mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-09 23:00:21 +00:00
573a652fb0
Support for the Tauros2 L2 cache controller as used with the PJ1 and PJ4 CPUs. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Saeed Bishara <saeed@marvell.com> Signed-off-by: Nicolas Pitre <nico@marvell.com>
264 lines
6.1 KiB
C
264 lines
6.1 KiB
C
/*
|
|
* arch/arm/mm/cache-tauros2.c - Tauros2 L2 cache controller support
|
|
*
|
|
* Copyright (C) 2008 Marvell Semiconductor
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public
|
|
* License version 2. This program is licensed "as is" without any
|
|
* warranty of any kind, whether express or implied.
|
|
*
|
|
* References:
|
|
* - PJ1 CPU Core Datasheet,
|
|
* Document ID MV-S104837-01, Rev 0.7, January 24 2008.
|
|
* - PJ4 CPU Core Datasheet,
|
|
* Document ID MV-S105190-00, Rev 0.7, March 14 2008.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/hardware/cache-tauros2.h>
|
|
|
|
|
|
/*
|
|
* When Tauros2 is used on a CPU that supports the v7 hierarchical
|
|
* cache operations, the cache handling code in proc-v7.S takes care
|
|
* of everything, including handling DMA coherency.
|
|
*
|
|
* So, we only need to register outer cache operations here if we're
|
|
* being used on a pre-v7 CPU, and we only need to build support for
|
|
* outer cache operations into the kernel image if the kernel has been
|
|
* configured to support a pre-v7 CPU.
|
|
*/
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
/*
|
|
* Low-level cache maintenance operations.
|
|
*/
|
|
static inline void tauros2_clean_pa(unsigned long addr)
|
|
{
|
|
__asm__("mcr p15, 1, %0, c7, c11, 3" : : "r" (addr));
|
|
}
|
|
|
|
static inline void tauros2_clean_inv_pa(unsigned long addr)
|
|
{
|
|
__asm__("mcr p15, 1, %0, c7, c15, 3" : : "r" (addr));
|
|
}
|
|
|
|
static inline void tauros2_inv_pa(unsigned long addr)
|
|
{
|
|
__asm__("mcr p15, 1, %0, c7, c7, 3" : : "r" (addr));
|
|
}
|
|
|
|
|
|
/*
|
|
* Linux primitives.
|
|
*
|
|
* Note that the end addresses passed to Linux primitives are
|
|
* noninclusive.
|
|
*/
|
|
#define CACHE_LINE_SIZE 32
|
|
|
|
static void tauros2_inv_range(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* Clean and invalidate partial first cache line.
|
|
*/
|
|
if (start & (CACHE_LINE_SIZE - 1)) {
|
|
tauros2_clean_inv_pa(start & ~(CACHE_LINE_SIZE - 1));
|
|
start = (start | (CACHE_LINE_SIZE - 1)) + 1;
|
|
}
|
|
|
|
/*
|
|
* Clean and invalidate partial last cache line.
|
|
*/
|
|
if (end & (CACHE_LINE_SIZE - 1)) {
|
|
tauros2_clean_inv_pa(end & ~(CACHE_LINE_SIZE - 1));
|
|
end &= ~(CACHE_LINE_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* Invalidate all full cache lines between 'start' and 'end'.
|
|
*/
|
|
while (start < end) {
|
|
tauros2_inv_pa(start);
|
|
start += CACHE_LINE_SIZE;
|
|
}
|
|
|
|
dsb();
|
|
}
|
|
|
|
static void tauros2_clean_range(unsigned long start, unsigned long end)
|
|
{
|
|
start &= ~(CACHE_LINE_SIZE - 1);
|
|
while (start < end) {
|
|
tauros2_clean_pa(start);
|
|
start += CACHE_LINE_SIZE;
|
|
}
|
|
|
|
dsb();
|
|
}
|
|
|
|
static void tauros2_flush_range(unsigned long start, unsigned long end)
|
|
{
|
|
start &= ~(CACHE_LINE_SIZE - 1);
|
|
while (start < end) {
|
|
tauros2_clean_inv_pa(start);
|
|
start += CACHE_LINE_SIZE;
|
|
}
|
|
|
|
dsb();
|
|
}
|
|
#endif
|
|
|
|
static inline u32 __init read_extra_features(void)
|
|
{
|
|
u32 u;
|
|
|
|
__asm__("mrc p15, 1, %0, c15, c1, 0" : "=r" (u));
|
|
|
|
return u;
|
|
}
|
|
|
|
static inline void __init write_extra_features(u32 u)
|
|
{
|
|
__asm__("mcr p15, 1, %0, c15, c1, 0" : : "r" (u));
|
|
}
|
|
|
|
static void __init disable_l2_prefetch(void)
|
|
{
|
|
u32 u;
|
|
|
|
/*
|
|
* Read the CPU Extra Features register and verify that the
|
|
* Disable L2 Prefetch bit is set.
