to @ss. Files described by @cfts are created for all
* existing cgroups to which @ss is attached and all future cgroups will
* have them too. This function can be called anytime whether @ss is
* attached or not.
*
* Returns 0 on successful registration, -errno on failure. Note that this
* function currently returns 0 as long as @cfts registration is successful
* even if some file creation attempts on existing cgroups fail.
*/
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
int ret;
ret = cgroup_init_cftypes(ss, cfts);
if (ret)
return ret;
mutex_lock(&cgroup_tree_mutex);
list_add_tail(&cfts->node, &ss->cfts);
ret = cgroup_apply_cftypes(cfts, true);
if (ret)
cgroup_rm_cftypes_locked(cfts);
mutex_unlock(&cgroup_tree_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
/**
* cgroup_task_count - count the number of tasks in a cgroup.
* @cgrp: the cgroup in question
*
* Return the number of tasks in the cgroup.
*/
int cgroup_task_count(const struct cgroup *cgrp)
{
int count = 0;
struct cgrp_cset_link *link;
read_lock(&css_set_lock);
list_for_each_entry(link, &cgrp->cset_links, cset_link)
count += atomic_read(&link->cset->refcount);
read_unlock(&css_set_lock);
return count;
}
/*
* To reduce the fork() overhead for systems that are not actually using
* their cgroups capability, we don't maintain the lists running through
* each css_set to its tasks until we see the list actually used - in other
* words after the first call to css_task_iter_start().
*/
static void cgroup_enable_task_cg_lists(void)
{
struct task_struct *p, *g;
write_lock(&css_set_lock);
use_task_css_set_links = 1;
/*
* We need tasklist_lock because RCU is not safe against
* while_each_thread(). Besides, a forking task that has passed
* cgroup_post_fork() without seeing use_task_css_set_links = 1
* is not guaranteed to have its child immediately visible in the
* tasklist if we walk through it with RCU.
*/
read_lock(&tasklist_lock);
do_each_thread(g, p) {
task_lock(p);
/*
* We should check if the process is exiting, otherwise
* it will race with cgroup_exit() in that the list
* entry won't be deleted though the process has exited.
*/
if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
list_add(&p->cg_list, &task_css_set(p)->tasks);
task_unlock(p);
} while_each_thread(g, p);
read_unlock(&tasklist_lock);
write_unlock(&css_set_lock);
}
/**
* css_next_child - find the next child of a given css
* @pos_css: the current position (%NULL to initiate traversal)
* @parent_css: css whose children to walk
*
* This function returns the next child of @parent_css and should be called
* under either cgroup_mutex or RCU read lock. The only requirement is
* that @parent_css and @pos_css are accessible. The next sibling is
* guaranteed to be returned regardless of their states.
*/
struct cgroup_subsys_state *
css_next_child(struct cgroup_subsys_state *pos_css,
struct cgroup_subsys_state *parent_css)
{
struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
struct cgroup *cgrp = parent_css->cgroup;
struct cgroup *next;
cgroup_assert_mutexes_or_rcu_locked();
/*
* @pos could already have been removed. Once a cgroup is removed,
* its ->sibling.next is no longer updated when its next sibling
* changes. As CGRP_DEAD assertion is serialized and happens
* before the cgroup is taken off the ->sibling list, if we see it
* unasserted, it's guaranteed that the next sibling hasn't
* finished its grace period even if it's already removed, and thus
* safe to dereference from this RCU critical section. If
* ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
* to be visible as %true here.
*
* If @pos is dead, its next pointer can't be dereferenced;
* however, as each cgroup is given a monotonically increasing
* unique serial number and always appended to the sibling list,
* the next one can be found by walking the parent's children until
* we see a cgroup with higher serial number than @pos's. While
* this path can be slower, it's taken only when either the current
* cgroup is removed or iteration and removal race.
*/
if (!pos) {
next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
} else if (likely(!cgroup_is_dead(pos))) {
next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
} else {
list_for_each_entry_rcu(next, &cgrp->children, sibling)
if (next->serial_nr > pos->serial_nr)
break;
}
if (&next->sibling == &cgrp->children)
return NULL;
return cgroup_css(next, parent_css->ss);
}
EXPORT_SYMBOL_GPL(css_next_child);
/**
* css_next_descendant_pre - find the next descendant for pre-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: css whose descendants to walk
*
* To be used by css_for_each_descendant_pre(). Find the next descendant
* to visit for pre-order traversal of @root's descendants. @root is
* included in the iteration and the first node to be visited.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct next descendant as long
* as both @pos and @root are accessible and @pos is a descendant of @root.
*/
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *root)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutexes_or_rcu_locked();
/* if first iteration, visit @root */
if (!pos)
return root;
/* visit the first child if exists */
next = css_next_child(NULL, pos);
if (next)
return next;
/* no child, visit my or the closest ancestor's next sibling */
while (pos != root) {
next = css_next_child(pos, css_parent(pos));
if (next)
return next;
pos = css_parent(pos);
}
return NULL;
}
EXPORT_SYMBOL_GPL(css_next_descendant_pre);
/**
* css_rightmost_descendant - return the rightmost descendant of a css
* @pos: css of interest
*
* Return the rightmost descendant of @pos. If there's no descendant, @pos
* is returned. This can be used during pre-order traversal to skip
* subtree of @pos.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct rightmost descendant as
* long as @pos is accessible.
*/
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last, *tmp;
cgroup_assert_mutexes_or_rcu_locked();
do {
last = pos;
/* ->prev isn't RCU safe, walk ->next till the end */
pos = NULL;
css_for_each_child(tmp, last)
pos = tmp;
} while (pos);
return last;
}
EXPORT_SYMBOL_GPL(css_rightmost_descendant);
static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last;
do {
last = pos;
pos = css_next_child(NULL, pos);
} while (pos);
return last;
}
/**
* css_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: css whose descendants to walk
*
* To be used by css_for_each_descendant_post(). Find the next descendant
* to visit for post-order traversal of @root's descendants. @root is
* included in the iteration and the last node to be visited.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct next descendant as long
* as both @pos and @cgroup are accessible and @pos is a descendant of
* @cgroup.
*/
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *root)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutexes_or_rcu_locked();
/* if first iteration, visit leftmost descendant which may be @root */
if (!pos)
return css_leftmost_descendant(root);
/* if we visited @root, we're done */
if (pos == root)
return NULL;
/* if there's an unvisited sibling, visit its leftmost descendant */
next = css_next_child(pos, css_parent(pos));
if (next)
return css_leftmost_descendant(next);
/* no sibling left, visit parent */
return css_parent(pos);
}
EXPORT_SYMBOL_GPL(css_next_descendant_post);
/**
* css_advance_task_iter - advance a task itererator to the next css_set
* @it: the iterator to advance
*
* Advance @it to the next css_set to walk.
*/
static void css_advance_task_iter(struct css_task_iter *it)
{
struct list_head *l = it->cset_link;
struct cgrp_cset_link *link;
struct css_set *cset;
/* Advance to the next non-empty css_set */
do {
l = l->next;
if (l == &it->origin_css->cgroup->cset_links) {
it->cset_link = NULL;
return;
}
link = list_entry(l, struct cgrp_cset_link, cset_link);
cset = link->cset;
} while (list_empty(&cset->tasks));
it->cset_link = l;
it->task = cset->tasks.next;
}
/**
* css_task_iter_start - initiate task iteration
* @css: the css to walk tasks of
* @it: the task iterator to use
*
* Initiate iteration through the tasks of @css. The caller can call
* css_task_iter_next() to walk through the tasks until the function
* returns NULL. On completion of iteration, css_task_iter_end() must be
* called.
