linux/drivers/pinctrl/qcom/pinctrl-msm.c
Douglas Anderson d21f4b7ffc pinctrl: qcom: Avoid glitching lines when we first mux to output
Back in the description of commit e440e30e26dd ("arm64: dts: qcom:
sc7180: Avoid glitching SPI CS at bootup on trogdor") we described a
problem that we were seeing on trogdor devices. I'll re-summarize here
but you can also re-read the original commit.

On trogdor devices, the BIOS is setting up the SPI chip select as:
- mux special function (SPI chip select)
- output enable
- output low (unused because we've muxed as special function)

In the kernel, however, we've moved away from using the chip select
line as special function. Since the kernel wants to fully control the
chip select it's far more efficient to treat the line as a GPIO rather
than sending packet-like commands to the GENI firmware every time we
want the line to toggle.

When we transition from how the BIOS had the pin configured to how the
kernel has the pin configured we end up glitching the line. That's
because we _first_ change the mux of the line and then later set its
output. This glitch is bad and can confuse the device on the other end
of the line.

The old commit e440e30e26dd ("arm64: dts: qcom: sc7180: Avoid
glitching SPI CS at bootup on trogdor") fixed the glitch, though the
solution was far from elegant. It essentially did the thing that
everyone always hates: encoding a sequential program in device tree,
even if it's a simple one. It also, unfortunately, got broken by
commit b991f8c3622c ("pinctrl: core: Handling pinmux and pinconf
separately"). After that commit we did all the muxing _first_ even
though the config (set the pin to output high) was listed first. :(

I looked at ideas for how to solve this more properly. My first
thought was to use the "init" pinctrl state. In theory the "init"
pinctrl state is supposed to be exactly for achieving glitch-free
transitions. My dream would have been for the "init" pinctrl to do
nothing at all. That would let us delay the automatic pin muxing until
the driver could set things up and call pinctrl_init_done(). In other
words, my dream was:

  /* Request the GPIO; init it 1 (because DT says GPIO_ACTIVE_LOW) */
  devm_gpiod_get_index(dev, "cs", GPIOD_OUT_LOW);
  /* Output should be right, so we can remux, yay! */
  pinctrl_init_done(dev);

Unfortunately, it didn't work out. The primary reason is that the MSM
GPIO driver implements gpio_request_enable(). As documented in
pinmux.h, that function automatically remuxes a line as a GPIO. ...and
it does this remuxing _before_ specifying the output of the pin. You
can see in gpiod_get_index() that we call gpiod_request() before
gpiod_configure_flags(). gpiod_request() isn't passed any flags so it
has no idea what the eventual output will be.

We could have debates about whether or not the automatic remuxing to
GPIO for the MSM pinctrl was a good idea or not, but at this point I
think there is a plethora of code that's relying on it and I certainly
wouldn't suggest changing it.

Alternatively, we could try to come up with a way to pass the initial
output state to gpio_request_enable() and plumb all that through. That
seems like it would be doable, but we'd have to plumb it through
several layers in the stack.

This patch implements yet another alternative. Here, we specifically
avoid glitching the first time a pin is muxed to GPIO function if the
direction of the pin is output. The idea is that we can read the state
of the pin before we set the mux and make sure that the re-mux won't
change the state.

NOTES:
- We only do this the first time since later swaps between mux states
  might want to preserve the old output value. In other words, I
  wouldn't want to break a driver that did:
     gpiod_set_value(g, 1);
     pinctrl_select_state(pinctrl, special_state);
     pinctrl_select_default_state();
     /* We should be driving 1 even if "special_state" made the pin 0 */
- It's safe to do this the first time since the driver _couldn't_ have
  explicitly set a state. In order to even be able to control the GPIO
  (at least using gpiod) we have to have requested it which would have
  counted as the first mux.
- In theory, instead of keeping track of the first time a pin was set
  as a GPIO we could enable the glitch-free behavior only when
  msm_pinmux_request_gpio() is in the callchain. That works an enables
  my "dream" implementation above where we use an "init" state to
  solve this. However, it's nice not to have to do this. By handling
  just the first transition to GPIO we can simply let the normal
  "default" remuxing happen and we can be assured that there won't be
  a glitch.

Before this change I could see the glitch reported on the EC console
when booting. It would say this when booting the kernel:
  Unexpected state 1 in CSNRE ISR

After this change there is no error reported.

Note that I haven't reproduced the original problem described in
e440e30e26dd ("arm64: dts: qcom: sc7180: Avoid glitching SPI CS at
bootup on trogdor") but I could believe it might happen in certain
timing conditions.

