mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-04 04:04:19 +00:00
f364cdeb38
LTP reported a NULL pointer dereference as followed:
CPU: 7 UID: 0 PID: 5995 Comm: cat Kdump: loaded Not tainted 6.12.0-rc6+ #3
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __pi_strcmp+0x24/0x140
lr : zcomp_available_show+0x60/0x100 [zram]
sp : ffff800088b93b90
x29: ffff800088b93b90 x28: 0000000000000001 x27: 0000000000400cc0
x26: 0000000000000ffe x25: ffff80007b3e2388 x24: 0000000000000000
x23: ffff80007b3e2390 x22: ffff0004041a9000 x21: ffff80007b3e2900
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff80007b3e2900 x9 : ffff80007b3cb280
x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000040 x4 : 0000000000000000 x3 : 00656c722d6f7a6c
x2 : 0000000000000000 x1 : ffff80007b3e2900 x0 : 0000000000000000
Call trace:
__pi_strcmp+0x24/0x140
comp_algorithm_show+0x40/0x70 [zram]
dev_attr_show+0x28/0x80
sysfs_kf_seq_show+0x90/0x140
kernfs_seq_show+0x34/0x48
seq_read_iter+0x1d4/0x4e8
kernfs_fop_read_iter+0x40/0x58
new_sync_read+0x9c/0x168
vfs_read+0x1a8/0x1f8
ksys_read+0x74/0x108
__arm64_sys_read+0x24/0x38
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x38/0x138
el0t_64_sync_handler+0xc0/0xc8
el0t_64_sync+0x188/0x190
The zram->comp_algs[ZRAM_PRIMARY_COMP] can be NULL in zram_add() if
comp_algorithm_set() has not been called. User can access the zram device
by sysfs after device_add_disk(), so there is a time window to trigger the
NULL pointer dereference. Move it ahead device_add_disk() to make sure
when user can access the zram device, it is ready. comp_algorithm_set()
is protected by zram->init_lock in other places and no such problem.
Link: https://lkml.kernel.org/r/20241108100147.3776123-1-liushixin2@huawei.com
Fixes: 7ac07a26de
("zram: preparation for multi-zcomp support")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2788 lines
65 KiB
C
2788 lines
65 KiB
C
/*
|
|
* Compressed RAM block device
|
|
*
|
|
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
|
|
* 2012, 2013 Minchan Kim
|
|
*
|
|
* This code is released using a dual license strategy: BSD/GPL
|
|
* You can choose the licence that better fits your requirements.
|
|
*
|
|
* Released under the terms of 3-clause BSD License
|
|
* Released under the terms of GNU General Public License Version 2.0
|
|
*
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "zram"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/device.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/string.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/err.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/part_stat.h>
|
|
#include <linux/kernel_read_file.h>
|
|
|
|
#include "zram_drv.h"
|
|
|
|
static DEFINE_IDR(zram_index_idr);
|
|
/* idr index must be protected */
|
|
static DEFINE_MUTEX(zram_index_mutex);
|
|
|
|
static int zram_major;
|
|
static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
|
|
|
|
/* Module params (documentation at end) */
|
|
static unsigned int num_devices = 1;
|
|
/*
|
|
* Pages that compress to sizes equals or greater than this are stored
|
|
* uncompressed in memory.
|
|
*/
|
|
static size_t huge_class_size;
|
|
|
|
static const struct block_device_operations zram_devops;
|
|
|
|
static void zram_free_page(struct zram *zram, size_t index);
|
|
static int zram_read_page(struct zram *zram, struct page *page, u32 index,
|
|
struct bio *parent);
|
|
|
|
static int zram_slot_trylock(struct zram *zram, u32 index)
|
|
{
|
|
return spin_trylock(&zram->table[index].lock);
|
|
}
|
|
|
|
static void zram_slot_lock(struct zram *zram, u32 index)
|
|
{
|
|
spin_lock(&zram->table[index].lock);
|
|
}
|
|
|
|
static void zram_slot_unlock(struct zram *zram, u32 index)
|
|
{
|
|
spin_unlock(&zram->table[index].lock);
|
|
}
|
|
|
|
static inline bool init_done(struct zram *zram)
|
|
{
|
|
return zram->disksize;
|
|
}
|
|
|
|
static inline struct zram *dev_to_zram(struct device *dev)
|
|
{
|
|
return (struct zram *)dev_to_disk(dev)->private_data;
|
|
}
|
|
|
|
static unsigned long zram_get_handle(struct zram *zram, u32 index)
|
|
{
|
|
return zram->table[index].handle;
|
|
}
|
|
|
|
static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
|
|
{
|
|
zram->table[index].handle = handle;
|
|
}
|
|
|
|
/* flag operations require table entry bit_spin_lock() being held */
|
|
static bool zram_test_flag(struct zram *zram, u32 index,
|
|
enum zram_pageflags flag)
|
|
{
|
|
return zram->table[index].flags & BIT(flag);
|
|
}
|
|
|
|
static void zram_set_flag(struct zram *zram, u32 index,
|
|
enum zram_pageflags flag)
|
|
{
|
|
zram->table[index].flags |= BIT(flag);
|
|
}
|
|
|
|
static void zram_clear_flag(struct zram *zram, u32 index,
|
|
enum zram_pageflags flag)
|
|
{
|
|
zram->table[index].flags &= ~BIT(flag);
|
|
}
|
|
|
|
static inline void zram_set_element(struct zram *zram, u32 index,
|
|
unsigned long element)
|
|
{
|
|
zram->table[index].element = element;
|
|
}
|
|
|
|
static unsigned long zram_get_element(struct zram *zram, u32 index)
|
|
{
|
|
return zram->table[index].element;
|
|
}
|
|
|
|
static size_t zram_get_obj_size(struct zram *zram, u32 index)
|
|
{
|
|
return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
|
|
}
|
|
|
|
static void zram_set_obj_size(struct zram *zram,
|
|
u32 index, size_t size)
|
|
{
|
|
unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
|
|
|
|
zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
|
|
}
|
|
|
|
static inline bool zram_allocated(struct zram *zram, u32 index)
|
|
{
|
|
return zram_get_obj_size(zram, index) ||
|
|
zram_test_flag(zram, index, ZRAM_SAME) ||
|
|
zram_test_flag(zram, index, ZRAM_WB);
|
|
}
|
|
|
|
#if PAGE_SIZE != 4096
|
|
static inline bool is_partial_io(struct bio_vec *bvec)
|
|
{
|
|
return bvec->bv_len != PAGE_SIZE;
|
|
}
|
|
#define ZRAM_PARTIAL_IO 1
|
|
#else
|
|
static inline bool is_partial_io(struct bio_vec *bvec)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
|
|
{
|
|
prio &= ZRAM_COMP_PRIORITY_MASK;
|
|
/*
|
|
* Clear previous priority value first, in case if we recompress
|
|
* further an already recompressed page
|
|
*/
|
|
zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
|
|
ZRAM_COMP_PRIORITY_BIT1);
|
|
zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
|
|
}
|
|
|
|
static inline u32 zram_get_priority(struct zram *zram, u32 index)
|
|
{
|
|
u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
|
|
|
|
return prio & ZRAM_COMP_PRIORITY_MASK;
|
|
}
|
|
|
|
static void zram_accessed(struct zram *zram, u32 index)
|
|
{
|
|
zram_clear_flag(zram, index, ZRAM_IDLE);
|
|
zram_clear_flag(zram, index, ZRAM_PP_SLOT);
|
|
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
|
|
zram->table[index].ac_time = ktime_get_boottime();
|
|
#endif
|
|
}
|
|
|
|
#if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
|
|
struct zram_pp_slot {
|
|
unsigned long index;
|
|
struct list_head entry;
|
|
};
|
|
|
|
/*
|
|
* A post-processing bucket is, essentially, a size class, this defines
|
|
* the range (in bytes) of pp-slots sizes in particular bucket.