*
* Note that this function acquires a lock which is released when the
* iteration finishes. The caller can't sleep while iteration is in
* progress.
*/
void css_task_iter_start(struct cgroup_subsys_state *css,
struct css_task_iter *it)
__acquires(css_set_lock)
{
/*
* The first time anyone tries to iterate across a css, we need to
* enable the list linking each css_set to its tasks, and fix up
* all existing tasks.
*/
if (!use_task_css_set_links)
cgroup_enable_task_cg_lists();
read_lock(&css_set_lock);
it->origin_css = css;
it->cset_link = &css->cgroup->cset_links;
css_advance_task_iter(it);
}
/**
* css_task_iter_next - return the next task for the iterator
* @it: the task iterator being iterated
*
* The "next" function for task iteration. @it should have been
* initialized via css_task_iter_start(). Returns NULL when the iteration
* reaches the end.
*/
struct task_struct *css_task_iter_next(struct css_task_iter *it)
{
struct task_struct *res;
struct list_head *l = it->task;
struct cgrp_cset_link *link;
/* If the iterator cg is NULL, we have no tasks */
if (!it->cset_link)
return NULL;
res = list_entry(l, struct task_struct, cg_list);
/* Advance iterator to find next entry */
l = l->next;
link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
if (l == &link->cset->tasks) {
/*
* We reached the end of this task list - move on to the
* next cgrp_cset_link.
*/
css_advance_task_iter(it);
} else {
it->task = l;
}
return res;
}
/**
* css_task_iter_end - finish task iteration
* @it: the task iterator to finish
*
* Finish task iteration started by css_task_iter_start().
*/
void css_task_iter_end(struct css_task_iter *it)
__releases(css_set_lock)
{
read_unlock(&css_set_lock);
}
static inline int started_after_time(struct task_struct *t1,
struct timespec *time,
struct task_struct *t2)
{
int start_diff = timespec_compare(&t1->start_time, time);
if (start_diff > 0) {
return 1;
} else if (start_diff < 0) {
return 0;
} else {
/*
* Arbitrarily, if two processes started at the same
* time, we'll say that the lower pointer value
* started first. Note that t2 may have exited by now
* so this may not be a valid pointer any longer, but
* that's fine - it still serves to distinguish
* between two tasks started (effectively) simultaneously.
*/
return t1 > t2;
}
}
/*
* This function is a callback from heap_insert() and is used to order
* the heap.
* In this case we order the heap in descending task start time.
*/
static inline int started_after(void *p1, void *p2)
{
struct task_struct *t1 = p1;
struct task_struct *t2 = p2;
return started_after_time(t1, &t2->start_time, t2);
}
/**
* css_scan_tasks - iterate though all the tasks in a css
* @css: the css to iterate tasks of
* @test: optional test callback
* @process: process callback
* @data: data passed to @test and @process
* @heap: optional pre-allocated heap used for task iteration
*
* Iterate through all the tasks in @css, calling @test for each, and if it
* returns %true, call @process for it also.
*
* @test may be NULL, meaning always true (select all tasks), which
* effectively duplicates css_task_iter_{start,next,end}() but does not
* lock css_set_lock for the call to @process.
*
* It is guaranteed that @process will act on every task that is a member
* of @css for the duration of this call. This function may or may not
* call @process for tasks that exit or move to a different css during the
* call, or are forked or move into the css during the call.
*
* Note that @test may be called with locks held, and may in some
* situations be called multiple times for the same task, so it should be
* cheap.
*
* If @heap is non-NULL, a heap has been pre-allocated and will be used for
* heap operations (and its "gt" member will be overwritten), else a
* temporary heap will be used (allocation of which may cause this function
* to fail).
*/
int css_scan_tasks(struct cgroup_subsys_state *css,
bool (*test)(struct task_struct *, void *),
void (*process)(struct task_struct *, void *),
void *data, struct ptr_heap *heap)
{
int retval, i;
struct css_task_iter it;
struct task_struct *p, *dropped;
/* Never dereference latest_task, since it's not refcounted */
struct task_struct *latest_task = NULL;
struct ptr_heap tmp_heap;
struct timespec latest_time = { 0, 0 };
if (heap) {
/* The caller supplied our heap and pre-allocated its memory */
heap->gt = &started_after;
} else {
/* We need to allocate our own heap memory */
heap = &tmp_heap;
retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
if (retval)
/* cannot allocate the heap */
return retval;
}
again:
/*
* Scan tasks in the css, using the @test callback to determine
* which are of interest, and invoking @process callback on the
* ones which need an update. Since we don't want to hold any
* locks during the task updates, gather tasks to be processed in a
* heap structure. The heap is sorted by descending task start
* time. If the statically-sized heap fills up, we overflow tasks
* that started later, and in future iterations only consider tasks
* that started after the latest task in the previous pass. This
* guarantees forward progress and that we don't miss any tasks.
*/
heap->size = 0;
css_task_iter_start(css, &it);
while ((p = css_task_iter_next(&it))) {
/*
* Only affect tasks that qualify per the caller's callback,
* if he provided one
*/
if (test && !test(p, data))
continue;
/*
* Only process tasks that started after the last task
* we processed
*/
if (!started_after_time(p, &latest_time, latest_task))
continue;
dropped = heap_insert(heap, p);
if (dropped == NULL) {
/*
* The new task was inserted; the heap wasn't
* previously full
*/
get_task_struct(p);
} else if (dropped != p) {
/*
* The new task was inserted, and pushed out a
* different task
*/
get_task_struct(p);
put_task_struct(dropped);
}
/*
* Else the new task was newer than anything already in
* the heap and wasn't inserted
*/
}
css_task_iter_end(&it);
if (heap->size) {
for (i = 0; i < heap->size; i++) {
struct task_struct *q = heap->ptrs[i];
if (i == 0) {
latest_time = q->start_time;
latest_task = q;
}
/* Process the task per the caller's callback */
process(q, data);
put_task_struct(q);
}
/*
* If we had to process any tasks at all, scan again
* in case some of them were in the middle of forking
* children that didn't get processed.
* Not the most efficient way to do it, but it avoids
* having to take callback_mutex in the fork path
*/
goto again;
}
if (heap == &tmp_heap)
heap_free(&tmp_heap);
return 0;
}
static void cgroup_transfer_one_task(struct task_struct *task, void *data)
{
struct cgroup *new_cgroup = data;
mutex_lock(&cgroup_mutex);
cgroup_attach_task(new_cgroup, task, false);
mutex_unlock(&cgroup_mutex);
}
/**
* cgroup_trasnsfer_tasks - move tasks from one cgroup to another
* @to: cgroup to which the tasks will be moved
* @from: cgroup in which the tasks currently reside
*/
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
to, NULL);
}
/*
* Stuff for reading the 'tasks'/'procs' files.
