linux/drivers/rtc/rtc-isl12022.c
Esben Haabendal 5a36826a59 rtc: isl12022: Replace uint8_t types with u8
Keep coding style consistent, by using kernel integer types instead of
standard types.

Signed-off-by: Esben Haabendal <esben@geanix.com>
Link: https://lore.kernel.org/r/20240913-rtc-isl12022-alarm-irq-v2-3-37309d939723@geanix.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2024-11-11 00:06:46 +01:00

625 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* An I2C driver for the Intersil ISL 12022
*
* Author: Roman Fietze <roman.fietze@telemotive.de>
*
* Based on the Philips PCF8563 RTC
* by Alessandro Zummo <a.zummo@towertech.it>.
*/
#include <linux/bcd.h>
#include <linux/bitfield.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
/* RTC - Real time clock registers */
#define ISL12022_REG_SC 0x00
#define ISL12022_REG_MN 0x01
#define ISL12022_REG_HR 0x02
#define ISL12022_REG_DT 0x03
#define ISL12022_REG_MO 0x04
#define ISL12022_REG_YR 0x05
#define ISL12022_REG_DW 0x06
/* CSR - Control and status registers */
#define ISL12022_REG_SR 0x07
#define ISL12022_REG_INT 0x08
#define ISL12022_REG_PWR_VBAT 0x0a
#define ISL12022_REG_BETA 0x0d
/* ALARM - Alarm registers */
#define ISL12022_REG_SCA0 0x10
#define ISL12022_REG_MNA0 0x11
#define ISL12022_REG_HRA0 0x12
#define ISL12022_REG_DTA0 0x13
#define ISL12022_REG_MOA0 0x14
#define ISL12022_REG_DWA0 0x15
#define ISL12022_ALARM ISL12022_REG_SCA0
#define ISL12022_ALARM_LEN (ISL12022_REG_DWA0 - ISL12022_REG_SCA0 + 1)
/* TEMP - Temperature sensor registers */
#define ISL12022_REG_TEMP_L 0x28
/* ISL register bits */
#define ISL12022_HR_MIL (1 << 7) /* military or 24 hour time */
#define ISL12022_SR_ALM (1 << 4)
#define ISL12022_SR_LBAT85 (1 << 2)
#define ISL12022_SR_LBAT75 (1 << 1)
#define ISL12022_INT_ARST (1 << 7)
#define ISL12022_INT_WRTC (1 << 6)
#define ISL12022_INT_IM (1 << 5)
#define ISL12022_INT_FOBATB (1 << 4)
#define ISL12022_INT_FO_MASK GENMASK(3, 0)
#define ISL12022_INT_FO_OFF 0x0
#define ISL12022_INT_FO_32K 0x1
#define ISL12022_REG_VB85_MASK GENMASK(5, 3)
#define ISL12022_REG_VB75_MASK GENMASK(2, 0)
#define ISL12022_ALARM_ENABLE (1 << 7) /* for all ALARM registers */
#define ISL12022_BETA_TSE (1 << 7)
static struct i2c_driver isl12022_driver;
struct isl12022 {
struct rtc_device *rtc;
struct regmap *regmap;
int irq;
bool irq_enabled;
};
static umode_t isl12022_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
if (type == hwmon_temp && attr == hwmon_temp_input)
return 0444;
return 0;
}
/*
* A user-initiated temperature conversion is not started by this function,
* so the temperature is updated once every ~60 seconds.
*/
static int isl12022_hwmon_read_temp(struct device *dev, long *mC)
{
struct regmap *regmap = dev_get_drvdata(dev);
int temp, ret;
__le16 buf;
ret = regmap_bulk_read(regmap, ISL12022_REG_TEMP_L, &buf, sizeof(buf));
if (ret)
return ret;
/*
* Temperature is represented as a 10-bit number, unit half-Kelvins.