Fixes: b991f8c3622c ("pinctrl: core: Handling pinmux and pinconf separately")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20221014103217.1.I656bb2c976ed626e5d37294eb252c1cf3be769dc@changeid
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-10-17 12:28:26 +02:00

1529 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013, Sony Mobile Communications AB.
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/machine.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinmux.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/slab.h>
#include <linux/gpio/driver.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/reboot.h>
#include <linux/pm.h>
#include <linux/log2.h>
#include <linux/qcom_scm.h>
#include <linux/soc/qcom/irq.h>
#include "../core.h"
#include "../pinconf.h"
#include "pinctrl-msm.h"
#include "../pinctrl-utils.h"
#define MAX_NR_GPIO 300
#define MAX_NR_TILES 4
#define PS_HOLD_OFFSET 0x820
/**
* struct msm_pinctrl - state for a pinctrl-msm device
* @dev: device handle.
* @pctrl: pinctrl handle.
* @chip: gpiochip handle.
* @desc: pin controller descriptor
* @restart_nb: restart notifier block.
* @irq: parent irq for the TLMM irq_chip.
* @intr_target_use_scm: route irq to application cpu using scm calls
* @lock: Spinlock to protect register resources as well
* as msm_pinctrl data structures.
* @enabled_irqs: Bitmap of currently enabled irqs.
* @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
* detection.
* @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
* @disabled_for_mux: These IRQs were disabled because we muxed away.
* @ever_gpio: This bit is set the first time we mux a pin to gpio_func.
* @soc: Reference to soc_data of platform specific data.
* @regs: Base addresses for the TLMM tiles.
* @phys_base: Physical base address
*/
struct msm_pinctrl {
struct device *dev;
struct pinctrl_dev *pctrl;
struct gpio_chip chip;
struct pinctrl_desc desc;
struct notifier_block restart_nb;
int irq;
bool intr_target_use_scm;
raw_spinlock_t lock;
DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO);
const struct msm_pinctrl_soc_data *soc;
void __iomem *regs[MAX_NR_TILES];
u32 phys_base[MAX_NR_TILES];
};
#define MSM_ACCESSOR(name) \
static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
const struct msm_pingroup *g) \
{ \
return readl(pctrl->regs[g->tile] + g->name##_reg); \
} \
static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
const struct msm_pingroup *g) \
{ \
writel(val, pctrl->regs[g->tile] + g->name##_reg); \
}
MSM_ACCESSOR(ctl)
MSM_ACCESSOR(io)
MSM_ACCESSOR(intr_cfg)
MSM_ACCESSOR(intr_status)
MSM_ACCESSOR(intr_target)
static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
const struct msm_pingroup *g)
{
u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
msm_writel_intr_status(val, pctrl, g);
}
static int msm_get_groups_count(struct pinctrl_dev *pctldev)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->ngroups;
}
static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
unsigned group)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->groups[group].name;
}
static int msm_get_group_pins(struct pinctrl_dev *pctldev,
unsigned group,
const unsigned **pins,
unsigned *num_pins)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
*pins = pctrl->soc->groups[group].pins;
*num_pins = pctrl->soc->groups[group].npins;
return 0;
}
static const struct pinctrl_ops msm_pinctrl_ops = {
.get_groups_count = msm_get_groups_count,
.get_group_name = msm_get_group_name,
.get_group_pins = msm_get_group_pins,
.dt_node_to_map = pinconf_generic_dt_node_to_map_group,
.dt_free_map = pinctrl_utils_free_map,
};
static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
struct gpio_chip *chip = &pctrl->chip;
return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
}
static int msm_get_functions_count(struct pinctrl_dev *pctldev)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->nfunctions;
}
static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
unsigned function)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->functions[function].name;
}
static int msm_get_function_groups(struct pinctrl_dev *pctldev,
unsigned function,
const char * const **groups,
unsigned * const num_groups)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
*groups = pctrl->soc->functions[function].groups;
*num_groups = pctrl->soc->functions[function].ngroups;
return 0;
}
static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
unsigned function,
unsigned group)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
struct gpio_chip *gc = &pctrl->chip;
unsigned int irq = irq_find_mapping(gc->irq.domain, group);
struct irq_data *d = irq_get_irq_data(irq);
unsigned int gpio_func = pctrl->soc->gpio_func;
unsigned int egpio_func = pctrl->soc->egpio_func;
const struct msm_pingroup *g;
unsigned long flags;
u32 val, mask;
int i;
g = &pctrl->soc->groups[group];
mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