*
* Reading this file can return large amounts of data if a cgroup has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
*/
/* which pidlist file are we talking about? */
enum cgroup_filetype {
CGROUP_FILE_PROCS,
CGROUP_FILE_TASKS,
};
/*
* A pidlist is a list of pids that virtually represents the contents of one
* of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
* a pair (one each for procs, tasks) for each pid namespace that's relevant
* to the cgroup.
*/
struct cgroup_pidlist {
/*
* used to find which pidlist is wanted. doesn't change as long as
* this particular list stays in the list.
*/
struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
/* array of xids */
pid_t *list;
/* how many elements the above list has */
int length;
/* each of these stored in a list by its cgroup */
struct list_head links;
/* pointer to the cgroup we belong to, for list removal purposes */
struct cgroup *owner;
/* for delayed destruction */
struct delayed_work destroy_dwork;
};
/*
* The following two functions "fix" the issue where there are more pids
* than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
* TODO: replace with a kernel-wide solution to this problem
*/
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
if (PIDLIST_TOO_LARGE(count))
return vmalloc(count * sizeof(pid_t));
else
return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
if (is_vmalloc_addr(p))
vfree(p);
else
kfree(p);
}
/*
* Used to destroy all pidlists lingering waiting for destroy timer. None
* should be left afterwards.
*/
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
{
struct cgroup_pidlist *l, *tmp_l;
mutex_lock(&cgrp->pidlist_mutex);
list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
mutex_unlock(&cgrp->pidlist_mutex);
flush_workqueue(cgroup_pidlist_destroy_wq);
BUG_ON(!list_empty(&cgrp->pidlists));
}
static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
destroy_dwork);
struct cgroup_pidlist *tofree = NULL;
mutex_lock(&l->owner->pidlist_mutex);
/*
* Destroy iff we didn't get queued again. The state won't change
* as destroy_dwork can only be queued while locked.
*/
if (!delayed_work_pending(dwork)) {
list_del(&l->links);
pidlist_free(l->list);
put_pid_ns(l->key.ns);
tofree = l;
}
mutex_unlock(&l->owner->pidlist_mutex);
kfree(tofree);
}
/*
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
* Returns the number of unique elements.
*/
static int pidlist_uniq(pid_t *list, int length)
{
int src, dest = 1;
/*
* we presume the 0th element is unique, so i starts at 1. trivial
* edge cases first; no work needs to be done for either
*/
if (length == 0 || length == 1)
return length;
/* src and dest walk down the list; dest counts unique elements */
for (src = 1; src < length; src++) {
/* find next unique element */
while (list[src] == list[src-1]) {
src++;
if (src == length)
goto after;
}
/* dest always points to where the next unique element goes */
list[dest] = list[src];
dest++;
}
after:
return dest;
}
/*
* The two pid files - task and cgroup.procs - guaranteed that the result
* is sorted, which forced this whole pidlist fiasco. As pid order is
* different per namespace, each namespace needs differently sorted list,
* making it impossible to use, for example, single rbtree of member tasks
* sorted by task pointer. As pidlists can be fairly large, allocating one
* per open file is dangerous, so cgroup had to implement shared pool of
* pidlists keyed by cgroup and namespace.
*
* All this extra complexity was caused by the original implementation
* committing to an entirely unnecessary property. In the long term, we
* want to do away with it. Explicitly scramble sort order if
* sane_behavior so that no such expectation exists in the new interface.
*
* Scrambling is done by swapping every two consecutive bits, which is
* non-identity one-to-one mapping which disturbs sort order sufficiently.
*/
static pid_t pid_fry(pid_t pid)
{
unsigned a = pid & 0x55555555;
unsigned b = pid & 0xAAAAAAAA;
return (a << 1) | (b >> 1);
}
static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
{
if (cgroup_sane_behavior(cgrp))
return pid_fry(pid);
else
return pid;
}
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
static int fried_cmppid(const void *a, const void *b)
{
return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
}
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
/* don't need task_nsproxy() if we're looking at ourself */
struct pid_namespace *ns = task_active_pid_ns(current);
lockdep_assert_held(&cgrp->pidlist_mutex);
list_for_each_entry(l, &cgrp->pidlists, links)
if (l->key.type == type && l->key.ns == ns)
return l;
return NULL;
}
/*
* find the appropriate pidlist for our purpose (given procs vs tasks)
* returns with the lock on that pidlist already held, and takes care
* of the use count, or returns NULL with no locks held if we're out of
* memory.
*/
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
l = cgroup_pidlist_find(cgrp, type);
if (l)
return l;
/* entry not found; create a new one */
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
if (!l)
return l;
INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
l->key.type = type;
/* don't need task_nsproxy() if we're looking at ourself */
l->key.ns = get_pid_ns(task_active_pid_ns(current));
l->owner = cgrp;
list_add(&l->links, &cgrp->pidlists);
return l;
}
/*
* Load a cgroup's pidarray with either procs' tgids or tasks' pids
*/
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
struct cgroup_pidlist **lp)
{
pid_t *array;
int length;
int pid, n = 0; /* used for populating the array */
struct css_task_iter it;
struct task_struct *tsk;
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cgroup users didn't
* show up until sometime later on.
*/
length = cgroup_task_count(cgrp);
array = pidlist_allocate(length);
if (!array)
return -ENOMEM;
/* now, populate the array */
css_task_iter_start(&cgrp->dummy_css, &it);
while ((tsk = css_task_iter_next(&it))) {
if (unlikely(n == length))
break;
/* get tgid or pid for procs or tasks file respectively */
if (type == CGROUP_FILE_PROCS)
pid = task_tgid_vnr(tsk);
else
pid = task_pid_vnr(tsk);
if (pid > 0) /* make sure to only use valid results */
array[n++] = pid;
}
css_task_iter_end(&it);
length = n;
/* now sort & (if procs) strip out duplicates */
if (cgroup_sane_behavior(cgrp))
sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
else
sort(array, length, sizeof(pid_t), cmppid, NULL);
if (type == CGROUP_FILE_PROCS)
length = pidlist_uniq(array, length);
l = cgroup_pidlist_find_create(cgrp, type);
if (!l) {
mutex_unlock(&cgrp->pidlist_mutex);
pidlist_free(array);
return -ENOMEM;
}
/* store array, freeing old if necessary */
pidlist_free(l->list);
l->list = array;
l->length = length;
*lp = l;
return 0;
}
/**
* cgroupstats_build - build and fill cgroupstats
* @stats: cgroupstats to fill information into
* @dentry: A dentry entry belonging to the cgroup for which stats have
* been requested.
*
* Build and fill cgroupstats so that taskstats can export it to user
* space.
*/
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup *cgrp;
struct css_task_iter it;
struct task_struct *tsk;
/* it should be kernfs_node belonging to cgroupfs and is a directory */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return -EINVAL;
/*
* We aren't being called from kernfs and there's no guarantee on
* @kn->priv's validity. For this and css_tryget_from_dir(),
* @kn->priv is RCU safe. Let's do the RCU dancing.