|
|
*/
|
|
u = read_extra_features();
|
|
if (!(u & 0x01000000)) {
|
|
printk(KERN_INFO "Tauros2: Disabling L2 prefetch.\n");
|
|
write_extra_features(u | 0x01000000);
|
|
}
|
|
}
|
|
|
|
static inline int __init cpuid_scheme(void)
|
|
{
|
|
extern int processor_id;
|
|
|
|
return !!((processor_id & 0x000f0000) == 0x000f0000);
|
|
}
|
|
|
|
static inline u32 __init read_mmfr3(void)
|
|
{
|
|
u32 mmfr3;
|
|
|
|
__asm__("mrc p15, 0, %0, c0, c1, 7\n" : "=r" (mmfr3));
|
|
|
|
return mmfr3;
|
|
}
|
|
|
|
static inline u32 __init read_actlr(void)
|
|
{
|
|
u32 actlr;
|
|
|
|
__asm__("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
|
|
|
|
return actlr;
|
|
}
|
|
|
|
static inline void __init write_actlr(u32 actlr)
|
|
{
|
|
__asm__("mcr p15, 0, %0, c1, c0, 1\n" : : "r" (actlr));
|
|
}
|
|
|
|
void __init tauros2_init(void)
|
|
{
|
|
extern int processor_id;
|
|
char *mode;
|
|
|
|
disable_l2_prefetch();
|
|
|
|
#ifdef CONFIG_CPU_32v5
|
|
if ((processor_id & 0xff0f0000) == 0x56050000) {
|
|
u32 feat;
|
|
|
|
/*
|
|
* v5 CPUs with Tauros2 have the L2 cache enable bit
|
|
* located in the CPU Extra Features register.
|
|
*/
|
|
feat = read_extra_features();
|
|
if (!(feat & 0x00400000)) {
|
|
printk(KERN_INFO "Tauros2: Enabling L2 cache.\n");
|
|
write_extra_features(feat | 0x00400000);
|
|
}
|
|
|
|
mode = "ARMv5";
|
|
outer_cache.inv_range = tauros2_inv_range;
|
|
outer_cache.clean_range = tauros2_clean_range;
|
|
outer_cache.flush_range = tauros2_flush_range;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_32v6
|
|
/*
|
|
* Check whether this CPU lacks support for the v7 hierarchical
|
|
* cache ops. (PJ4 is in its v6 personality mode if the MMFR3
|
|
* register indicates no support for the v7 hierarchical cache
|
|
* ops.)
|
|
*/
|
|
if (cpuid_scheme() && (read_mmfr3() & 0xf) == 0) {
|
|
/*
|
|
* When Tauros2 is used in an ARMv6 system, the L2
|
|
* enable bit is in the ARMv6 ARM-mandated position
|
|
* (bit [26] of the System Control Register).
|
|
*/
|
|
if (!(get_cr() & 0x04000000)) {
|
|
printk(KERN_INFO "Tauros2: Enabling L2 cache.\n");
|
|
adjust_cr(0x04000000, 0x04000000);
|
|
}
|
|
|
|
mode = "ARMv6";
|
|
outer_cache.inv_range = tauros2_inv_range;
|
|
outer_cache.clean_range = tauros2_clean_range;
|
|
outer_cache.flush_range = tauros2_flush_range;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_32v7
|
|
/*
|
|
* Check whether this CPU has support for the v7 hierarchical
|
|
* cache ops. (PJ4 is in its v7 personality mode if the MMFR3
|
|
* register indicates support for the v7 hierarchical cache
|
|
* ops.)
|
|
*
|
|
* (Although strictly speaking there may exist CPUs that
|
|
* implement the v7 cache ops but are only ARMv6 CPUs (due to
|
|
* not complying with all of the other ARMv7 requirements),
|
|
* there are no real-life examples of Tauros2 being used on
|
|
* such CPUs as of yet.)
|
|
*/
|
|
if (cpuid_scheme() && (read_mmfr3() & 0xf) == 1) {
|
|
u32 actlr;
|
|
|
|
/*
|
|
* When Tauros2 is used in an ARMv7 system, the L2
|
|
* enable bit is located in the Auxiliary System Control
|
|
* Register (which is the only register allowed by the
|
|
* ARMv7 spec to contain fine-grained cache control bits).
|
|
*/
|
|
actlr = read_actlr();
|
|
if (!(actlr & 0x00000002)) {
|
|
printk(KERN_INFO "Tauros2: Enabling L2 cache.\n");
|
|
write_actlr(actlr | 0x00000002);
|
|
}
|
|
|
|
mode = "ARMv7";
|
|
}
|
|
#endif
|
|
|
|
if (mode == NULL) {
|
|
printk(KERN_CRIT "Tauros2: Unable to detect CPU mode.\n");
|
|
return;
|
|
}
|
|
|
|
printk(KERN_INFO "Tauros2: L2 cache support initialised "
|
|
"in %s mode.\n", mode);
|
|
}
|