for (i = 0; i < g->nfuncs; i++) {
if (g->funcs[i] == function)
break;
}
if (WARN_ON(i == g->nfuncs))
return -EINVAL;
/*
* If an GPIO interrupt is setup on this pin then we need special
* handling. Specifically interrupt detection logic will still see
* the pin twiddle even when we're muxed away.
*
* When we see a pin with an interrupt setup on it then we'll disable
* (mask) interrupts on it when we mux away until we mux back. Note
* that disable_irq() refcounts and interrupts are disabled as long as
* at least one disable_irq() has been called.
*/
if (d && i != gpio_func &&
!test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
disable_irq(irq);
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_ctl(pctrl, g);
/*
* If this is the first time muxing to GPIO and the direction is
* output, make sure that we're not going to be glitching the pin
* by reading the current state of the pin and setting it as the
* output.
*/
if (i == gpio_func && (val & BIT(g->oe_bit)) &&
!test_and_set_bit(group, pctrl->ever_gpio)) {
u32 io_val = msm_readl_io(pctrl, g);
if (io_val & BIT(g->in_bit)) {
if (!(io_val & BIT(g->out_bit)))
msm_writel_io(io_val | BIT(g->out_bit), pctrl, g);
} else {
if (io_val & BIT(g->out_bit))
msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g);
}
}
if (egpio_func && i == egpio_func) {
if (val & BIT(g->egpio_present))
val &= ~BIT(g->egpio_enable);
} else {
val &= ~mask;
val |= i << g->mux_bit;
/* Claim ownership of pin if egpio capable */
if (egpio_func && val & BIT(g->egpio_present))
val |= BIT(g->egpio_enable);
}
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
if (d && i == gpio_func &&
test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
/*
* Clear interrupts detected while not GPIO since we only
* masked things.
*/
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
else
msm_ack_intr_status(pctrl, g);
enable_irq(irq);
}
return 0;
}
static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range,
unsigned offset)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
const struct msm_pingroup *g = &pctrl->soc->groups[offset];
/* No funcs? Probably ACPI so can't do anything here */
if (!g->nfuncs)
return 0;
return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
}
static const struct pinmux_ops msm_pinmux_ops = {
.request = msm_pinmux_request,
.get_functions_count = msm_get_functions_count,
.get_function_name = msm_get_function_name,
.get_function_groups = msm_get_function_groups,
.gpio_request_enable = msm_pinmux_request_gpio,
.set_mux = msm_pinmux_set_mux,
};
static int msm_config_reg(struct msm_pinctrl *pctrl,
const struct msm_pingroup *g,
unsigned param,
unsigned *mask,
unsigned *bit)
{
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
case PIN_CONFIG_BIAS_PULL_DOWN:
case PIN_CONFIG_BIAS_BUS_HOLD:
case PIN_CONFIG_BIAS_PULL_UP:
*bit = g->pull_bit;
*mask = 3;
break;
case PIN_CONFIG_DRIVE_OPEN_DRAIN:
*bit = g->od_bit;
*mask = 1;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
*bit = g->drv_bit;
*mask = 7;
break;
case PIN_CONFIG_OUTPUT:
case PIN_CONFIG_INPUT_ENABLE:
*bit = g->oe_bit;
*mask = 1;
break;
default:
return -ENOTSUPP;
}
return 0;
}
#define MSM_NO_PULL 0
#define MSM_PULL_DOWN 1
#define MSM_KEEPER 2
#define MSM_PULL_UP_NO_KEEPER 2
#define MSM_PULL_UP 3
static unsigned msm_regval_to_drive(u32 val)
{
return (val + 1) * 2;
}
static int msm_config_group_get(struct pinctrl_dev *pctldev,
unsigned int group,
unsigned long *config)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
unsigned param = pinconf_to_config_param(*config);
unsigned mask;
unsigned arg;
unsigned bit;
int ret;
u32 val;
g = &pctrl->soc->groups[group];
ret = msm_config_reg(pctrl, g, param, &mask, &bit);
if (ret < 0)
return ret;
val = msm_readl_ctl(pctrl, g);
arg = (val >> bit) & mask;
/* Convert register value to pinconf value */
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
if (arg != MSM_NO_PULL)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_BIAS_PULL_DOWN:
if (arg != MSM_PULL_DOWN)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_BIAS_BUS_HOLD:
if (pctrl->soc->pull_no_keeper)
return -ENOTSUPP;
if (arg != MSM_KEEPER)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_BIAS_PULL_UP:
if (pctrl->soc->pull_no_keeper)
arg = arg == MSM_PULL_UP_NO_KEEPER;
else
arg = arg == MSM_PULL_UP;
if (!arg)
return -EINVAL;
break;
case PIN_CONFIG_DRIVE_OPEN_DRAIN:
/* Pin is not open-drain */
if (!arg)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
arg = msm_regval_to_drive(arg);
break;
case PIN_CONFIG_OUTPUT:
/* Pin is not output */
if (!arg)
return -EINVAL;
val = msm_readl_io(pctrl, g);
arg = !!(val & BIT(g->in_bit));
break;
case PIN_CONFIG_INPUT_ENABLE:
/* Pin is output */
if (arg)
return -EINVAL;
arg = 1;
break;
default:
return -ENOTSUPP;
}
*config = pinconf_to_config_packed(param, arg);
return 0;
}
static int msm_config_group_set(struct pinctrl_dev *pctldev,
unsigned group,
unsigned long *configs,