*/
rcu_read_lock();
cgrp = rcu_dereference(kn->priv);
if (!cgrp) {
rcu_read_unlock();
return -ENOENT;
}
css_task_iter_start(&cgrp->dummy_css, &it);
while ((tsk = css_task_iter_next(&it))) {
switch (tsk->state) {
case TASK_RUNNING:
stats->nr_running++;
break;
case TASK_INTERRUPTIBLE:
stats->nr_sleeping++;
break;
case TASK_UNINTERRUPTIBLE:
stats->nr_uninterruptible++;
break;
case TASK_STOPPED:
stats->nr_stopped++;
break;
default:
if (delayacct_is_task_waiting_on_io(tsk))
stats->nr_io_wait++;
break;
}
}
css_task_iter_end(&it);
rcu_read_unlock();
return 0;
}
/*
* seq_file methods for the tasks/procs files. The seq_file position is the
* next pid to display; the seq_file iterator is a pointer to the pid
* in the cgroup->l->list array.
*/
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
{
/*
* Initially we receive a position value that corresponds to
* one more than the last pid shown (or 0 on the first call or
* after a seek to the start). Use a binary-search to find the
* next pid to display, if any
*/
struct kernfs_open_file *of = s->private;
struct cgroup *cgrp = seq_css(s)->cgroup;
struct cgroup_pidlist *l;
enum cgroup_filetype type = seq_cft(s)->private;
int index = 0, pid = *pos;
int *iter, ret;
mutex_lock(&cgrp->pidlist_mutex);
/*
* !NULL @of->priv indicates that this isn't the first start()
* after open. If the matching pidlist is around, we can use that.
* Look for it. Note that @of->priv can't be used directly. It
* could already have been destroyed.
*/
if (of->priv)
of->priv = cgroup_pidlist_find(cgrp, type);
/*
* Either this is the first start() after open or the matching
* pidlist has been destroyed inbetween. Create a new one.
*/
if (!of->priv) {
ret = pidlist_array_load(cgrp, type,
(struct cgroup_pidlist **)&of->priv);
if (ret)
return ERR_PTR(ret);
}
l = of->priv;
if (pid) {
int end = l->length;
while (index < end) {
int mid = (index + end) / 2;
if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
index = mid;
break;
} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
index = mid + 1;
else
end = mid;
}
}
/* If we're off the end of the array, we're done */
if (index >= l->length)
return NULL;
/* Update the abstract position to be the actual pid that we found */
iter = l->list + index;
*pos = cgroup_pid_fry(cgrp, *iter);
return iter;
}
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
if (l)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
CGROUP_PIDLIST_DESTROY_DELAY);
mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
}
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
pid_t *p = v;
pid_t *end = l->list + l->length;
/*
* Advance to the next pid in the array. If this goes off the
* end, we're done
*/
p++;
if (p >= end) {
return NULL;
} else {
*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
return p;
}
}
static int cgroup_pidlist_show(struct seq_file *s, void *v)
{
return seq_printf(s, "%d\n", *(int *)v);
}
/*
* seq_operations functions for iterating on pidlists through seq_file -
* independent of whether it's tasks or procs
*/
static const struct seq_operations cgroup_pidlist_seq_operations = {
.start = cgroup_pidlist_start,
.stop = cgroup_pidlist_stop,
.next = cgroup_pidlist_next,
.show = cgroup_pidlist_show,
};
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return notify_on_release(css->cgroup);
}
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
if (val)
set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
else
clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
return 0;
}
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
}
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
else
clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
return 0;
}
static struct cftype cgroup_base_files[] = {
{
.name = "cgroup.procs",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_PROCS,
.write_u64 = cgroup_procs_write,
.mode = S_IRUGO | S_IWUSR,
},
{
.name = "cgroup.clone_children",
.flags = CFTYPE_INSANE,
.read_u64 = cgroup_clone_children_read,
.write_u64 = cgroup_clone_children_write,
},
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_sane_behavior_show,
},
/*
* Historical crazy stuff. These don't have "cgroup." prefix and
* don't exist if sane_behavior. If you're depending on these, be
* prepared to be burned.
*/
{
.name = "tasks",
.flags = CFTYPE_INSANE, /* use "procs" instead */
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_TASKS,
.write_u64 = cgroup_tasks_write,
.mode = S_IRUGO | S_IWUSR,
},
{
.name = "notify_on_release",
.flags = CFTYPE_INSANE,
.read_u64 = cgroup_read_notify_on_release,
.write_u64 = cgroup_write_notify_on_release,
},
{
.name = "release_agent",
.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_release_agent_show,
.write_string = cgroup_release_agent_write,
.max_write_len = PATH_MAX - 1,
},
{ } /* terminate */
};
/**
* cgroup_populate_dir - create subsys files in a cgroup directory
* @cgrp: target cgroup
* @subsys_mask: mask of the subsystem ids whose files should be added
*
* On failure, no file is added.
*/
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
{
struct cgroup_subsys *ss;
int i, ret = 0;
/* process cftsets of each subsystem */
for_each_subsys(ss, i) {
struct cftype *cfts;
if (!test_bit(i, &subsys_mask))
continue;
list_for_each_entry(cfts, &ss->cfts, node) {
ret = cgroup_addrm_files(cgrp, cfts, true);
if (ret < 0)
goto err;
}
}
return 0;
err:
cgroup_clear_dir(cgrp, subsys_mask);
return ret;
}
/*
* css destruction is four-stage process.
*
* 1. Destruction starts. Killing of the percpu_ref is initiated.
* Implemented in kill_css().
*
* 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
* and thus css_tryget() is guaranteed to fail, the css can be offlined
* by invoking offline_css(). After offlining, the base ref is put.
* Implemented in css_killed_work_fn().
*
* 3. When the percpu_ref reaches zero, the only possible remaining
* accessors are inside RCU read sections. css_release() schedules the
* RCU callback.
*
* 4. After the grace period, the css can be freed. Implemented in
* css_free_work_fn().
*
* It is actually hairier because both step 2 and 4 require process context
* and thus involve punting to css->destroy_work adding two additional
* steps to the already complex sequence.
*/
static void css_free_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
struct cgroup *cgrp = css->cgroup;
if (css->parent)
css_put(css->parent);
css->ss->css_free(css);
cgroup_put(cgrp);
}
static void css_free_rcu_fn(struct rcu_head *rcu_head)
{
struct cgroup_subsys_state *css =
container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
INIT_WORK(&css->destroy_work, css_free_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
static void css_release(struct percpu_ref *ref)
{
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
call_rcu(&css->rcu_head, css_free_rcu_fn);
}
static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
struct cgroup *cgrp)
{
css->cgroup = cgrp;
css->ss = ss;
css->flags = 0;
if (cgrp->parent)
css->parent = cgroup_css(cgrp->parent, ss);
else
css->flags |= CSS_ROOT;
BUG_ON(cgroup_css(cgrp, ss));
}
/* invoke ->css_online() on a new CSS and mark it online if successful */
static int online_css(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
int ret = 0;
lockdep_assert_held(&cgroup_tree_mutex);
lockdep_assert_held(&cgroup_mutex);
if (ss->css_online)
ret = ss->css_online(css);
if (!ret) {
css->flags |= CSS_ONLINE;
css->cgroup->nr_css++;
rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
}
return ret;
}
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
static void offline_css(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
lockdep_assert_held(&cgroup_tree_mutex);
lockdep_assert_held(&cgroup_mutex);
if (!(css->flags & CSS_ONLINE))
return;
if (ss->css_offline)
ss->css_offline(css);
css->flags &= ~CSS_ONLINE;
css->cgroup->nr_css--;
RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
}
/**
* create_css - create a cgroup_subsys_state
* @cgrp: the cgroup new css will be associated with
* @ss: the subsys of new css
*
* Create a new css associated with @cgrp - @ss pair. On success, the new
* css is online and installed in @cgrp with all interface files created.