*/
temp = le16_to_cpu(buf);
temp *= 500;
temp -= 273000;
*mC = temp;
return 0;
}
static int isl12022_hwmon_read(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
if (type == hwmon_temp && attr == hwmon_temp_input)
return isl12022_hwmon_read_temp(dev, val);
return -EOPNOTSUPP;
}
static const struct hwmon_channel_info * const isl12022_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
NULL
};
static const struct hwmon_ops isl12022_hwmon_ops = {
.is_visible = isl12022_hwmon_is_visible,
.read = isl12022_hwmon_read,
};
static const struct hwmon_chip_info isl12022_hwmon_chip_info = {
.ops = &isl12022_hwmon_ops,
.info = isl12022_hwmon_info,
};
static void isl12022_hwmon_register(struct device *dev)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
struct device *hwmon;
int ret;
if (!IS_REACHABLE(CONFIG_HWMON))
return;
ret = regmap_update_bits(regmap, ISL12022_REG_BETA,
ISL12022_BETA_TSE, ISL12022_BETA_TSE);
if (ret) {
dev_warn(dev, "unable to enable temperature sensor\n");
return;
}
hwmon = devm_hwmon_device_register_with_info(dev, "isl12022", regmap,
&isl12022_hwmon_chip_info,
NULL);
if (IS_ERR(hwmon))
dev_warn(dev, "unable to register hwmon device: %pe\n", hwmon);
}
/*
* In the routines that deal directly with the isl12022 hardware, we use
* rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
*/
static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u8 buf[ISL12022_REG_INT + 1];
int ret;
ret = regmap_bulk_read(regmap, ISL12022_REG_SC, buf, sizeof(buf));
if (ret)
return ret;
dev_dbg(dev,
"raw data is sec=%02x, min=%02x, hr=%02x, mday=%02x, mon=%02x, year=%02x, wday=%02x, sr=%02x, int=%02x",
buf[ISL12022_REG_SC],
buf[ISL12022_REG_MN],
buf[ISL12022_REG_HR],
buf[ISL12022_REG_DT],
buf[ISL12022_REG_MO],
buf[ISL12022_REG_YR],
buf[ISL12022_REG_DW],
buf[ISL12022_REG_SR],
buf[ISL12022_REG_INT]);
tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F);
tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F);
tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F);
tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F);
tm->tm_wday = buf[ISL12022_REG_DW] & 0x07;
tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1;
tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100;
dev_dbg(dev, "%s: %ptR\n", __func__, tm);
return 0;
}
static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
int ret;
u8 buf[ISL12022_REG_DW + 1];
dev_dbg(dev, "%s: %ptR\n", __func__, tm);
/* Ensure the write enable bit is set. */
ret = regmap_update_bits(regmap, ISL12022_REG_INT,
ISL12022_INT_WRTC, ISL12022_INT_WRTC);
if (ret)
return ret;
/* hours, minutes and seconds */
buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec);
buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min);
buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL;
buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday);
/* month, 1 - 12 */
buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1);
/* year and century */
buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100);
buf[ISL12022_REG_DW] = tm->tm_wday & 0x07;
return regmap_bulk_write(regmap, ISL12022_REG_SC, buf, sizeof(buf));
}
static int isl12022_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct rtc_time *tm = &alarm->time;
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u8 buf[ISL12022_ALARM_LEN];
unsigned int i, yr;
int ret;
ret = regmap_bulk_read(regmap, ISL12022_ALARM, buf, sizeof(buf));
if (ret) {
dev_dbg(dev, "%s: reading ALARM registers failed\n",
__func__);
return ret;
}
/* The alarm doesn't store the year so get it from the rtc section */
ret = regmap_read(regmap, ISL12022_REG_YR, &yr);
if (ret) {
dev_dbg(dev, "%s: reading YR register failed\n", __func__);
return ret;
}
dev_dbg(dev,
"%s: sc=%02x, mn=%02x, hr=%02x, dt=%02x, mo=%02x, dw=%02x yr=%u\n",
__func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], yr);
tm->tm_sec = bcd2bin(buf[ISL12022_REG_SCA0 - ISL12022_ALARM] & 0x7F);
tm->tm_min = bcd2bin(buf[ISL12022_REG_MNA0 - ISL12022_ALARM] & 0x7F);
tm->tm_hour = bcd2bin(buf[ISL12022_REG_HRA0 - ISL12022_ALARM] & 0x3F);
tm->tm_mday = bcd2bin(buf[ISL12022_REG_DTA0 - ISL12022_ALARM] & 0x3F);
tm->tm_mon = bcd2bin(buf[ISL12022_REG_MOA0 - ISL12022_ALARM] & 0x1F) - 1;
tm->tm_wday = buf[ISL12022_REG_DWA0 - ISL12022_ALARM] & 0x07;
tm->tm_year = bcd2bin(yr) + 100;
for (i = 0; i < ISL12022_ALARM_LEN; i++) {
if (buf[i] & ISL12022_ALARM_ENABLE) {
alarm->enabled = 1;
break;
}
}
dev_dbg(dev, "%s: %ptR\n", __func__, tm);
return 0;
}
static int isl12022_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct rtc_time *alarm_tm = &alarm->time;
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u8 regs[ISL12022_ALARM_LEN] = { 0, };
struct rtc_time rtc_tm;
int ret, enable, dw;
ret = isl12022_rtc_read_time(dev, &rtc_tm);
if (ret)
return ret;
/* If the alarm time is before the current time disable the alarm */
if (!alarm->enabled || rtc_tm_sub(alarm_tm, &rtc_tm) <= 0)
enable = 0;
else
enable = ISL12022_ALARM_ENABLE;
/*
* Set non-matching day of the week to safeguard against early false
* matching while setting all the alarm registers (this rtc lacks a
* general alarm/irq enable/disable bit).