unsigned num_configs)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
unsigned long flags;
unsigned param;
unsigned mask;
unsigned arg;
unsigned bit;
int ret;
u32 val;
int i;
g = &pctrl->soc->groups[group];
for (i = 0; i < num_configs; i++) {
param = pinconf_to_config_param(configs[i]);
arg = pinconf_to_config_argument(configs[i]);
ret = msm_config_reg(pctrl, g, param, &mask, &bit);
if (ret < 0)
return ret;
/* Convert pinconf values to register values */
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
arg = MSM_NO_PULL;
break;
case PIN_CONFIG_BIAS_PULL_DOWN:
arg = MSM_PULL_DOWN;
break;
case PIN_CONFIG_BIAS_BUS_HOLD:
if (pctrl->soc->pull_no_keeper)
return -ENOTSUPP;
arg = MSM_KEEPER;
break;
case PIN_CONFIG_BIAS_PULL_UP:
if (pctrl->soc->pull_no_keeper)
arg = MSM_PULL_UP_NO_KEEPER;
else
arg = MSM_PULL_UP;
break;
case PIN_CONFIG_DRIVE_OPEN_DRAIN:
arg = 1;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
/* Check for invalid values */
if (arg > 16 || arg < 2 || (arg % 2) != 0)
arg = -1;
else
arg = (arg / 2) - 1;
break;
case PIN_CONFIG_OUTPUT:
/* set output value */
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_io(pctrl, g);
if (arg)
val |= BIT(g->out_bit);
else
val &= ~BIT(g->out_bit);
msm_writel_io(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
/* enable output */
arg = 1;
break;
case PIN_CONFIG_INPUT_ENABLE:
/* disable output */
arg = 0;
break;
default:
dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
param);
return -EINVAL;
}
/* Range-check user-supplied value */
if (arg & ~mask) {
dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
return -EINVAL;
}
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_ctl(pctrl, g);
val &= ~(mask << bit);
val |= arg << bit;
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
return 0;
}
static const struct pinconf_ops msm_pinconf_ops = {
.is_generic = true,
.pin_config_group_get = msm_config_group_get,
.pin_config_group_set = msm_config_group_set,
};
static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned long flags;
u32 val;
g = &pctrl->soc->groups[offset];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_ctl(pctrl, g);
val &= ~BIT(g->oe_bit);
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
return 0;
}
static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned long flags;
u32 val;
g = &pctrl->soc->groups[offset];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_io(pctrl, g);
if (value)
val |= BIT(g->out_bit);
else
val &= ~BIT(g->out_bit);
msm_writel_io(val, pctrl, g);
val = msm_readl_ctl(pctrl, g);
val |= BIT(g->oe_bit);
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
return 0;
}
static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
{
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
const struct msm_pingroup *g;
u32 val;
g = &pctrl->soc->groups[offset];
val = msm_readl_ctl(pctrl, g);
return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
GPIO_LINE_DIRECTION_IN;
}
static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
u32 val;
g = &pctrl->soc->groups[offset];
val = msm_readl_io(pctrl, g);
return !!(val & BIT(g->in_bit));
}
static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned long flags;
u32 val;
g = &pctrl->soc->groups[offset];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_io(pctrl, g);
if (value)
val |= BIT(g->out_bit);
else
val &= ~BIT(g->out_bit);
msm_writel_io(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
static void msm_gpio_dbg_show_one(struct seq_file *s,
struct pinctrl_dev *pctldev,
struct gpio_chip *chip,
unsigned offset,
unsigned gpio)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned func;
int is_out;
int drive;
int pull;
int val;
int egpio_enable;
u32 ctl_reg, io_reg;
static const char * const pulls_keeper[] = {
"no pull",
"pull down",
"keeper",
"pull up"
};
static const char * const pulls_no_keeper[] = {
"no pull",
"pull down",
"pull up",
};
if (!gpiochip_line_is_valid(chip, offset))
return;
g = &pctrl->soc->groups[offset];
ctl_reg = msm_readl_ctl(pctrl, g);
io_reg = msm_readl_io(pctrl, g);
is_out = !!(ctl_reg & BIT(g->oe_bit));
func = (ctl_reg >> g->mux_bit) & 7;
drive = (ctl_reg >> g->drv_bit) & 7;
pull = (ctl_reg >> g->pull_bit) & 3;
egpio_enable = 0;
if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
if (is_out)
val = !!(io_reg & BIT(g->out_bit));
else
val = !!(io_reg & BIT(g->in_bit));
if (egpio_enable) {
seq_printf(s, " %-8s: egpio\n", g->name);
return;
}
seq_printf(s, " %-8s: %-3s", g->name, is_out ? "out" : "in");
seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
seq_printf(s, " %dmA", msm_regval_to_drive(drive));
if (pctrl->soc->pull_no_keeper)
seq_printf(s, " %s", pulls_no_keeper[pull]);
else
seq_printf(s, " %s", pulls_keeper[pull]);
seq_puts(s, "\n");
}
static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
{
unsigned gpio = chip->base;
unsigned i;
for (i = 0; i < chip->ngpio; i++, gpio++)
msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
}
#else