* Returns 0 on success, -errno on failure.
*/
static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
{
struct cgroup *parent = cgrp->parent;
struct cgroup_subsys_state *css;
int err;
lockdep_assert_held(&cgroup_mutex);
css = ss->css_alloc(cgroup_css(parent, ss));
if (IS_ERR(css))
return PTR_ERR(css);
err = percpu_ref_init(&css->refcnt, css_release);
if (err)
goto err_free;
init_css(css, ss, cgrp);
err = cgroup_populate_dir(cgrp, 1 << ss->id);
if (err)
goto err_free;
err = online_css(css);
if (err)
goto err_free;
cgroup_get(cgrp);
css_get(css->parent);
if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
parent->parent) {
pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
current->comm, current->pid, ss->name);
if (!strcmp(ss->name, "memory"))
pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
ss->warned_broken_hierarchy = true;
}
return 0;
err_free:
percpu_ref_cancel_init(&css->refcnt);
ss->css_free(css);
return err;
}
/**
* cgroup_create - create a cgroup
* @parent: cgroup that will be parent of the new cgroup
* @name: name of the new cgroup
* @mode: mode to set on new cgroup
*/
static long cgroup_create(struct cgroup *parent, const char *name,
umode_t mode)
{
struct cgroup *cgrp;
struct cgroupfs_root *root = parent->root;
int ssid, err;
struct cgroup_subsys *ss;
struct kernfs_node *kn;
/* allocate the cgroup and its ID, 0 is reserved for the root */
cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
if (!cgrp)
return -ENOMEM;
mutex_lock(&cgroup_tree_mutex);
/*
* Only live parents can have children. Note that the liveliness
* check isn't strictly necessary because cgroup_mkdir() and
* cgroup_rmdir() are fully synchronized by i_mutex; however, do it
* anyway so that locking is contained inside cgroup proper and we
* don't get nasty surprises if we ever grow another caller.
*/
if (!cgroup_lock_live_group(parent)) {
err = -ENODEV;
goto err_unlock_tree;
}
/*
* Temporarily set the pointer to NULL, so idr_find() won't return
* a half-baked cgroup.
*/
cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
if (cgrp->id < 0) {
err = -ENOMEM;
goto err_unlock;
}
init_cgroup_housekeeping(cgrp);
cgrp->parent = parent;
cgrp->dummy_css.parent = &parent->dummy_css;
cgrp->root = parent->root;
if (notify_on_release(parent))
set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
/* create the directory */
kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
if (IS_ERR(kn)) {
err = PTR_ERR(kn);
goto err_free_id;
}
cgrp->kn = kn;
/*
* This extra ref will be put in cgroup_free_fn() and guarantees
* that @cgrp->kn is always accessible.
*/
kernfs_get(kn);
cgrp->serial_nr = cgroup_serial_nr_next++;
/* allocation complete, commit to creation */
list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
atomic_inc(&root->nr_cgrps);
/*
* Grab a reference on the root and parent so that they don't get
* deleted while there are child cgroups.
*/
cgroup_get_root(root);
cgroup_get(parent);
/*
* @cgrp is now fully operational. If something fails after this
* point, it'll be released via the normal destruction path.
*/
idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
if (err)
goto err_destroy;
/* let's create and online css's */
for_each_subsys(ss, ssid) {
if (root->subsys_mask & (1 << ssid)) {
err = create_css(cgrp, ss);
if (err)
goto err_destroy;
}
}
kernfs_activate(kn);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
return 0;
err_free_id:
idr_remove(&root->cgroup_idr, cgrp->id);
err_unlock:
mutex_unlock(&cgroup_mutex);
err_unlock_tree:
mutex_unlock(&cgroup_tree_mutex);
kfree(cgrp);
return err;
err_destroy:
cgroup_destroy_locked(cgrp);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
return err;
}
static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
umode_t mode)
{
struct cgroup *parent = parent_kn->priv;
return cgroup_create(parent, name, mode);
}
/*
* This is called when the refcnt of a css is confirmed to be killed.
* css_tryget() is now guaranteed to fail.
*/
static void css_killed_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
struct cgroup *cgrp = css->cgroup;
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
/*
* css_tryget() is guaranteed to fail now. Tell subsystems to
* initate destruction.
*/
offline_css(css);
/*
* If @cgrp is marked dead, it's waiting for refs of all css's to
* be disabled before proceeding to the second phase of cgroup
* destruction. If we are the last one, kick it off.
*/
if (!cgrp->nr_css && cgroup_is_dead(cgrp))
cgroup_destroy_css_killed(cgrp);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
/*
* Put the css refs from kill_css(). Each css holds an extra
* reference to the cgroup's dentry and cgroup removal proceeds
* regardless of css refs. On the last put of each css, whenever
* that may be, the extra dentry ref is put so that dentry
* destruction happens only after all css's are released.
*/
css_put(css);
}
/* css kill confirmation processing requires process context, bounce */
static void css_killed_ref_fn(struct percpu_ref *ref)
{
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
INIT_WORK(&css->destroy_work, css_killed_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
/**
* kill_css - destroy a css
* @css: css to destroy
*
* This function initiates destruction of @css by removing cgroup interface
* files and putting its base reference. ->css_offline() will be invoked
* asynchronously once css_tryget() is guaranteed to fail and when the
* reference count reaches zero, @css will be released.
*/
static void kill_css(struct cgroup_subsys_state *css)
{
/*
* This must happen before css is disassociated with its cgroup.
* See seq_css() for details.
*/
cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
/*
* Killing would put the base ref, but we need to keep it alive
* until after ->css_offline().
*/
css_get(css);
/*
* cgroup core guarantees that, by the time ->css_offline() is
* invoked, no new css reference will be given out via
* css_tryget(). We can't simply call percpu_ref_kill() and
* proceed to offlining css's because percpu_ref_kill() doesn't
* guarantee that the ref is seen as killed on all CPUs on return.
*
* Use percpu_ref_kill_and_confirm() to get notifications as each
* css is confirmed to be seen as killed on all CPUs.
*/
percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
}
/**
* cgroup_destroy_locked - the first stage of cgroup destruction
* @cgrp: cgroup to be destroyed
*
* css's make use of percpu refcnts whose killing latency shouldn't be
* exposed to userland and are RCU protected. Also, cgroup core needs to
* guarantee that css_tryget() won't succeed by the time ->css_offline() is
* invoked. To satisfy all the requirements, destruction is implemented in
* the following two steps.
*
* s1. Verify @cgrp can be destroyed and mark it dying. Remove all
* userland visible parts and start killing the percpu refcnts of
* css's. Set up so that the next stage will be kicked off once all
* the percpu refcnts are confirmed to be killed.
*
* s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
* rest of destruction. Once all cgroup references are gone, the
* cgroup is RCU-freed.
*
* This function implements s1. After this step, @cgrp is gone as far as
* the userland is concerned and a new cgroup with the same name may be
* created. As cgroup doesn't care about the names internally, this
* doesn't cause any problem.