|
|
*/
|
|
#define PP_BUCKET_SIZE_RANGE 64
|
|
#define NUM_PP_BUCKETS ((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
|
|
|
|
struct zram_pp_ctl {
|
|
struct list_head pp_buckets[NUM_PP_BUCKETS];
|
|
};
|
|
|
|
static struct zram_pp_ctl *init_pp_ctl(void)
|
|
{
|
|
struct zram_pp_ctl *ctl;
|
|
u32 idx;
|
|
|
|
ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
|
|
if (!ctl)
|
|
return NULL;
|
|
|
|
for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
|
|
INIT_LIST_HEAD(&ctl->pp_buckets[idx]);
|
|
return ctl;
|
|
}
|
|
|
|
static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
|
|
{
|
|
list_del_init(&pps->entry);
|
|
|
|
zram_slot_lock(zram, pps->index);
|
|
zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT);
|
|
zram_slot_unlock(zram, pps->index);
|
|
|
|
kfree(pps);
|
|
}
|
|
|
|
static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
|
|
{
|
|
u32 idx;
|
|
|
|
if (!ctl)
|
|
return;
|
|
|
|
for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
|
|
while (!list_empty(&ctl->pp_buckets[idx])) {
|
|
struct zram_pp_slot *pps;
|
|
|
|
pps = list_first_entry(&ctl->pp_buckets[idx],
|
|
struct zram_pp_slot,
|
|
entry);
|
|
release_pp_slot(zram, pps);
|
|
}
|
|
}
|
|
|
|
kfree(ctl);
|
|
}
|
|
|
|
static void place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
|
|
struct zram_pp_slot *pps)
|
|
{
|
|
u32 idx;
|
|
|
|
idx = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE;
|
|
list_add(&pps->entry, &ctl->pp_buckets[idx]);
|
|
|
|
zram_set_flag(zram, pps->index, ZRAM_PP_SLOT);
|
|
}
|
|
|
|
static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
|
|
{
|
|
struct zram_pp_slot *pps = NULL;
|
|
s32 idx = NUM_PP_BUCKETS - 1;
|
|
|
|
/* The higher the bucket id the more optimal slot post-processing is */
|
|
while (idx >= 0) {
|
|
pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
|
|
struct zram_pp_slot,
|
|
entry);
|
|
if (pps)
|
|
break;
|
|
|
|
idx--;
|
|
}
|
|
return pps;
|
|
}
|
|
#endif
|
|
|
|
static inline void update_used_max(struct zram *zram,
|
|
const unsigned long pages)
|
|
{
|
|
unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
|
|
|
|
do {
|
|
if (cur_max >= pages)
|
|
return;
|
|
} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
|
|
&cur_max, pages));
|
|
}
|
|
|
|
static inline void zram_fill_page(void *ptr, unsigned long len,
|
|
unsigned long value)
|
|
{
|
|
WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
|
|
memset_l(ptr, value, len / sizeof(unsigned long));
|
|
}
|
|
|
|
static bool page_same_filled(void *ptr, unsigned long *element)
|
|
{
|
|
unsigned long *page;
|
|
unsigned long val;
|
|
unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
|
|
|
|
page = (unsigned long *)ptr;
|
|
val = page[0];
|
|
|
|
if (val != page[last_pos])
|
|
return false;
|
|
|
|
for (pos = 1; pos < last_pos; pos++) {
|
|
if (val != page[pos])
|
|
return false;
|
|
}
|
|
|
|
*element = val;
|
|
|
|
return true;
|
|
}
|
|
|
|
static ssize_t initstate_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
u32 val;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
val = init_done(zram);
|
|
up_read(&zram->init_lock);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%u\n", val);
|
|
}
|
|
|
|
static ssize_t disksize_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
|
|
}
|
|
|
|
static ssize_t mem_limit_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
u64 limit;
|
|
char *tmp;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
limit = memparse(buf, &tmp);
|
|
if (buf == tmp) /* no chars parsed, invalid input */
|
|
return -EINVAL;
|
|
|
|
down_write(&zram->init_lock);
|
|
zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
|
|
up_write(&zram->init_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static ssize_t mem_used_max_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
int err;
|
|
unsigned long val;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
err = kstrtoul(buf, 10, &val);
|
|
if (err || val != 0)
|
|
return -EINVAL;
|
|
|
|
down_read(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
atomic_long_set(&zram->stats.max_used_pages,
|
|
zs_get_total_pages(zram->mem_pool));
|
|
}
|
|
up_read(&zram->init_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Mark all pages which are older than or equal to cutoff as IDLE.
|
|
* Callers should hold the zram init lock in read mode
|
|
*/
|
|
static void mark_idle(struct zram *zram, ktime_t cutoff)
|
|
{
|
|
int is_idle = 1;
|
|
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
|
|
int index;
|
|
|
|
for (index = 0; index < nr_pages; index++) {
|
|
/*
|
|
* Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
|
|
* post-processing (recompress, writeback) happens to the
|
|
* ZRAM_SAME slot.
|
|
*
|
|
* And ZRAM_WB slots simply cannot be ZRAM_IDLE.
|
|
*/
|
|
zram_slot_lock(zram, index);
|
|
if (!zram_allocated(zram, index) ||
|
|
zram_test_flag(zram, index, ZRAM_WB) ||
|
|
zram_test_flag(zram, index, ZRAM_SAME)) {
|
|
zram_slot_unlock(zram, index);
|
|
continue;
|
|
}
|
|
|
|
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
|
|
is_idle = !cutoff ||
|
|
ktime_after(cutoff, zram->table[index].ac_time);
|
|
#endif
|
|
if (is_idle)
|
|
zram_set_flag(zram, index, ZRAM_IDLE);
|
|
else
|
|
zram_clear_flag(zram, index, ZRAM_IDLE);
|
|
zram_slot_unlock(zram, index);
|
|
}
|
|
}
|
|
|
|
static ssize_t idle_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ktime_t cutoff_time = 0;
|
|
ssize_t rv = -EINVAL;
|
|
|
|
if (!sysfs_streq(buf, "all")) {
|
|
/*
|
|
* If it did not parse as 'all' try to treat it as an integer
|
|
* when we have memory tracking enabled.
|
|
*/
|
|
u64 age_sec;
|
|
|
|
if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
|
|
cutoff_time = ktime_sub(ktime_get_boottime(),
|
|
ns_to_ktime(age_sec * NSEC_PER_SEC));
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
down_read(&zram->init_lock);
|
|
if (!init_done(zram))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* A cutoff_time of 0 marks everything as idle, this is the
|
|
* "all" behavior.