#define msm_gpio_dbg_show NULL
#endif
static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios)
{
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
int ret;
unsigned int len, i;
const int *reserved = pctrl->soc->reserved_gpios;
u16 *tmp;
/* Driver provided reserved list overrides DT and ACPI */
if (reserved) {
bitmap_fill(valid_mask, ngpios);
for (i = 0; reserved[i] >= 0; i++) {
if (i >= ngpios || reserved[i] >= ngpios) {
dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
return -EINVAL;
}
clear_bit(reserved[i], valid_mask);
}
return 0;
}
/* The number of GPIOs in the ACPI tables */
len = ret = device_property_count_u16(pctrl->dev, "gpios");
if (ret < 0)
return 0;
if (ret > ngpios)
return -EINVAL;
tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
if (ret < 0) {
dev_err(pctrl->dev, "could not read list of GPIOs\n");
goto out;
}
bitmap_zero(valid_mask, ngpios);
for (i = 0; i < len; i++)
set_bit(tmp[i], valid_mask);
out:
kfree(tmp);
return ret;
}
static const struct gpio_chip msm_gpio_template = {
.direction_input = msm_gpio_direction_input,
.direction_output = msm_gpio_direction_output,
.get_direction = msm_gpio_get_direction,
.get = msm_gpio_get,
.set = msm_gpio_set,
.request = gpiochip_generic_request,
.free = gpiochip_generic_free,
.dbg_show = msm_gpio_dbg_show,
};
/* For dual-edge interrupts in software, since some hardware has no
* such support:
*
* At appropriate moments, this function may be called to flip the polarity
* settings of both-edge irq lines to try and catch the next edge.
*
* The attempt is considered successful if:
* - the status bit goes high, indicating that an edge was caught, or
* - the input value of the gpio doesn't change during the attempt.
* If the value changes twice during the process, that would cause the first
* test to fail but would force the second, as two opposite
* transitions would cause a detection no matter the polarity setting.
*
* The do-loop tries to sledge-hammer closed the timing hole between
* the initial value-read and the polarity-write - if the line value changes
* during that window, an interrupt is lost, the new polarity setting is
* incorrect, and the first success test will fail, causing a retry.
*
* Algorithm comes from Google's msmgpio driver.
*/
static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
const struct msm_pingroup *g,
struct irq_data *d)
{
int loop_limit = 100;
unsigned val, val2, intstat;
unsigned pol;
do {
val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
pol = msm_readl_intr_cfg(pctrl, g);
pol ^= BIT(g->intr_polarity_bit);
msm_writel_intr_cfg(pol, pctrl, g);
val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
intstat = msm_readl_intr_status(pctrl, g);
if (intstat || (val == val2))
return;
} while (loop_limit-- > 0);
dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
val, val2);
}
static void msm_gpio_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
u32 val;
if (d->parent_data)
irq_chip_mask_parent(d);
if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
return;
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_intr_cfg(pctrl, g);
/*
* There are two bits that control interrupt forwarding to the CPU. The
* RAW_STATUS_EN bit causes the level or edge sensed on the line to be
* latched into the interrupt status register when the hardware detects
* an irq that it's configured for (either edge for edge type or level
* for level type irq). The 'non-raw' status enable bit causes the
* hardware to assert the summary interrupt to the CPU if the latched
* status bit is set. There's a bug though, the edge detection logic
* seems to have a problem where toggling the RAW_STATUS_EN bit may
* cause the status bit to latch spuriously when there isn't any edge
* so we can't touch that bit for edge type irqs and we have to keep
* the bit set anyway so that edges are latched while the line is masked.
*
* To make matters more complicated, leaving the RAW_STATUS_EN bit
* enabled all the time causes level interrupts to re-latch into the
* status register because the level is still present on the line after
* we ack it. We clear the raw status enable bit during mask here and
* set the bit on unmask so the interrupt can't latch into the hardware
* while it's masked.
*/
if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
val &= ~BIT(g->intr_raw_status_bit);
val &= ~BIT(g->intr_enable_bit);
msm_writel_intr_cfg(val, pctrl, g);
clear_bit(d->hwirq, pctrl->enabled_irqs);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
static void msm_gpio_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
u32 val;
if (d->parent_data)
irq_chip_unmask_parent(d);
if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
return;
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_intr_cfg(pctrl, g);
val |= BIT(g->intr_raw_status_bit);
val |= BIT(g->intr_enable_bit);
msm_writel_intr_cfg(val, pctrl, g);
set_bit(d->hwirq, pctrl->enabled_irqs);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