*/
static int cgroup_destroy_locked(struct cgroup *cgrp)
__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
struct cgroup *child;
struct cgroup_subsys_state *css;
bool empty;
int ssid;
lockdep_assert_held(&cgroup_tree_mutex);
lockdep_assert_held(&cgroup_mutex);
/*
* css_set_lock synchronizes access to ->cset_links and prevents
* @cgrp from being removed while __put_css_set() is in progress.
*/
read_lock(&css_set_lock);
empty = list_empty(&cgrp->cset_links);
read_unlock(&css_set_lock);
if (!empty)
return -EBUSY;
/*
* Make sure there's no live children. We can't test ->children
* emptiness as dead children linger on it while being destroyed;
* otherwise, "rmdir parent/child parent" may fail with -EBUSY.
*/
empty = true;
rcu_read_lock();
list_for_each_entry_rcu(child, &cgrp->children, sibling) {
empty = cgroup_is_dead(child);
if (!empty)
break;
}
rcu_read_unlock();
if (!empty)
return -EBUSY;
/*
* Initiate massacre of all css's. cgroup_destroy_css_killed()
* will be invoked to perform the rest of destruction once the
* percpu refs of all css's are confirmed to be killed. This
* involves removing the subsystem's files, drop cgroup_mutex.
*/
mutex_unlock(&cgroup_mutex);
for_each_css(css, ssid, cgrp)
kill_css(css);
mutex_lock(&cgroup_mutex);
/*
* Mark @cgrp dead. This prevents further task migration and child
* creation by disabling cgroup_lock_live_group(). Note that
* CGRP_DEAD assertion is depended upon by css_next_child() to
* resume iteration after dropping RCU read lock. See
* css_next_child() for details.
*/
set_bit(CGRP_DEAD, &cgrp->flags);
/* CGRP_DEAD is set, remove from ->release_list for the last time */
raw_spin_lock(&release_list_lock);
if (!list_empty(&cgrp->release_list))
list_del_init(&cgrp->release_list);
raw_spin_unlock(&release_list_lock);
/*
* If @cgrp has css's attached, the second stage of cgroup
* destruction is kicked off from css_killed_work_fn() after the
* refs of all attached css's are killed. If @cgrp doesn't have
* any css, we kick it off here.
*/
if (!cgrp->nr_css)
cgroup_destroy_css_killed(cgrp);
/* remove @cgrp directory along with the base files */
mutex_unlock(&cgroup_mutex);
/*
* There are two control paths which try to determine cgroup from
* dentry without going through kernfs - cgroupstats_build() and
* css_tryget_from_dir(). Those are supported by RCU protecting
* clearing of cgrp->kn->priv backpointer, which should happen
* after all files under it have been removed.
*/
kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
mutex_lock(&cgroup_mutex);
return 0;
};
/**
* cgroup_destroy_css_killed - the second step of cgroup destruction
* @work: cgroup->destroy_free_work
*
* This function is invoked from a work item for a cgroup which is being
* destroyed after all css's are offlined and performs the rest of
* destruction. This is the second step of destruction described in the
* comment above cgroup_destroy_locked().
*/
static void cgroup_destroy_css_killed(struct cgroup *cgrp)
{
struct cgroup *parent = cgrp->parent;
lockdep_assert_held(&cgroup_tree_mutex);
lockdep_assert_held(&cgroup_mutex);
/* delete this cgroup from parent->children */
list_del_rcu(&cgrp->sibling);
cgroup_put(cgrp);
set_bit(CGRP_RELEASABLE, &parent->flags);
check_for_release(parent);
}
static int cgroup_rmdir(struct kernfs_node *kn)
{
struct cgroup *cgrp = kn->priv;
int ret = 0;
/*
* This is self-destruction but @kn can't be removed while this
* callback is in progress. Let's break active protection. Once
* the protection is broken, @cgrp can be destroyed at any point.
* Pin it so that it stays accessible.
*/
cgroup_get(cgrp);
kernfs_break_active_protection(kn);
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
/*
* @cgrp might already have been destroyed while we're trying to
* grab the mutexes.
*/
if (!cgroup_is_dead(cgrp))
ret = cgroup_destroy_locked(cgrp);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
kernfs_unbreak_active_protection(kn);
cgroup_put(cgrp);
return ret;
}
static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
.remount_fs = cgroup_remount,
.show_options = cgroup_show_options,
.mkdir = cgroup_mkdir,
.rmdir = cgroup_rmdir,
.rename = cgroup_rename,
};
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
{
struct cgroup_subsys_state *css;
printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
INIT_LIST_HEAD(&ss->cfts);
/* Create the top cgroup state for this subsystem */
ss->root = &cgroup_dummy_root;
css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
/* We don't handle early failures gracefully */
BUG_ON(IS_ERR(css));
init_css(css, ss, cgroup_dummy_top);
/* Update the init_css_set to contain a subsys
* pointer to this state - since the subsystem is
* newly registered, all tasks and hence the
* init_css_set is in the subsystem's top cgroup. */
init_css_set.subsys[ss->id] = css;
need_forkexit_callback |= ss->fork || ss->exit;
/* At system boot, before all subsystems have been
* registered, no tasks have been forked, so we don't
* need to invoke fork callbacks here. */
BUG_ON(!list_empty(&init_task.tasks));
BUG_ON(online_css(css));
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
}
/**
* cgroup_init_early - cgroup initialization at system boot
*
* Initialize cgroups at system boot, and initialize any
* subsystems that request early init.
*/
int __init cgroup_init_early(void)
{
struct cgroup_subsys *ss;
int i;
atomic_set(&init_css_set.refcount, 1);
INIT_LIST_HEAD(&init_css_set.cgrp_links);
INIT_LIST_HEAD(&init_css_set.tasks);
INIT_HLIST_NODE(&init_css_set.hlist);
css_set_count = 1;
init_cgroup_root(&cgroup_dummy_root);
cgroup_root_count = 1;
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
init_cgrp_cset_link.cset = &init_css_set;
init_cgrp_cset_link.cgrp = cgroup_dummy_top;
list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
for_each_subsys(ss, i) {
WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
"invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
ss->id, ss->name);
WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
"cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
ss->id = i;
ss->name = cgroup_subsys_name[i];
if (ss->early_init)
cgroup_init_subsys(ss);
}
return 0;
}
/**
* cgroup_init - cgroup initialization
*
* Register cgroup filesystem and /proc file, and initialize
* any subsystems that didn't request early init.
*/
int __init cgroup_init(void)
{
struct cgroup_subsys *ss;
unsigned long key;
int i, err;
BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
for_each_subsys(ss, i) {
if (!ss->early_init)
cgroup_init_subsys(ss);
/*
* cftype registration needs kmalloc and can't be done
* during early_init. Register base cftypes separately.
*/
if (ss->base_cftypes)
WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
}
/* allocate id for the dummy hierarchy */
mutex_lock(&cgroup_mutex);
/* Add init_css_set to the hash table */
key = css_set_hash(init_css_set.subsys);
hash_add(css_set_table, &init_css_set.hlist, key);
BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
0, 1, GFP_KERNEL);
BUG_ON(err < 0);
mutex_unlock(&cgroup_mutex);
cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
if (!cgroup_kobj)
return -ENOMEM;
err = register_filesystem(&cgroup_fs_type);
if (err < 0) {
kobject_put(cgroup_kobj);
return err;
}
proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
return 0;
}
static int __init cgroup_wq_init(void)
{
/*
* There isn't much point in executing destruction path in
* parallel. Good chunk is serialized with cgroup_mutex anyway.