|
|
*/
|
|
mark_idle(zram, cutoff_time);
|
|
rv = len;
|
|
|
|
out_unlock:
|
|
up_read(&zram->init_lock);
|
|
out:
|
|
return rv;
|
|
}
|
|
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
static ssize_t writeback_limit_enable_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
u64 val;
|
|
ssize_t ret = -EINVAL;
|
|
|
|
if (kstrtoull(buf, 10, &val))
|
|
return ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
spin_lock(&zram->wb_limit_lock);
|
|
zram->wb_limit_enable = val;
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
up_read(&zram->init_lock);
|
|
ret = len;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t writeback_limit_enable_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bool val;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
spin_lock(&zram->wb_limit_lock);
|
|
val = zram->wb_limit_enable;
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
up_read(&zram->init_lock);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", val);
|
|
}
|
|
|
|
static ssize_t writeback_limit_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
u64 val;
|
|
ssize_t ret = -EINVAL;
|
|
|
|
if (kstrtoull(buf, 10, &val))
|
|
return ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
spin_lock(&zram->wb_limit_lock);
|
|
zram->bd_wb_limit = val;
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
up_read(&zram->init_lock);
|
|
ret = len;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t writeback_limit_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
u64 val;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
spin_lock(&zram->wb_limit_lock);
|
|
val = zram->bd_wb_limit;
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
up_read(&zram->init_lock);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
|
|
}
|
|
|
|
static void reset_bdev(struct zram *zram)
|
|
{
|
|
if (!zram->backing_dev)
|
|
return;
|
|
|
|
/* hope filp_close flush all of IO */
|
|
filp_close(zram->backing_dev, NULL);
|
|
zram->backing_dev = NULL;
|
|
zram->bdev = NULL;
|
|
zram->disk->fops = &zram_devops;
|
|
kvfree(zram->bitmap);
|
|
zram->bitmap = NULL;
|
|
}
|
|
|
|
static ssize_t backing_dev_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct file *file;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
char *p;
|
|
ssize_t ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
file = zram->backing_dev;
|
|
if (!file) {
|
|
memcpy(buf, "none\n", 5);
|
|
up_read(&zram->init_lock);
|
|
return 5;
|
|
}
|
|
|
|
p = file_path(file, buf, PAGE_SIZE - 1);
|
|
if (IS_ERR(p)) {
|
|
ret = PTR_ERR(p);
|
|
goto out;
|
|
}
|
|
|
|
ret = strlen(p);
|
|
memmove(buf, p, ret);
|
|
buf[ret++] = '\n';
|
|
out:
|
|
up_read(&zram->init_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t backing_dev_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
char *file_name;
|
|
size_t sz;
|
|
struct file *backing_dev = NULL;
|
|
struct inode *inode;
|
|
unsigned int bitmap_sz;
|
|
unsigned long nr_pages, *bitmap = NULL;
|
|
int err;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
file_name = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!file_name)
|
|
return -ENOMEM;
|
|
|
|
down_write(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
pr_info("Can't setup backing device for initialized device\n");
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
strscpy(file_name, buf, PATH_MAX);
|
|
/* ignore trailing newline */
|
|
sz = strlen(file_name);
|
|
if (sz > 0 && file_name[sz - 1] == '\n')
|
|
file_name[sz - 1] = 0x00;
|
|
|
|
backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
|
|
if (IS_ERR(backing_dev)) {
|
|
err = PTR_ERR(backing_dev);
|
|
backing_dev = NULL;
|
|
goto out;
|
|
}
|
|
|
|
inode = backing_dev->f_mapping->host;
|
|
|
|
/* Support only block device in this moment */
|
|
if (!S_ISBLK(inode->i_mode)) {
|
|
err = -ENOTBLK;
|
|
goto out;
|
|
}
|
|
|
|
nr_pages = i_size_read(inode) >> PAGE_SHIFT;
|
|
bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
|
|
bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
|
|
if (!bitmap) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
reset_bdev(zram);
|
|
|
|
zram->bdev = I_BDEV(inode);
|
|
zram->backing_dev = backing_dev;
|
|
zram->bitmap = bitmap;
|
|
zram->nr_pages = nr_pages;
|
|
up_write(&zram->init_lock);
|
|
|
|
pr_info("setup backing device %s\n", file_name);
|
|
kfree(file_name);
|
|
|
|
return len;
|
|
out:
|
|
kvfree(bitmap);
|
|
|
|
if (backing_dev)
|
|
filp_close(backing_dev, NULL);
|
|
|
|
up_write(&zram->init_lock);
|
|
|
|
kfree(file_name);
|
|
|
|
return err;
|
|
}
|
|
|
|
static unsigned long alloc_block_bdev(struct zram *zram)
|
|
{
|
|
unsigned long blk_idx = 1;
|
|
retry:
|
|
/* skip 0 bit to confuse zram.handle = 0 */
|
|
blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
|
|
if (blk_idx == zram->nr_pages)
|
|
return 0;
|
|
|
|
if (test_and_set_bit(blk_idx, zram->bitmap))
|
|
goto retry;
|
|
|
|
atomic64_inc(&zram->stats.bd_count);
|
|
return blk_idx;
|
|
}
|
|
|
|
static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
|
|
{
|
|
int was_set;
|
|
|
|
was_set = test_and_clear_bit(blk_idx, zram->bitmap);
|
|
WARN_ON_ONCE(!was_set);
|
|
atomic64_dec(&zram->stats.bd_count);
|
|
}
|
|
|
|
static void read_from_bdev_async(struct zram *zram, struct page *page,
|
|
unsigned long entry, struct bio *parent)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
|
|
bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
|
|
__bio_add_page(bio, page, PAGE_SIZE, 0);
|
|
bio_chain(bio, parent);
|
|
submit_bio(bio);
|
|
}
|
|
|
|
#define PAGE_WB_SIG "page_index="
|
|
|
|
#define PAGE_WRITEBACK 0
|
|
#define HUGE_WRITEBACK (1<<0)
|
|
#define IDLE_WRITEBACK (1<<1)
|
|
#define INCOMPRESSIBLE_WRITEBACK (1<<2)
|
|
|
|
static int scan_slots_for_writeback(struct zram *zram, u32 mode,
|
|
unsigned long nr_pages,
|
|
unsigned long index,
|
|
struct zram_pp_ctl *ctl)
|
|
{
|
|
struct zram_pp_slot *pps = NULL;
|
|
|
|
for (; nr_pages != 0; index++, nr_pages--) {
|
|
if (!pps)
|
|
pps = kmalloc(sizeof(*pps), GFP_KERNEL);
|
|
if (!pps)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&pps->entry);
|
|
|
|
zram_slot_lock(zram, index);
|
|
if (!zram_allocated(zram, index))
|
|
goto next;
|
|
|
|
if (zram_test_flag(zram, index, ZRAM_WB) ||
|
|
zram_test_flag(zram, index, ZRAM_SAME))
|
|
goto next;
|
|
|
|
if (mode & IDLE_WRITEBACK &&
|
|
!zram_test_flag(zram, index, ZRAM_IDLE))
|
|
goto next;
|
|
if (mode & HUGE_WRITEBACK &&
|
|
!zram_test_flag(zram, index, ZRAM_HUGE))
|
|
goto next;
|
|
if (mode & INCOMPRESSIBLE_WRITEBACK &&
|
|
!zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
|
|
goto next;
|
|
|
|
pps->index = index;
|
|
place_pp_slot(zram, ctl, pps);
|
|
pps = NULL;
|
|
next:
|
|
zram_slot_unlock(zram, index);
|
|
}
|
|
|
|
kfree(pps);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t writeback_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
|
|
struct zram_pp_ctl *ctl = NULL;
|
|
struct zram_pp_slot *pps;
|
|
unsigned long index = 0;
|
|
struct bio bio;
|
|
struct bio_vec bio_vec;
|
|
struct page *page;
|
|
ssize_t ret = len;
|
|
int mode, err;
|
|
unsigned long blk_idx = 0;
|
|
|
|
if (sysfs_streq(buf, "idle"))
|
|
mode = IDLE_WRITEBACK;
|
|
else if (sysfs_streq(buf, "huge"))
|
|
mode = HUGE_WRITEBACK;
|
|
else if (sysfs_streq(buf, "huge_idle"))
|
|
mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
|
|
else if (sysfs_streq(buf, "incompressible"))
|
|
mode = INCOMPRESSIBLE_WRITEBACK;
|
|
else {
|
|
if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
|
|
return -EINVAL;
|
|
|
|
if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
|
|
index >= nr_pages)
|
|
return -EINVAL;
|
|
|
|
nr_pages = 1;
|
|
mode = PAGE_WRITEBACK;
|
|
}
|
|
|
|
down_read(&zram->init_lock);
|
|
if (!init_done(zram)) {
|
|
ret = -EINVAL;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
/* Do not permit concurrent post-processing actions. */
|
|
if (atomic_xchg(&zram->pp_in_progress, 1)) {
|
|
up_read(&zram->init_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!zram->backing_dev) {
|
|
ret = -ENODEV;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
ctl = init_pp_ctl();
|
|
if (!ctl) {
|
|
ret = -ENOMEM;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
scan_slots_for_writeback(zram, mode, nr_pages, index, ctl);
|
|
|
|
while ((pps = select_pp_slot(ctl))) {
|
|
spin_lock(&zram->wb_limit_lock);
|
|
if (zram->wb_limit_enable && !zram->bd_wb_limit) {
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
|
|
if (!blk_idx) {
|
|
blk_idx = alloc_block_bdev(zram);
|
|
if (!blk_idx) {
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
}
|
|
|
|
index = pps->index;
|
|
zram_slot_lock(zram, index);
|
|
/*
|
|
* scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so
|
|
* slots can change in the meantime. If slots are accessed or
|
|
* freed they lose ZRAM_PP_SLOT flag and hence we don't
|
|
* post-process them.