static void msm_gpio_irq_enable(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
gpiochip_enable_irq(gc, d->hwirq);
if (d->parent_data)
irq_chip_enable_parent(d);
if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
msm_gpio_irq_unmask(d);
}
static void msm_gpio_irq_disable(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
if (d->parent_data)
irq_chip_disable_parent(d);
if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
msm_gpio_irq_mask(d);
gpiochip_disable_irq(gc, d->hwirq);
}
/**
* msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
* @d: The irq dta.
*
* This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
* normally handled by the parent irqchip. The logic here is slightly
* different due to what's easy to do with our parent, but in principle it's
* the same.
*/
static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
int loop_limit = 100;
unsigned int val;
unsigned int type;
/* Read the value and make a guess about what edge we need to catch */
val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
do {
/* Set the parent to catch the next edge */
irq_chip_set_type_parent(d, type);
/*
* Possibly the line changed between when we last read "val"
* (and decided what edge we needed) and when set the edge.
* If the value didn't change (or changed and then changed
* back) then we're done.
*/
val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
if (type == IRQ_TYPE_EDGE_RISING) {
if (!val)
return;
type = IRQ_TYPE_EDGE_FALLING;
} else if (type == IRQ_TYPE_EDGE_FALLING) {
if (val)
return;
type = IRQ_TYPE_EDGE_RISING;
}
} while (loop_limit-- > 0);
dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
}
static void msm_gpio_irq_ack(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
msm_gpio_update_dual_edge_parent(d);
return;
}
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
msm_ack_intr_status(pctrl, g);
if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
msm_gpio_update_dual_edge_pos(pctrl, g, d);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
static void msm_gpio_irq_eoi(struct irq_data *d)
{
d = d->parent_data;
if (d)
d->chip->irq_eoi(d);
}
static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
return type == IRQ_TYPE_EDGE_BOTH &&
pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
test_bit(d->hwirq, pctrl->skip_wake_irqs);
}
static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
bool was_enabled;
u32 val;
if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
set_bit(d->hwirq, pctrl->dual_edge_irqs);
irq_set_handler_locked(d, handle_fasteoi_ack_irq);
msm_gpio_update_dual_edge_parent(d);
return 0;
}
if (d->parent_data)
irq_chip_set_type_parent(d, type);
if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
clear_bit(d->hwirq, pctrl->dual_edge_irqs);
irq_set_handler_locked(d, handle_fasteoi_irq);
return 0;
}
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
/*
* For hw without possibility of detecting both edges
*/
if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
set_bit(d->hwirq, pctrl->dual_edge_irqs);
else
clear_bit(d->hwirq, pctrl->dual_edge_irqs);
/* Route interrupts to application cpu.
* With intr_target_use_scm interrupts are routed to
* application cpu using scm calls.
*/
if (pctrl->intr_target_use_scm) {
u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
int ret;
qcom_scm_io_readl(addr, &val);
val &= ~(7 << g->intr_target_bit);
val |= g->intr_target_kpss_val << g->intr_target_bit;
ret = qcom_scm_io_writel(addr, val);
if (ret)
dev_err(pctrl->dev,
"Failed routing %lu interrupt to Apps proc",
d->hwirq);
} else {
val = msm_readl_intr_target(pctrl, g);
val &= ~(7 << g->intr_target_bit);
val |= g->intr_target_kpss_val << g->intr_target_bit;
msm_writel_intr_target(val, pctrl, g);
}
/* Update configuration for gpio.
* RAW_STATUS_EN is left on for all gpio irqs. Due to the
* internal circuitry of TLMM, toggling the RAW_STATUS
* could cause the INTR_STATUS to be set for EDGE interrupts.
*/
val = msm_readl_intr_cfg(pctrl, g);
was_enabled = val & BIT(g->intr_raw_status_bit);
val |= BIT(g->intr_raw_status_bit);
if (g->intr_detection_width == 2) {
val &= ~(3 << g->intr_detection_bit);
val &= ~(1 << g->intr_polarity_bit);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
val |= 1 << g->intr_detection_bit;
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_EDGE_FALLING:
val |= 2 << g->intr_detection_bit;
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_EDGE_BOTH:
val |= 3 << g->intr_detection_bit;
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_LEVEL_LOW:
break;
case IRQ_TYPE_LEVEL_HIGH:
val |= BIT(g->intr_polarity_bit);
break;
}
} else if (g->intr_detection_width == 1) {
val &= ~(1 << g->intr_detection_bit);
val &= ~(1 << g->intr_polarity_bit);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
val |= BIT(g->intr_detection_bit);
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_EDGE_FALLING:
val |= BIT(g->intr_detection_bit);
break;
case IRQ_TYPE_EDGE_BOTH:
val |= BIT(g->intr_detection_bit);
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_LEVEL_LOW:
break;
case IRQ_TYPE_LEVEL_HIGH:
val |= BIT(g->intr_polarity_bit);
break;
}
} else {
BUG();
}
msm_writel_intr_cfg(val, pctrl, g);
/*
* The first time we set RAW_STATUS_EN it could trigger an interrupt.
* Clear the interrupt. This is safe because we have
* IRQCHIP_SET_TYPE_MASKED.
*/
if (!was_enabled)
msm_ack_intr_status(pctrl, g);
if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
msm_gpio_update_dual_edge_pos(pctrl, g, d);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
irq_set_handler_locked(d, handle_level_irq);
else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
irq_set_handler_locked(d, handle_edge_irq);
return 0;
}
static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
/*
* While they may not wake up when the TLMM is powered off,
* some GPIOs would like to wakeup the system from suspend
* when TLMM is powered on. To allow that, enable the GPIO
* summary line to be wakeup capable at GIC.
*/
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
return irq_chip_set_wake_parent(d, on);
return irq_set_irq_wake(pctrl->irq, on);
}
static int msm_gpio_irq_reqres(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
int ret;
if (!try_module_get(gc->owner))
return -ENODEV;
ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
if (ret)
goto out;
msm_gpio_direction_input(gc, d->hwirq);
if (gpiochip_lock_as_irq(gc, d->hwirq)) {
dev_err(gc->parent,
"unable to lock HW IRQ %lu for IRQ\n",
d->hwirq);
ret = -EINVAL;
goto out;
}
/*
* The disable / clear-enable workaround we do in msm_pinmux_set_mux()
* only works if disable is not lazy since we only clear any bogus
* interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
*/
irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
return 0;
out:
module_put(gc->owner);
return ret;
}
static void msm_gpio_irq_relres(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
gpiochip_unlock_as_irq(gc, d->hwirq);
module_put(gc->owner);
}
static int msm_gpio_irq_set_affinity(struct irq_data *d,
const struct cpumask *dest, bool force)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
return irq_chip_set_affinity_parent(d, dest, force);
return -EINVAL;
}
static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
return -EINVAL;
}
static void msm_gpio_irq_handler(struct irq_desc *desc)
{
struct gpio_chip *gc = irq_desc_get_handler_data(desc);
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
struct irq_chip *chip = irq_desc_get_chip(desc);
int handled = 0;
u32 val;
int i;
chained_irq_enter(chip, desc);
/*
* Each pin has it's own IRQ status register, so use
* enabled_irq bitmap to limit the number of reads.
*/
for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
g = &pctrl->soc->groups[i];
val = msm_readl_intr_status(pctrl, g);
if (val & BIT(g->intr_status_bit)) {
generic_handle_domain_irq(gc->irq.domain, i);
handled++;
}
}
/* No interrupts were flagged */
if (handled == 0)
handle_bad_irq(desc);
chained_irq_exit(chip, desc);
}
static int msm_gpio_wakeirq(struct gpio_chip *gc,
unsigned int child,
unsigned int child_type,
unsigned int *parent,
unsigned int *parent_type)
{
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_gpio_wakeirq_map *map;
int i;
*parent = GPIO_NO_WAKE_IRQ;
*parent_type = IRQ_TYPE_EDGE_RISING;
for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
map = &pctrl->soc->wakeirq_map[i];
if (map->gpio == child) {
*parent = map->wakeirq;
break;
}
}
return 0;
}
static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
{
if (pctrl->soc->reserved_gpios)
return true;
return device_property_count_u16(pctrl->dev, "gpios") > 0;
}
static const struct irq_chip msm_gpio_irq_chip = {
.name = "msmgpio",
.irq_enable = msm_gpio_irq_enable,
.irq_disable = msm_gpio_irq_disable,
.irq_mask = msm_gpio_irq_mask,
.irq_unmask = msm_gpio_irq_unmask,
.irq_ack = msm_gpio_irq_ack,
.irq_eoi = msm_gpio_irq_eoi,
.irq_set_type = msm_gpio_irq_set_type,
.irq_set_wake = msm_gpio_irq_set_wake,
.irq_request_resources = msm_gpio_irq_reqres,
.irq_release_resources = msm_gpio_irq_relres,
.irq_set_affinity = msm_gpio_irq_set_affinity,
.irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity,
.flags = (IRQCHIP_MASK_ON_SUSPEND |
IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND |
IRQCHIP_IMMUTABLE),
};
static int msm_gpio_init(struct msm_pinctrl *pctrl)
{
struct gpio_chip *chip;
struct gpio_irq_chip *girq;
int i, ret;
unsigned gpio, ngpio = pctrl->soc->ngpios;
struct device_node *np;
bool skip;
if (WARN_ON(ngpio > MAX_NR_GPIO))
return -EINVAL;
chip = &pctrl->chip;
chip->base = -1;
chip->ngpio = ngpio;
chip->label = dev_name(pctrl->dev);
chip->parent = pctrl->dev;
chip->owner = THIS_MODULE;
if (msm_gpio_needs_valid_mask(pctrl))
chip->init_valid_mask = msm_gpio_init_valid_mask;
np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
if (np) {