*
* XXX: Must be ordered to make sure parent is offlined after
* children. The ordering requirement is for memcg where a
* parent's offline may wait for a child's leading to deadlock. In
* the long term, this should be fixed from memcg side.
*
* We would prefer to do this in cgroup_init() above, but that
* is called before init_workqueues(): so leave this until after.
*/
cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
BUG_ON(!cgroup_destroy_wq);
/*
* Used to destroy pidlists and separate to serve as flush domain.
* Cap @max_active to 1 too.
*/
cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
0, 1);
BUG_ON(!cgroup_pidlist_destroy_wq);
return 0;
}
core_initcall(cgroup_wq_init);
/*
* proc_cgroup_show()
* - Print task's cgroup paths into seq_file, one line for each hierarchy
* - Used for /proc/<pid>/cgroup.
* - No need to task_lock(tsk) on this tsk->cgroup reference, as it
* doesn't really matter if tsk->cgroup changes after we read it,
* and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
* anyway. No need to check that tsk->cgroup != NULL, thanks to
* the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
* cgroup to top_cgroup.
*/
/* TODO: Use a proper seq_file iterator */
int proc_cgroup_show(struct seq_file *m, void *v)
{
struct pid *pid;
struct task_struct *tsk;
char *buf, *path;
int retval;
struct cgroupfs_root *root;
retval = -ENOMEM;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
goto out;
retval = -ESRCH;
pid = m->private;
tsk = get_pid_task(pid, PIDTYPE_PID);
if (!tsk)
goto out_free;
retval = 0;
mutex_lock(&cgroup_mutex);
for_each_active_root(root) {
struct cgroup_subsys *ss;
struct cgroup *cgrp;
int ssid, count = 0;
seq_printf(m, "%d:", root->hierarchy_id);
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
if (strlen(root->name))
seq_printf(m, "%sname=%s", count ? "," : "",
root->name);
seq_putc(m, ':');
cgrp = task_cgroup_from_root(tsk, root);
path = cgroup_path(cgrp, buf, PATH_MAX);
if (!path) {
retval = -ENAMETOOLONG;
goto out_unlock;
}
seq_puts(m, path);
seq_putc(m, '\n');
}
out_unlock:
mutex_unlock(&cgroup_mutex);
put_task_struct(tsk);
out_free:
kfree(buf);
out:
return retval;
}
/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
struct cgroup_subsys *ss;
int i;
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
/*
* ideally we don't want subsystems moving around while we do this.
* cgroup_mutex is also necessary to guarantee an atomic snapshot of
* subsys/hierarchy state.
*/
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
ss->name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps), !ss->disabled);
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroupstats_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_cgroupstats_show, NULL);
}
static const struct file_operations proc_cgroupstats_operations = {
.open = cgroupstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* cgroup_fork - attach newly forked task to its parents cgroup.
* @child: pointer to task_struct of forking parent process.
*
* Description: A task inherits its parent's cgroup at fork().
*
* A pointer to the shared css_set was automatically copied in
* fork.c by dup_task_struct(). However, we ignore that copy, since
* it was not made under the protection of RCU or cgroup_mutex, so
* might no longer be a valid cgroup pointer. cgroup_attach_task() might
* have already changed current->cgroups, allowing the previously
* referenced cgroup group to be removed and freed.
*
* At the point that cgroup_fork() is called, 'current' is the parent
* task, and the passed argument 'child' points to the child task.
*/
void cgroup_fork(struct task_struct *child)
{
task_lock(current);
get_css_set(task_css_set(current));
child->cgroups = current->cgroups;
task_unlock(current);
INIT_LIST_HEAD(&child->cg_list);
}
/**
* cgroup_post_fork - called on a new task after adding it to the task list
* @child: the task in question
*
* Adds the task to the list running through its css_set if necessary and
* call the subsystem fork() callbacks. Has to be after the task is
* visible on the task list in case we race with the first call to
* cgroup_task_iter_start() - to guarantee that the new task ends up on its
* list.
*/
void cgroup_post_fork(struct task_struct *child)
{
struct cgroup_subsys *ss;
int i;
/*
* use_task_css_set_links is set to 1 before we walk the tasklist
* under the tasklist_lock and we read it here after we added the child
* to the tasklist under the tasklist_lock as well. If the child wasn't
* yet in the tasklist when we walked through it from
* cgroup_enable_task_cg_lists(), then use_task_css_set_links value
* should be visible now due to the paired locking and barriers implied
* by LOCK/UNLOCK: it is written before the tasklist_lock unlock
* in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
* lock on fork.
*/
if (use_task_css_set_links) {
write_lock(&css_set_lock);
task_lock(child);
if (list_empty(&child->cg_list))
list_add(&child->cg_list, &task_css_set(child)->tasks);
task_unlock(child);
write_unlock(&css_set_lock);
}
/*
* Call ss->fork(). This must happen after @child is linked on
* css_set; otherwise, @child might change state between ->fork()
* and addition to css_set.
*/
if (need_forkexit_callback) {
for_each_subsys(ss, i)
if (ss->fork)
ss->fork(child);
}
}
/**
* cgroup_exit - detach cgroup from exiting task
* @tsk: pointer to task_struct of exiting process
* @run_callback: run exit callbacks?
*
* Description: Detach cgroup from @tsk and release it.
*
* Note that cgroups marked notify_on_release force every task in
* them to take the global cgroup_mutex mutex when exiting.
* This could impact scaling on very large systems. Be reluctant to
* use notify_on_release cgroups where very high task exit scaling
* is required on large systems.
*
* the_top_cgroup_hack:
*
* Set the exiting tasks cgroup to the root cgroup (top_cgroup).
*
* We call cgroup_exit() while the task is still competent to
* handle notify_on_release(), then leave the task attached to the
* root cgroup in each hierarchy for the remainder of its exit.
*
* To do this properly, we would increment the reference count on
* top_cgroup, and near the very end of the kernel/exit.c do_exit()
* code we would add a second cgroup function call, to drop that
* reference. This would just create an unnecessary hot spot on
* the top_cgroup reference count, to no avail.
*
* Normally, holding a reference to a cgroup without bumping its
* count is unsafe. The cgroup could go away, or someone could
* attach us to a different cgroup, decrementing the count on
* the first cgroup that we never incremented. But in this case,
* top_cgroup isn't going away, and either task has PF_EXITING set,
* which wards off any cgroup_attach_task() attempts, or task is a failed
* fork, never visible to cgroup_attach_task.
*/
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
struct cgroup_subsys *ss;
struct css_set *cset;
int i;
/*
* Unlink from the css_set task list if necessary.