|
|
*/
|
|
if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
|
|
goto next;
|
|
zram_slot_unlock(zram, index);
|
|
|
|
if (zram_read_page(zram, page, index, NULL)) {
|
|
release_pp_slot(zram, pps);
|
|
continue;
|
|
}
|
|
|
|
bio_init(&bio, zram->bdev, &bio_vec, 1,
|
|
REQ_OP_WRITE | REQ_SYNC);
|
|
bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
|
|
__bio_add_page(&bio, page, PAGE_SIZE, 0);
|
|
|
|
/*
|
|
* XXX: A single page IO would be inefficient for write
|
|
* but it would be not bad as starter.
|
|
*/
|
|
err = submit_bio_wait(&bio);
|
|
if (err) {
|
|
release_pp_slot(zram, pps);
|
|
/*
|
|
* BIO errors are not fatal, we continue and simply
|
|
* attempt to writeback the remaining objects (pages).
|
|
* At the same time we need to signal user-space that
|
|
* some writes (at least one, but also could be all of
|
|
* them) were not successful and we do so by returning
|
|
* the most recent BIO error.
|
|
*/
|
|
ret = err;
|
|
continue;
|
|
}
|
|
|
|
atomic64_inc(&zram->stats.bd_writes);
|
|
zram_slot_lock(zram, index);
|
|
/*
|
|
* Same as above, we release slot lock during writeback so
|
|
* slot can change under us: slot_free() or slot_free() and
|
|
* reallocation (zram_write_page()). In both cases slot loses
|
|
* ZRAM_PP_SLOT flag. No concurrent post-processing can set
|
|
* ZRAM_PP_SLOT on such slots until current post-processing
|
|
* finishes.
|
|
*/
|
|
if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
|
|
goto next;
|
|
|
|
zram_free_page(zram, index);
|
|
zram_set_flag(zram, index, ZRAM_WB);
|
|
zram_set_element(zram, index, blk_idx);
|
|
blk_idx = 0;
|
|
atomic64_inc(&zram->stats.pages_stored);
|
|
spin_lock(&zram->wb_limit_lock);
|
|
if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
|
|
zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
|
|
spin_unlock(&zram->wb_limit_lock);
|
|
next:
|
|
zram_slot_unlock(zram, index);
|
|
release_pp_slot(zram, pps);
|
|
}
|
|
|
|
if (blk_idx)
|
|
free_block_bdev(zram, blk_idx);
|
|
__free_page(page);
|
|
release_init_lock:
|
|
release_pp_ctl(zram, ctl);
|
|
atomic_set(&zram->pp_in_progress, 0);
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct zram_work {
|
|
struct work_struct work;
|
|
struct zram *zram;
|
|
unsigned long entry;
|
|
struct page *page;
|
|
int error;
|
|
};
|
|
|
|
static void zram_sync_read(struct work_struct *work)
|
|
{
|
|
struct zram_work *zw = container_of(work, struct zram_work, work);
|
|
struct bio_vec bv;
|
|
struct bio bio;
|
|
|
|
bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
|
|
bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
|
|
__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
|
|
zw->error = submit_bio_wait(&bio);
|
|
}
|
|
|
|
/*
|
|
* Block layer want one ->submit_bio to be active at a time, so if we use
|
|
* chained IO with parent IO in same context, it's a deadlock. To avoid that,
|
|
* use a worker thread context.
|
|
*/
|
|
static int read_from_bdev_sync(struct zram *zram, struct page *page,
|
|
unsigned long entry)
|
|
{
|
|
struct zram_work work;
|
|
|
|
work.page = page;
|
|
work.zram = zram;
|
|
work.entry = entry;
|
|
|
|
INIT_WORK_ONSTACK(&work.work, zram_sync_read);
|
|
queue_work(system_unbound_wq, &work.work);
|
|
flush_work(&work.work);
|
|
destroy_work_on_stack(&work.work);
|
|
|
|
return work.error;
|
|
}
|
|
|
|
static int read_from_bdev(struct zram *zram, struct page *page,
|
|
unsigned long entry, struct bio *parent)
|
|
{
|
|
atomic64_inc(&zram->stats.bd_reads);
|
|
if (!parent) {
|
|
if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
|
|
return -EIO;
|
|
return read_from_bdev_sync(zram, page, entry);
|
|
}
|
|
read_from_bdev_async(zram, page, entry, parent);
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline void reset_bdev(struct zram *zram) {};
|
|
static int read_from_bdev(struct zram *zram, struct page *page,
|
|
unsigned long entry, struct bio *parent)
|
|
{
|
|
return -EIO;
|
|
}
|
|
|
|
static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZRAM_MEMORY_TRACKING
|
|
|
|
static struct dentry *zram_debugfs_root;
|
|
|
|
static void zram_debugfs_create(void)
|
|
{
|
|
zram_debugfs_root = debugfs_create_dir("zram", NULL);
|
|
}
|
|
|
|
static void zram_debugfs_destroy(void)
|
|
{
|
|
debugfs_remove_recursive(zram_debugfs_root);
|
|
}
|
|
|
|
static ssize_t read_block_state(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char *kbuf;
|
|
ssize_t index, written = 0;
|
|
struct zram *zram = file->private_data;
|
|
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
|
|
struct timespec64 ts;
|
|
|
|
kbuf = kvmalloc(count, GFP_KERNEL);
|
|
if (!kbuf)
|
|
return -ENOMEM;
|
|
|
|
down_read(&zram->init_lock);
|
|
if (!init_done(zram)) {
|
|
up_read(&zram->init_lock);
|
|
kvfree(kbuf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (index = *ppos; index < nr_pages; index++) {
|
|
int copied;
|
|
|
|
zram_slot_lock(zram, index);
|
|
if (!zram_allocated(zram, index))
|
|
goto next;
|
|
|
|
ts = ktime_to_timespec64(zram->table[index].ac_time);
|
|
copied = snprintf(kbuf + written, count,
|
|
"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
|
|
index, (s64)ts.tv_sec,
|
|
ts.tv_nsec / NSEC_PER_USEC,
|
|
zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
|
|
zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
|
|
zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
|
|
zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
|
|
zram_get_priority(zram, index) ? 'r' : '.',
|
|
zram_test_flag(zram, index,
|
|
ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
|
|
|
|
if (count <= copied) {
|
|
zram_slot_unlock(zram, index);
|
|
break;
|
|
}
|
|
written += copied;
|
|
count -= copied;
|
|
next:
|
|
zram_slot_unlock(zram, index);
|
|
*ppos += 1;
|
|
}
|
|
|
|
up_read(&zram->init_lock);
|
|
if (copy_to_user(buf, kbuf, written))
|
|
written = -EFAULT;
|
|
kvfree(kbuf);
|
|
|
|
return written;
|
|
}
|
|
|
|
static const struct file_operations proc_zram_block_state_op = {
|
|
.open = simple_open,
|
|
.read = read_block_state,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static void zram_debugfs_register(struct zram *zram)
|
|
{
|
|
if (!zram_debugfs_root)
|
|
return;
|
|
|
|
zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
|
|
zram_debugfs_root);
|
|
debugfs_create_file("block_state", 0400, zram->debugfs_dir,
|
|
zram, &proc_zram_block_state_op);
|
|
}
|
|
|
|
static void zram_debugfs_unregister(struct zram *zram)
|
|
{
|
|
debugfs_remove_recursive(zram->debugfs_dir);
|
|
}
|
|
#else
|
|
static void zram_debugfs_create(void) {};
|
|
static void zram_debugfs_destroy(void) {};
|
|
static void zram_debugfs_register(struct zram *zram) {};
|
|
static void zram_debugfs_unregister(struct zram *zram) {};
|
|
#endif
|
|
|
|
/*
|
|
* We switched to per-cpu streams and this attr is not needed anymore.