chip->irq.parent_domain = irq_find_matching_host(np,
DOMAIN_BUS_WAKEUP);
of_node_put(np);
if (!chip->irq.parent_domain)
return -EPROBE_DEFER;
chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
/*
* Let's skip handling the GPIOs, if the parent irqchip
* is handling the direct connect IRQ of the GPIO.
*/
skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
gpio = pctrl->soc->wakeirq_map[i].gpio;
set_bit(gpio, pctrl->skip_wake_irqs);
}
}
girq = &chip->irq;
gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip);
girq->parent_handler = msm_gpio_irq_handler;
girq->fwnode = pctrl->dev->fwnode;
girq->num_parents = 1;
girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
GFP_KERNEL);
if (!girq->parents)
return -ENOMEM;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
girq->parents[0] = pctrl->irq;
ret = gpiochip_add_data(&pctrl->chip, pctrl);
if (ret) {
dev_err(pctrl->dev, "Failed register gpiochip\n");
return ret;
}
/*
* For DeviceTree-supported systems, the gpio core checks the
* pinctrl's device node for the "gpio-ranges" property.
* If it is present, it takes care of adding the pin ranges
* for the driver. In this case the driver can skip ahead.
*
* In order to remain compatible with older, existing DeviceTree
* files which don't set the "gpio-ranges" property or systems that
* utilize ACPI the driver has to call gpiochip_add_pin_range().
*/
if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) {
ret = gpiochip_add_pin_range(&pctrl->chip,
dev_name(pctrl->dev), 0, 0, chip->ngpio);
if (ret) {
dev_err(pctrl->dev, "Failed to add pin range\n");
gpiochip_remove(&pctrl->chip);
return ret;
}
}
return 0;
}
static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action,
void *data)
{
struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb);
writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
mdelay(1000);
return NOTIFY_DONE;
}
static struct msm_pinctrl *poweroff_pctrl;
static void msm_ps_hold_poweroff(void)
{
msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL);
}
static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
{
int i;
const struct msm_function *func = pctrl->soc->functions;
for (i = 0; i < pctrl->soc->nfunctions; i++)
if (!strcmp(func[i].name, "ps_hold")) {
pctrl->restart_nb.notifier_call = msm_ps_hold_restart;
pctrl->restart_nb.priority = 128;
if (register_restart_handler(&pctrl->restart_nb))
dev_err(pctrl->dev,
"failed to setup restart handler.\n");
poweroff_pctrl = pctrl;
pm_power_off = msm_ps_hold_poweroff;
break;
}
}
static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
{
struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
return pinctrl_force_sleep(pctrl->pctrl);
}
static __maybe_unused int msm_pinctrl_resume(struct device *dev)
{
struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
return pinctrl_force_default(pctrl->pctrl);
}
SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
msm_pinctrl_resume);
EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
int msm_pinctrl_probe(struct platform_device *pdev,
const struct msm_pinctrl_soc_data *soc_data)
{
struct msm_pinctrl *pctrl;
struct resource *res;
int ret;
int i;
pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
if (!pctrl)
return -ENOMEM;
pctrl->dev = &pdev->dev;
pctrl->soc = soc_data;
pctrl->chip = msm_gpio_template;
pctrl->intr_target_use_scm = of_device_is_compatible(
pctrl->dev->of_node,
"qcom,ipq8064-pinctrl");
raw_spin_lock_init(&pctrl->lock);
if (soc_data->tiles) {
for (i = 0; i < soc_data->ntiles; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
soc_data->tiles[i]);
pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pctrl->regs[i]))
return PTR_ERR(pctrl->regs[i]);
}
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pctrl->regs[0] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pctrl->regs[0]))
return PTR_ERR(pctrl->regs[0]);
pctrl->phys_base[0] = res->start;
}
msm_pinctrl_setup_pm_reset(pctrl);
pctrl->irq = platform_get_irq(pdev, 0);
if (pctrl->irq < 0)
return pctrl->irq;
pctrl->desc.owner = THIS_MODULE;
pctrl->desc.pctlops = &msm_pinctrl_ops;
pctrl->desc.pmxops = &msm_pinmux_ops;
pctrl->desc.confops = &msm_pinconf_ops;
pctrl->desc.name = dev_name(&pdev->dev);
pctrl->desc.pins = pctrl->soc->pins;
pctrl->desc.npins = pctrl->soc->npins;
pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
if (IS_ERR(pctrl->pctrl)) {
dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
return PTR_ERR(pctrl->pctrl);
}
ret = msm_gpio_init(pctrl);
if (ret)
return ret;
platform_set_drvdata(pdev, pctrl);
dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
return 0;
}
EXPORT_SYMBOL(msm_pinctrl_probe);
int msm_pinctrl_remove(struct platform_device *pdev)
{
struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
gpiochip_remove(&pctrl->chip);
unregister_restart_handler(&pctrl->restart_nb);
return 0;
}
EXPORT_SYMBOL(msm_pinctrl_remove);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
MODULE_LICENSE("GPL v2");