*/
ret = regmap_read(regmap, ISL12022_REG_DW, &dw);
if (ret) {
dev_dbg(dev, "%s: reading DW failed\n", __func__);
return ret;
}
/* ~4 days into the future should be enough to avoid match */
dw = ((dw + 4) % 7) | ISL12022_ALARM_ENABLE;
ret = regmap_write(regmap, ISL12022_REG_DWA0, dw);
if (ret) {
dev_dbg(dev, "%s: writing DWA0 failed\n", __func__);
return ret;
}
/* Program the alarm and enable it for each setting */
regs[ISL12022_REG_SCA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_sec) | enable;
regs[ISL12022_REG_MNA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_min) | enable;
regs[ISL12022_REG_HRA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_hour) | enable;
regs[ISL12022_REG_DTA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mday) | enable;
regs[ISL12022_REG_MOA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mon + 1) | enable;
regs[ISL12022_REG_DWA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_wday & 7) | enable;
/* write ALARM registers */
ret = regmap_bulk_write(regmap, ISL12022_ALARM, &regs, sizeof(regs));
if (ret) {
dev_dbg(dev, "%s: writing ALARM registers failed\n", __func__);
return ret;
}
return 0;
}
static irqreturn_t isl12022_rtc_interrupt(int irq, void *data)
{
struct isl12022 *isl12022 = data;
struct rtc_device *rtc = isl12022->rtc;
struct device *dev = &rtc->dev;
struct regmap *regmap = isl12022->regmap;
u32 val = 0;
unsigned long events = 0;
int ret;
ret = regmap_read(regmap, ISL12022_REG_SR, &val);
if (ret) {
dev_dbg(dev, "%s: reading SR failed\n", __func__);
return IRQ_HANDLED;
}
if (val & ISL12022_SR_ALM)
events |= RTC_IRQF | RTC_AF;
if (events & RTC_AF)
dev_dbg(dev, "alarm!\n");
if (!events)
return IRQ_NONE;
rtc_update_irq(rtc, 1, events);
return IRQ_HANDLED;
}
static int isl12022_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
/* Make sure enabled is 0 or 1 */
enabled = !!enabled;
if (isl12022->irq_enabled == enabled)
return 0;
if (enabled)
enable_irq(isl12022->irq);
else
disable_irq(isl12022->irq);
isl12022->irq_enabled = enabled;
return 0;
}
static int isl12022_setup_irq(struct device *dev, int irq)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
unsigned int reg_mask, reg_val;
u8 buf[ISL12022_ALARM_LEN] = { 0, };
int ret;
/* Clear and disable all alarm registers */
ret = regmap_bulk_write(regmap, ISL12022_ALARM, buf, sizeof(buf));
if (ret)
return ret;
/*
* Enable automatic reset of ALM bit and enable single event interrupt
* mode.
*/
reg_mask = ISL12022_INT_ARST | ISL12022_INT_IM | ISL12022_INT_FO_MASK;
reg_val = ISL12022_INT_ARST | ISL12022_INT_FO_OFF;
ret = regmap_write_bits(regmap, ISL12022_REG_INT,
reg_mask, reg_val);
if (ret)
return ret;
ret = devm_request_threaded_irq(dev, irq, NULL,
isl12022_rtc_interrupt,
IRQF_SHARED | IRQF_ONESHOT,
isl12022_driver.driver.name,
isl12022);
if (ret)
return dev_err_probe(dev, ret, "Unable to request irq %d\n", irq);
isl12022->irq = irq;
return 0;
}
static int isl12022_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u32 user, val;
int ret;
switch (cmd) {
case RTC_VL_READ:
ret = regmap_read(regmap, ISL12022_REG_SR, &val);
if (ret)
return ret;
user = 0;
if (val & ISL12022_SR_LBAT85)
user |= RTC_VL_BACKUP_LOW;
if (val & ISL12022_SR_LBAT75)
user |= RTC_VL_BACKUP_EMPTY;
return put_user(user, (u32 __user *)arg);
default:
return -ENOIOCTLCMD;
}
}
static const struct rtc_class_ops isl12022_rtc_ops = {
.ioctl = isl12022_rtc_ioctl,
.read_time = isl12022_rtc_read_time,
.set_time = isl12022_rtc_set_time,
.read_alarm = isl12022_rtc_read_alarm,
.set_alarm = isl12022_rtc_set_alarm,
.alarm_irq_enable = isl12022_rtc_alarm_irq_enable,
};
static const struct regmap_config regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.use_single_write = true,
};
static int isl12022_register_clock(struct device *dev)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
struct clk_hw *hw;
int ret;
if (!device_property_present(dev, "#clock-cells")) {
/*
* Disabling the F_OUT pin reduces the power
* consumption in battery mode by ~25%.