|
|
* However, we will keep it around for some time, because:
|
|
* a) we may revert per-cpu streams in the future
|
|
* b) it's visible to user space and we need to follow our 2 years
|
|
* retirement rule; but we already have a number of 'soon to be
|
|
* altered' attrs, so max_comp_streams need to wait for the next
|
|
* layoff cycle.
|
|
*/
|
|
static ssize_t max_comp_streams_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
|
|
}
|
|
|
|
static ssize_t max_comp_streams_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
return len;
|
|
}
|
|
|
|
static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
|
|
{
|
|
/* Do not free statically defined compression algorithms */
|
|
if (zram->comp_algs[prio] != default_compressor)
|
|
kfree(zram->comp_algs[prio]);
|
|
|
|
zram->comp_algs[prio] = alg;
|
|
}
|
|
|
|
static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
|
|
{
|
|
ssize_t sz;
|
|
|
|
down_read(&zram->init_lock);
|
|
sz = zcomp_available_show(zram->comp_algs[prio], buf);
|
|
up_read(&zram->init_lock);
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
|
|
{
|
|
char *compressor;
|
|
size_t sz;
|
|
|
|
sz = strlen(buf);
|
|
if (sz >= CRYPTO_MAX_ALG_NAME)
|
|
return -E2BIG;
|
|
|
|
compressor = kstrdup(buf, GFP_KERNEL);
|
|
if (!compressor)
|
|
return -ENOMEM;
|
|
|
|
/* ignore trailing newline */
|
|
if (sz > 0 && compressor[sz - 1] == '\n')
|
|
compressor[sz - 1] = 0x00;
|
|
|
|
if (!zcomp_available_algorithm(compressor)) {
|
|
kfree(compressor);
|
|
return -EINVAL;
|
|
}
|
|
|
|
down_write(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
up_write(&zram->init_lock);
|
|
kfree(compressor);
|
|
pr_info("Can't change algorithm for initialized device\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
comp_algorithm_set(zram, prio, compressor);
|
|
up_write(&zram->init_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void comp_params_reset(struct zram *zram, u32 prio)
|
|
{
|
|
struct zcomp_params *params = &zram->params[prio];
|
|
|
|
vfree(params->dict);
|
|
params->level = ZCOMP_PARAM_NO_LEVEL;
|
|
params->dict_sz = 0;
|
|
params->dict = NULL;
|
|
}
|
|
|
|
static int comp_params_store(struct zram *zram, u32 prio, s32 level,
|
|
const char *dict_path)
|
|
{
|
|
ssize_t sz = 0;
|
|
|
|
comp_params_reset(zram, prio);
|
|
|
|
if (dict_path) {
|
|
sz = kernel_read_file_from_path(dict_path, 0,
|
|
&zram->params[prio].dict,
|
|
INT_MAX,
|
|
NULL,
|
|
READING_POLICY);
|
|
if (sz < 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
zram->params[prio].dict_sz = sz;
|
|
zram->params[prio].level = level;
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t algorithm_params_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t len)
|
|
{
|
|
s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL;
|
|
char *args, *param, *val, *algo = NULL, *dict_path = NULL;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
int ret;
|
|
|
|
args = skip_spaces(buf);
|
|
while (*args) {
|
|
args = next_arg(args, ¶m, &val);
|
|
|
|
if (!val || !*val)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(param, "priority")) {
|
|
ret = kstrtoint(val, 10, &prio);
|
|
if (ret)
|
|
return ret;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "level")) {
|
|
ret = kstrtoint(val, 10, &level);
|
|
if (ret)
|
|
return ret;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "algo")) {
|
|
algo = val;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "dict")) {
|
|
dict_path = val;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Lookup priority by algorithm name */
|
|
if (algo) {
|
|
s32 p;
|
|
|
|
prio = -EINVAL;
|
|
for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
|
|
if (!zram->comp_algs[p])
|
|
continue;
|
|
|
|
if (!strcmp(zram->comp_algs[p], algo)) {
|
|
prio = p;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
|
|
return -EINVAL;
|
|
|
|
ret = comp_params_store(zram, prio, level, dict_path);
|
|
return ret ? ret : len;
|
|
}
|
|
|
|
static ssize_t comp_algorithm_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
|
|
}
|
|
|
|
static ssize_t comp_algorithm_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
int ret;
|
|
|
|
ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
|
|
return ret ? ret : len;
|
|
}
|
|
|
|
#ifdef CONFIG_ZRAM_MULTI_COMP
|
|
static ssize_t recomp_algorithm_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ssize_t sz = 0;
|
|
u32 prio;
|
|
|
|
for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
|
|
if (!zram->comp_algs[prio])
|
|
continue;
|
|
|
|
sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
|
|
sz += __comp_algorithm_show(zram, prio, buf + sz);
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
static ssize_t recomp_algorithm_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
int prio = ZRAM_SECONDARY_COMP;
|
|
char *args, *param, *val;
|
|
char *alg = NULL;
|
|
int ret;
|
|
|
|
args = skip_spaces(buf);
|
|
while (*args) {
|
|
args = next_arg(args, ¶m, &val);
|
|
|
|
if (!val || !*val)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(param, "algo")) {
|
|
alg = val;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "priority")) {
|
|
ret = kstrtoint(val, 10, &prio);
|
|
if (ret)
|
|
return ret;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!alg)
|
|
return -EINVAL;
|
|
|
|
if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
|
|
return -EINVAL;
|
|
|
|
ret = __comp_algorithm_store(zram, prio, alg);
|
|
return ret ? ret : len;
|
|
}
|
|
#endif
|
|
|
|
static ssize_t compact_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
|
|
down_read(&zram->init_lock);
|
|
if (!init_done(zram)) {
|
|
up_read(&zram->init_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
zs_compact(zram->mem_pool);
|
|
up_read(&zram->init_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static ssize_t io_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ssize_t ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"%8llu %8llu 0 %8llu\n",
|
|
(u64)atomic64_read(&zram->stats.failed_reads),
|
|
(u64)atomic64_read(&zram->stats.failed_writes),
|
|
(u64)atomic64_read(&zram->stats.notify_free));
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t mm_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
struct zs_pool_stats pool_stats;
|
|
u64 orig_size, mem_used = 0;
|
|
long max_used;
|
|
ssize_t ret;
|
|
|
|
memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
|
|
|
|
down_read(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