* Optimistically check cg_list before taking
* css_set_lock
*/
if (!list_empty(&tsk->cg_list)) {
write_lock(&css_set_lock);
if (!list_empty(&tsk->cg_list))
list_del_init(&tsk->cg_list);
write_unlock(&css_set_lock);
}
/* Reassign the task to the init_css_set. */
task_lock(tsk);
cset = task_css_set(tsk);
RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
if (run_callbacks && need_forkexit_callback) {
/* see cgroup_post_fork() for details */
for_each_subsys(ss, i) {
if (ss->exit) {
struct cgroup_subsys_state *old_css = cset->subsys[i];
struct cgroup_subsys_state *css = task_css(tsk, i);
ss->exit(css, old_css, tsk);
}
}
}
task_unlock(tsk);
put_css_set_taskexit(cset);
}
static void check_for_release(struct cgroup *cgrp)
{
if (cgroup_is_releasable(cgrp) &&
list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
/*
* Control Group is currently removeable. If it's not
* already queued for a userspace notification, queue
* it now
*/
int need_schedule_work = 0;
raw_spin_lock(&release_list_lock);
if (!cgroup_is_dead(cgrp) &&
list_empty(&cgrp->release_list)) {
list_add(&cgrp->release_list, &release_list);
need_schedule_work = 1;
}
raw_spin_unlock(&release_list_lock);
if (need_schedule_work)
schedule_work(&release_agent_work);
}
}
/*
* Notify userspace when a cgroup is released, by running the
* configured release agent with the name of the cgroup (path
* relative to the root of cgroup file system) as the argument.
*
* Most likely, this user command will try to rmdir this cgroup.
*
* This races with the possibility that some other task will be
* attached to this cgroup before it is removed, or that some other
* user task will 'mkdir' a child cgroup of this cgroup. That's ok.
* The presumed 'rmdir' will fail quietly if this cgroup is no longer
* unused, and this cgroup will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
* means only wait until the task is successfully execve()'d. The
* separate release agent task is forked by call_usermodehelper(),
* then control in this thread returns here, without waiting for the
* release agent task. We don't bother to wait because the caller of
* this routine has no use for the exit status of the release agent
* task, so no sense holding our caller up for that.
*/
static void cgroup_release_agent(struct work_struct *work)
{
BUG_ON(work != &release_agent_work);
mutex_lock(&cgroup_mutex);
raw_spin_lock(&release_list_lock);
while (!list_empty(&release_list)) {
char *argv[3], *envp[3];
int i;
char *pathbuf = NULL, *agentbuf = NULL, *path;
struct cgroup *cgrp = list_entry(release_list.next,
struct cgroup,
release_list);
list_del_init(&cgrp->release_list);
raw_spin_unlock(&release_list_lock);
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!pathbuf)
goto continue_free;
path = cgroup_path(cgrp, pathbuf, PATH_MAX);
if (!path)
goto continue_free;
agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
if (!agentbuf)
goto continue_free;
i = 0;
argv[i++] = agentbuf;
argv[i++] = path;
argv[i] = NULL;
i = 0;
/* minimal command environment */
envp[i++] = "HOME=/";
envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[i] = NULL;
/* Drop the lock while we invoke the usermode helper,
* since the exec could involve hitting disk and hence
* be a slow process */
mutex_unlock(&cgroup_mutex);
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
mutex_lock(&cgroup_mutex);
continue_free:
kfree(pathbuf);
kfree(agentbuf);
raw_spin_lock(&release_list_lock);
}
raw_spin_unlock(&release_list_lock);
mutex_unlock(&cgroup_mutex);
}
static int __init cgroup_disable(char *str)
{
struct cgroup_subsys *ss;
char *token;
int i;
while ((token = strsep(&str, ",")) != NULL) {
if (!*token)
continue;
for_each_subsys(ss, i) {
if (!strcmp(token, ss->name)) {
ss->disabled = 1;
printk(KERN_INFO "Disabling %s control group"
" subsystem\n", ss->name);
break;
}
}
}
return 1;
}
__setup("cgroup_disable=", cgroup_disable);
/**
* css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
* @dentry: directory dentry of interest
* @ss: subsystem of interest
*
* If @dentry is a directory for a cgroup which has @ss enabled on it, try
* to get the corresponding css and return it. If such css doesn't exist
* or can't be pinned, an ERR_PTR value is returned.
*/
struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
struct cgroup_subsys *ss)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup_subsys_state *css = NULL;
struct cgroup *cgrp;
/* is @dentry a cgroup dir? */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return ERR_PTR(-EBADF);
rcu_read_lock();
/*
* This path doesn't originate from kernfs and @kn could already
* have been or be removed at any point. @kn->priv is RCU
* protected for this access. See destroy_locked() for details.
*/
cgrp = rcu_dereference(kn->priv);
if (cgrp)
css = cgroup_css(cgrp, ss);
if (!css || !css_tryget(css))
css = ERR_PTR(-ENOENT);
rcu_read_unlock();
return css;
}
/**
* css_from_id - lookup css by id
* @id: the cgroup id
* @ss: cgroup subsys to be looked into
*
* Returns the css if there's valid one with @id, otherwise returns NULL.
* Should be called under rcu_read_lock().
*/
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
struct cgroup *cgrp;
cgroup_assert_mutexes_or_rcu_locked();
cgrp = idr_find(&ss->root->cgroup_idr, id);
if (cgrp)
return cgroup_css(cgrp, ss);
return NULL;
}
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
if (!css)
return ERR_PTR(-ENOMEM);
return css;
}
static void debug_css_free(struct cgroup_subsys_state *css)
{
kfree(css);
}
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return cgroup_task_count(css->cgroup);
}
static u64 current_css_set_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return (u64)(unsigned long)current->cgroups;
}
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
u64 count;
rcu_read_lock();
count = atomic_read(&task_css_set(current)->refcount);
rcu_read_unlock();
return count;
}
static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
{
struct cgrp_cset_link *link;
struct css_set *cset;
char *name_buf;
name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
if (!name_buf)
return -ENOMEM;
read_lock(&css_set_lock);
rcu_read_lock();
cset = rcu_dereference(current->cgroups);
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
const char *name = "?";
if (c != cgroup_dummy_top) {
cgroup_name(c, name_buf, NAME_MAX + 1);
name = name_buf;
}
seq_printf(seq, "Root %d group %s\n",
c->root->hierarchy_id, name);
}
rcu_read_unlock();
read_unlock(&css_set_lock);
kfree(name_buf);
return 0;
}
#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct seq_file *seq, void *v)
{
struct cgroup_subsys_state *css = seq_css(seq);
struct cgrp_cset_link *link;
read_lock(&css_set_lock);
list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
struct css_set *cset = link->cset;
struct task_struct *task;
int count = 0;
seq_printf(seq, "css_set %p\n", cset);
list_for_each_entry(task, &cset->tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
seq_puts(seq, " ...\n");
break;
} else {
seq_printf(seq, " task %d\n",
task_pid_vnr(task));
}
}
}
read_unlock(&css_set_lock);
return 0;
}
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
}
static struct cftype debug_files[] = {
{
.name = "taskcount",
.read_u64 = debug_taskcount_read,
},
{
.name = "current_css_set",
.read_u64 = current_css_set_read,
},
{
.name = "current_css_set_refcount",
.read_u64 = current_css_set_refcount_read,
},
{
.name = "current_css_set_cg_links",
.seq_show = current_css_set_cg_links_read,
},
{
.name = "cgroup_css_links",
.seq_show = cgroup_css_links_read,
},
{
.name = "releasable",
.read_u64 = releasable_read,
},
{ } /* terminate */
};
struct cgroup_subsys debug_cgrp_subsys = {
.css_alloc = debug_css_alloc,
.css_free = debug_css_free,
.base_cftypes = debug_files,
};
#endif /* CONFIG_CGROUP_DEBUG */