*/
regmap_update_bits(regmap, ISL12022_REG_INT, ISL12022_INT_FO_MASK,
ISL12022_INT_FO_OFF);
return 0;
}
if (!IS_ENABLED(CONFIG_COMMON_CLK))
return 0;
/*
* For now, only support a fixed clock of 32768Hz (the reset default).
*/
ret = regmap_update_bits(regmap, ISL12022_REG_INT,
ISL12022_INT_FO_MASK, ISL12022_INT_FO_32K);
if (ret)
return ret;
hw = devm_clk_hw_register_fixed_rate(dev, "isl12022", NULL, 0, 32768);
if (IS_ERR(hw))
return PTR_ERR(hw);
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
}
static const u32 trip_levels[2][7] = {
{ 2125000, 2295000, 2550000, 2805000, 3060000, 4250000, 4675000 },
{ 1875000, 2025000, 2250000, 2475000, 2700000, 3750000, 4125000 },
};
static void isl12022_set_trip_levels(struct device *dev)
{
struct isl12022 *isl12022 = dev_get_drvdata(dev);
struct regmap *regmap = isl12022->regmap;
u32 levels[2] = {0, 0};
int ret, i, j, x[2];
u8 val, mask;
device_property_read_u32_array(dev, "isil,battery-trip-levels-microvolt",
levels, 2);
for (i = 0; i < 2; i++) {
for (j = 0; j < ARRAY_SIZE(trip_levels[i]) - 1; j++) {
if (levels[i] <= trip_levels[i][j])
break;
}
x[i] = j;
}
val = FIELD_PREP(ISL12022_REG_VB85_MASK, x[0]) |
FIELD_PREP(ISL12022_REG_VB75_MASK, x[1]);
mask = ISL12022_REG_VB85_MASK | ISL12022_REG_VB75_MASK;
ret = regmap_update_bits(regmap, ISL12022_REG_PWR_VBAT, mask, val);
if (ret)
dev_warn(dev, "unable to set battery alarm levels: %d\n", ret);
/*
* Force a write of the TSE bit in the BETA register, in order
* to trigger an update of the LBAT75 and LBAT85 bits in the
* status register. In battery backup mode, those bits have
* another meaning, so without this, they may contain stale
* values for up to a minute after power-on.
*/
regmap_write_bits(regmap, ISL12022_REG_BETA,
ISL12022_BETA_TSE, ISL12022_BETA_TSE);
}
static int isl12022_probe(struct i2c_client *client)
{
struct isl12022 *isl12022;
struct rtc_device *rtc;
struct regmap *regmap;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -ENODEV;
/* Allocate driver state */
isl12022 = devm_kzalloc(&client->dev, sizeof(*isl12022), GFP_KERNEL);
if (!isl12022)
return -ENOMEM;
regmap = devm_regmap_init_i2c(client, &regmap_config);
if (IS_ERR(regmap))
return dev_err_probe(&client->dev, PTR_ERR(regmap), "regmap allocation failed\n");
isl12022->regmap = regmap;
dev_set_drvdata(&client->dev, isl12022);
ret = isl12022_register_clock(&client->dev);
if (ret)
return ret;
isl12022_set_trip_levels(&client->dev);
isl12022_hwmon_register(&client->dev);
rtc = devm_rtc_allocate_device(&client->dev);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
isl12022->rtc = rtc;
rtc->ops = &isl12022_rtc_ops;
rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
rtc->range_max = RTC_TIMESTAMP_END_2099;
if (client->irq > 0) {
ret = isl12022_setup_irq(&client->dev, client->irq);
if (ret)
return ret;
} else {
clear_bit(RTC_FEATURE_ALARM, rtc->features);
}
return devm_rtc_register_device(rtc);
}
static const struct of_device_id isl12022_dt_match[] = {
{ .compatible = "isl,isl12022" }, /* for backward compat., don't use */
{ .compatible = "isil,isl12022" },
{ },
};
MODULE_DEVICE_TABLE(of, isl12022_dt_match);
static const struct i2c_device_id isl12022_id[] = {
{ "isl12022" },
{ }
};
MODULE_DEVICE_TABLE(i2c, isl12022_id);
static struct i2c_driver isl12022_driver = {
.driver = {
.name = "rtc-isl12022",
.of_match_table = isl12022_dt_match,
},
.probe = isl12022_probe,
.id_table = isl12022_id,
};
module_i2c_driver(isl12022_driver);
MODULE_AUTHOR("roman.fietze@telemotive.de");
MODULE_DESCRIPTION("ISL 12022 RTC driver");
MODULE_LICENSE("GPL");