mem_used = zs_get_total_pages(zram->mem_pool);
|
|
zs_pool_stats(zram->mem_pool, &pool_stats);
|
|
}
|
|
|
|
orig_size = atomic64_read(&zram->stats.pages_stored);
|
|
max_used = atomic_long_read(&zram->stats.max_used_pages);
|
|
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
|
|
orig_size << PAGE_SHIFT,
|
|
(u64)atomic64_read(&zram->stats.compr_data_size),
|
|
mem_used << PAGE_SHIFT,
|
|
zram->limit_pages << PAGE_SHIFT,
|
|
max_used << PAGE_SHIFT,
|
|
(u64)atomic64_read(&zram->stats.same_pages),
|
|
atomic_long_read(&pool_stats.pages_compacted),
|
|
(u64)atomic64_read(&zram->stats.huge_pages),
|
|
(u64)atomic64_read(&zram->stats.huge_pages_since));
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
#define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
|
|
static ssize_t bd_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ssize_t ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"%8llu %8llu %8llu\n",
|
|
FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
|
|
FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
|
|
FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static ssize_t debug_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
int version = 1;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
ssize_t ret;
|
|
|
|
down_read(&zram->init_lock);
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"version: %d\n%8llu %8llu\n",
|
|
version,
|
|
(u64)atomic64_read(&zram->stats.writestall),
|
|
(u64)atomic64_read(&zram->stats.miss_free));
|
|
up_read(&zram->init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(io_stat);
|
|
static DEVICE_ATTR_RO(mm_stat);
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
static DEVICE_ATTR_RO(bd_stat);
|
|
#endif
|
|
static DEVICE_ATTR_RO(debug_stat);
|
|
|
|
static void zram_meta_free(struct zram *zram, u64 disksize)
|
|
{
|
|
size_t num_pages = disksize >> PAGE_SHIFT;
|
|
size_t index;
|
|
|
|
/* Free all pages that are still in this zram device */
|
|
for (index = 0; index < num_pages; index++)
|
|
zram_free_page(zram, index);
|
|
|
|
zs_destroy_pool(zram->mem_pool);
|
|
vfree(zram->table);
|
|
}
|
|
|
|
static bool zram_meta_alloc(struct zram *zram, u64 disksize)
|
|
{
|
|
size_t num_pages, index;
|
|
|
|
num_pages = disksize >> PAGE_SHIFT;
|
|
zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
|
|
if (!zram->table)
|
|
return false;
|
|
|
|
zram->mem_pool = zs_create_pool(zram->disk->disk_name);
|
|
if (!zram->mem_pool) {
|
|
vfree(zram->table);
|
|
return false;
|
|
}
|
|
|
|
if (!huge_class_size)
|
|
huge_class_size = zs_huge_class_size(zram->mem_pool);
|
|
|
|
for (index = 0; index < num_pages; index++)
|
|
spin_lock_init(&zram->table[index].lock);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* To protect concurrent access to the same index entry,
|
|
* caller should hold this table index entry's bit_spinlock to
|
|
* indicate this index entry is accessing.
|
|
*/
|
|
static void zram_free_page(struct zram *zram, size_t index)
|
|
{
|
|
unsigned long handle;
|
|
|
|
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
|
|
zram->table[index].ac_time = 0;
|
|
#endif
|
|
|
|
zram_clear_flag(zram, index, ZRAM_IDLE);
|
|
zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
|
|
zram_clear_flag(zram, index, ZRAM_PP_SLOT);
|
|
zram_set_priority(zram, index, 0);
|
|
|
|
if (zram_test_flag(zram, index, ZRAM_HUGE)) {
|
|
zram_clear_flag(zram, index, ZRAM_HUGE);
|
|
atomic64_dec(&zram->stats.huge_pages);
|
|
}
|
|
|
|
if (zram_test_flag(zram, index, ZRAM_WB)) {
|
|
zram_clear_flag(zram, index, ZRAM_WB);
|
|
free_block_bdev(zram, zram_get_element(zram, index));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* No memory is allocated for same element filled pages.
|
|
* Simply clear same page flag.
|
|
*/
|
|
if (zram_test_flag(zram, index, ZRAM_SAME)) {
|
|
zram_clear_flag(zram, index, ZRAM_SAME);
|
|
atomic64_dec(&zram->stats.same_pages);
|
|
goto out;
|
|
}
|
|
|
|
handle = zram_get_handle(zram, index);
|
|
if (!handle)
|
|
return;
|
|
|
|
zs_free(zram->mem_pool, handle);
|
|
|
|
atomic64_sub(zram_get_obj_size(zram, index),
|
|
&zram->stats.compr_data_size);
|
|
out:
|
|
atomic64_dec(&zram->stats.pages_stored);
|
|
zram_set_handle(zram, index, 0);
|
|
zram_set_obj_size(zram, index, 0);
|
|
}
|
|
|
|
/*
|
|
* Reads (decompresses if needed) a page from zspool (zsmalloc).
|
|
* Corresponding ZRAM slot should be locked.
|
|
*/
|
|
static int zram_read_from_zspool(struct zram *zram, struct page *page,
|
|
u32 index)
|
|
{
|
|
struct zcomp_strm *zstrm;
|
|
unsigned long handle;
|
|
unsigned int size;
|
|
void *src, *dst;
|
|
u32 prio;
|
|
int ret;
|
|
|
|
handle = zram_get_handle(zram, index);
|
|
if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
|
|
unsigned long value;
|
|
void *mem;
|
|
|
|
value = handle ? zram_get_element(zram, index) : 0;
|
|
mem = kmap_local_page(page);
|
|
zram_fill_page(mem, PAGE_SIZE, value);
|
|
kunmap_local(mem);
|
|
return 0;
|
|
}
|
|
|
|
size = zram_get_obj_size(zram, index);
|
|
|
|
if (size != PAGE_SIZE) {
|
|
prio = zram_get_priority(zram, index);
|
|
zstrm = zcomp_stream_get(zram->comps[prio]);
|
|
}
|
|
|
|
src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
|
|
if (size == PAGE_SIZE) {
|
|
dst = kmap_local_page(page);
|
|
copy_page(dst, src);
|
|
kunmap_local(dst);
|
|
ret = 0;
|
|
} else {
|
|
dst = kmap_local_page(page);
|
|
ret = zcomp_decompress(zram->comps[prio], zstrm,
|
|
src, size, dst);
|
|
kunmap_local(dst);
|
|
zcomp_stream_put(zram->comps[prio]);
|
|
}
|
|
zs_unmap_object(zram->mem_pool, handle);
|
|
return ret;
|
|
}
|
|
|
|
static int zram_read_page(struct zram *zram, struct page *page, u32 index,
|
|
struct bio *parent)
|
|
{
|
|
int ret;
|
|
|
|
zram_slot_lock(zram, index);
|
|
if (!zram_test_flag(zram, index, ZRAM_WB)) {
|
|
/* Slot should be locked through out the function call */
|
|
ret = zram_read_from_zspool(zram, page, index);
|
|
zram_slot_unlock(zram, index);
|
|
} else {
|
|
/*
|
|
* The slot should be unlocked before reading from the backing
|
|
* device.
|
|
*/
|
|
zram_slot_unlock(zram, index);
|
|
|
|
ret = read_from_bdev(zram, page, zram_get_element(zram, index),
|
|
parent);
|
|
}
|
|
|
|
/* Should NEVER happen. Return bio error if it does. */
|
|
if (WARN_ON(ret < 0))
|
|
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Use a temporary buffer to decompress the page, as the decompressor
|
|
* always expects a full page for the output.
|
|
*/
|
|
static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
|
|
u32 index, int offset)
|
|
{
|
|
struct page *page = alloc_page(GFP_NOIO);
|
|
int ret;
|
|
|
|
if (!page)
|
|
return -ENOMEM;
|
|
ret = zram_read_page(zram, page, index, NULL);
|
|
if (likely(!ret))
|
|
memcpy_to_bvec(bvec, page_address(page) + offset);
|
|
__free_page(page);
|
|
return ret;
|
|
}
|
|
|
|
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
|
|
u32 index, int offset, struct bio *bio)
|
|
{
|
|
if (is_partial_io(bvec))
|
|
return zram_bvec_read_partial(zram, bvec, index, offset);
|
|
return zram_read_page(zram, bvec->bv_page, index, bio);
|
|
}
|
|
|
|
static int zram_write_page(struct zram *zram, struct page *page, u32 index)
|
|
{
|
|
int ret = 0;
|
|
unsigned long alloced_pages;
|
|
unsigned long handle = -ENOMEM;
|
|
unsigned int comp_len = 0;
|
|
void *src, *dst, *mem;
|
|
struct zcomp_strm *zstrm;
|
|
unsigned long element = 0;
|
|
enum zram_pageflags flags = 0;
|
|
|
|
mem = kmap_local_page(page);
|
|
if (page_same_filled(mem, &element)) {
|
|
kunmap_local(mem);
|
|
/* Free memory associated with this sector now. */
|
|
flags = ZRAM_SAME;
|
|
atomic64_inc(&zram->stats.same_pages);
|
|
goto out;
|
|
}
|
|
kunmap_local(mem);
|
|
|
|
compress_again:
|
|
zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
|
|
src = kmap_local_page(page);
|
|
ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
|
|
src, &comp_len);
|
|
kunmap_local(src);
|
|
|
|
if (unlikely(ret)) {
|
|
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
|
|
pr_err("Compression failed! err=%d\n", ret);
|
|
zs_free(zram->mem_pool, handle);
|
|
return ret;
|
|
}
|
|
|
|
if (comp_len >= huge_class_size)
|
|
comp_len = PAGE_SIZE;
|
|
/*
|
|
* handle allocation has 2 paths:
|
|
* a) fast path is executed with preemption disabled (for
|
|
* per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
|
|
* since we can't sleep;
|
|
* b) slow path enables preemption and attempts to allocate
|
|
* the page with __GFP_DIRECT_RECLAIM bit set. we have to
|
|
* put per-cpu compression stream and, thus, to re-do
|
|
* the compression once handle is allocated.
|
|
*
|
|
* if we have a 'non-null' handle here then we are coming
|
|
* from the slow path and handle has already been allocated.
|
|
*/
|
|
if (IS_ERR_VALUE(handle))
|
|
handle = zs_malloc(zram->mem_pool, comp_len,
|
|
__GFP_KSWAPD_RECLAIM |
|
|
__GFP_NOWARN |
|
|
__GFP_HIGHMEM |
|
|
__GFP_MOVABLE);
|
|
if (IS_ERR_VALUE(handle)) {
|
|
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
|
|
atomic64_inc(&zram->stats.writestall);
|
|
handle = zs_malloc(zram->mem_pool, comp_len,
|
|
GFP_NOIO | __GFP_HIGHMEM |
|
|
__GFP_MOVABLE);
|
|
if (IS_ERR_VALUE(handle))
|
|
return PTR_ERR((void *)handle);
|
|
|
|
if (comp_len != PAGE_SIZE)
|
|
goto compress_again;
|
|
/*
|
|
* If the page is not compressible, you need to acquire the
|
|
* lock and execute the code below. The zcomp_stream_get()
|
|
* call is needed to disable the cpu hotplug and grab the
|
|
* zstrm buffer back. It is necessary that the dereferencing
|
|
* of the zstrm variable below occurs correctly.
|
|
*/
|
|
zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
|
|
}
|
|
|
|
alloced_pages = zs_get_total_pages(zram->mem_pool);
|
|
update_used_max(zram, alloced_pages);
|
|
|
|
if (zram->limit_pages && alloced_pages > zram->limit_pages) {
|
|
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
|
|
zs_free(zram->mem_pool, handle);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
|
|
|
|
src = zstrm->buffer;
|
|
if (comp_len == PAGE_SIZE)
|
|
src = kmap_local_page(page);
|
|
memcpy(dst, src, comp_len);
|
|
if (comp_len == PAGE_SIZE)
|
|
kunmap_local(src);
|
|
|
|
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
|
|
zs_unmap_object(zram->mem_pool, handle);
|
|
atomic64_add(comp_len, &zram->stats.compr_data_size);
|
|
out:
|
|
/*
|
|
* Free memory associated with this sector
|
|
* before overwriting unused sectors.
|
|
*/
|
|
zram_slot_lock(zram, index);
|
|
zram_free_page(zram, index);
|
|
|
|
if (comp_len == PAGE_SIZE) {
|
|
zram_set_flag(zram, index, ZRAM_HUGE);
|
|
atomic64_inc(&zram->stats.huge_pages);
|
|
atomic64_inc(&zram->stats.huge_pages_since);
|
|
}
|
|
|
|
if (flags) {
|
|
zram_set_flag(zram, index, flags);
|
|
zram_set_element(zram, index, element);
|
|
} else {
|
|
zram_set_handle(zram, index, handle);
|
|
zram_set_obj_size(zram, index, comp_len);
|
|
}
|
|
zram_slot_unlock(zram, index);
|
|
|
|
/* Update stats */
|
|
atomic64_inc(&zram->stats.pages_stored);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is a partial IO. Read the full page before writing the changes.
|
|
*/
|
|
static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
|
|
u32 index, int offset, struct bio *bio)
|
|
{
|
|
struct page *page = alloc_page(GFP_NOIO);
|
|
int ret;
|
|
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
ret = zram_read_page(zram, page, index, bio);
|
|
if (!ret) {
|
|
memcpy_from_bvec(page_address(page) + offset, bvec);
|
|
ret = zram_write_page(zram, page, index);
|
|
}
|
|
__free_page(page);
|
|
return ret;
|
|
}
|
|
|
|
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
|
|
u32 index, int offset, struct bio *bio)
|
|
{
|
|
if (is_partial_io(bvec))
|
|
return zram_bvec_write_partial(zram, bvec, index, offset, bio);
|
|
return zram_write_page(zram, bvec->bv_page, index);
|
|
}
|
|
|
|
#ifdef CONFIG_ZRAM_MULTI_COMP
|
|
#define RECOMPRESS_IDLE (1 << 0)
|
|
#define RECOMPRESS_HUGE (1 << 1)
|
|
|
|
static int scan_slots_for_recompress(struct zram *zram, u32 mode,
|
|
struct zram_pp_ctl *ctl)
|
|
{
|
|
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
|
|
struct zram_pp_slot *pps = NULL;
|
|
unsigned long index;
|
|
|
|
for (index = 0; index < nr_pages; index++) {
|
|
if (!pps)
|
|
pps = kmalloc(sizeof(*pps), GFP_KERNEL);
|
|
if (!pps)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&pps->entry);
|
|
|
|
zram_slot_lock(zram, index);
|
|
if (!zram_allocated(zram, index))
|
|
goto next;
|
|
|
|
if (mode & RECOMPRESS_IDLE &&
|
|
!zram_test_flag(zram, index, ZRAM_IDLE))
|
|
goto next;
|
|
|
|
if (mode & RECOMPRESS_HUGE &&
|
|
!zram_test_flag(zram, index, ZRAM_HUGE))
|
|
goto next;
|
|
|
|
if (zram_test_flag(zram, index, ZRAM_WB) ||
|
|
zram_test_flag(zram, index, ZRAM_SAME) ||
|
|
zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
|
|
goto next;
|
|
|
|
pps->index = index;
|
|
place_pp_slot(zram, ctl, pps);
|
|
pps = NULL;
|
|
next:
|
|
zram_slot_unlock(zram, index);
|
|
}
|
|
|
|
kfree(pps);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function will decompress (unless it's ZRAM_HUGE) the page and then
|
|
* attempt to compress it using provided compression algorithm priority
|
|
* (which is potentially more effective).
|
|
*
|
|
* Corresponding ZRAM slot should be locked.
|
|
*/
|
|
static int recompress_slot(struct zram *zram, u32 index, struct page *page,
|
|
u64 *num_recomp_pages, u32 threshold, u32 prio,
|
|
u32 prio_max)
|
|
{
|
|
struct zcomp_strm *zstrm = NULL;
|
|
unsigned long handle_old;
|
|
unsigned long handle_new;
|
|
unsigned int comp_len_old;
|
|
unsigned int comp_len_new;
|
|
unsigned int class_index_old;
|
|
unsigned int class_index_new;
|
|
u32 num_recomps = 0;
|
|
void *src, *dst;
|
|
int ret;
|
|
|
|
handle_old = zram_get_handle(zram, index);
|
|
if (!handle_old)
|
|
return -EINVAL;
|
|
|
|
comp_len_old = zram_get_obj_size(zram, index);
|
|
/*
|
|
* Do not recompress objects that are already "small enough".
|
|
*/
|
|
if (comp_len_old < threshold)
|
|
return 0;
|
|
|
|
ret = zram_read_from_zspool(zram, page, index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We touched this entry so mark it as non-IDLE. This makes sure that
|
|
* we don't preserve IDLE flag and don't incorrectly pick this entry
|
|
* for different post-processing type (e.g. writeback).
|
|
*/
|
|
zram_clear_flag(zram, index, ZRAM_IDLE);
|
|
|
|
class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
|
|
/*
|
|
* Iterate the secondary comp algorithms list (in order of priority)
|
|
* and try to recompress the page.
|
|
*/
|
|
for (; prio < prio_max; prio++) {
|
|
if (!zram->comps[prio])
|
|
continue;
|
|
|
|
/*
|
|
* Skip if the object is already re-compressed with a higher
|
|
* priority algorithm (or same algorithm).
|
|
*/
|
|
if (prio <= zram_get_priority(zram, index))
|
|
continue;
|
|
|
|
num_recomps++;
|
|
zstrm = zcomp_stream_get(zram->comps[prio]);
|
|
src = kmap_local_page(page);
|
|
ret = zcomp_compress(zram->comps[prio], zstrm,
|
|
src, &comp_len_new);
|
|
kunmap_local(src);
|
|
|
|
if (ret) {
|
|
zcomp_stream_put(zram->comps[prio]);
|
|
return ret;
|
|
}
|
|
|
|
class_index_new = zs_lookup_class_index(zram->mem_pool,
|
|
comp_len_new);
|
|
|
|
/* Continue until we make progress */
|
|
if (class_index_new >= class_index_old ||
|
|
(threshold && comp_len_new >= threshold)) {
|
|
zcomp_stream_put(zram->comps[prio]);
|
|
continue;
|
|
}
|
|
|
|
/* Recompression was successful so break out */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We did not try to recompress, e.g. when we have only one
|
|
* secondary algorithm and the page is already recompressed
|
|
* using that algorithm
|
|
*/
|
|
if (!zstrm)
|
|
return 0;
|
|
|
|
/*
|
|
* Decrement the limit (if set) on pages we can recompress, even
|
|
* when current recompression was unsuccessful or did not compress
|
|
* the page below the threshold, because we still spent resources
|
|
* on it.
|
|
*/
|
|
if (*num_recomp_pages)
|
|
*num_recomp_pages -= 1;
|
|
|
|
if (class_index_new >= class_index_old) {
|
|
/*
|
|
* Secondary algorithms failed to re-compress the page
|
|
* in a way that would save memory, mark the object as
|
|
* incompressible so that we will not try to compress
|
|
* it again.
|
|
*
|
|
* We need to make sure that all secondary algorithms have
|
|
* failed, so we test if the number of recompressions matches
|
|
* the number of active secondary algorithms.
|
|
*/
|
|
if (num_recomps == zram->num_active_comps - 1)
|
|
zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
|
|
return 0;
|
|
}
|
|
|
|
/* Successful recompression but above threshold */
|
|
if (threshold && comp_len_new >= threshold)
|
|
return 0;
|
|
|
|
/*
|
|
* No direct reclaim (slow path) for handle allocation and no
|
|
* re-compression attempt (unlike in zram_write_bvec()) since
|
|
* we already have stored that object in zsmalloc. If we cannot
|
|
* alloc memory for recompressed object then we bail out and
|
|
* simply keep the old (existing) object in zsmalloc.
|
|
*/
|
|
handle_new = zs_malloc(zram->mem_pool, comp_len_new,
|
|
__GFP_KSWAPD_RECLAIM |
|
|
__GFP_NOWARN |
|
|
__GFP_HIGHMEM |
|
|
__GFP_MOVABLE);
|
|
if (IS_ERR_VALUE(handle_new)) {
|
|
zcomp_stream_put(zram->comps[prio]);
|
|
return PTR_ERR((void *)handle_new);
|
|
}
|
|
|
|
dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
|
|
memcpy(dst, zstrm->buffer, comp_len_new);
|
|
zcomp_stream_put(zram->comps[prio]);
|
|
|
|
zs_unmap_object(zram->mem_pool, handle_new);
|
|
|
|
zram_free_page(zram, index);
|
|
zram_set_handle(zram, index, handle_new);
|
|
zram_set_obj_size(zram, index, comp_len_new);
|
|
zram_set_priority(zram, index, prio);
|
|
|
|
atomic64_add(comp_len_new, &zram->stats.compr_data_size);
|
|
atomic64_inc(&zram->stats.pages_stored);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t recompress_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
char *args, *param, *val, *algo = NULL;
|
|
u64 num_recomp_pages = ULLONG_MAX;
|
|
struct zram_pp_ctl *ctl = NULL;
|
|
struct zram_pp_slot *pps;
|
|
u32 mode = 0, threshold = 0;
|
|
struct page *page;
|
|
ssize_t ret;
|
|
|
|
args = skip_spaces(buf);
|
|
while (*args) {
|
|
args = next_arg(args, ¶m, &val);
|
|
|
|
if (!val || !*val)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(param, "type")) {
|
|
if (!strcmp(val, "idle"))
|
|
mode = RECOMPRESS_IDLE;
|
|
if (!strcmp(val, "huge"))
|
|
mode = RECOMPRESS_HUGE;
|
|
if (!strcmp(val, "huge_idle"))
|
|
mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "max_pages")) {
|
|
/*
|
|
* Limit the number of entries (pages) we attempt to
|
|
* recompress.
|
|
*/
|
|
ret = kstrtoull(val, 10, &num_recomp_pages);
|
|
if (ret)
|
|
return ret;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "threshold")) {
|
|
/*
|
|
* We will re-compress only idle objects equal or
|
|
* greater in size than watermark.
|
|
*/
|
|
ret = kstrtouint(val, 10, &threshold);
|
|
if (ret)
|
|
return ret;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "algo")) {
|
|
algo = val;
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(param, "priority")) {
|
|
ret = kstrtouint(val, 10, &prio);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (prio == ZRAM_PRIMARY_COMP)
|
|
prio = ZRAM_SECONDARY_COMP;
|
|
|
|
prio_max = min(prio + 1, ZRAM_MAX_COMPS);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (threshold >= huge_class_size)
|
|
return -EINVAL;
|
|
|
|
down_read(&zram->init_lock);
|
|
if (!init_done(zram)) {
|
|
ret = -EINVAL;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
/* Do not permit concurrent post-processing actions. */
|
|
if (atomic_xchg(&zram->pp_in_progress, 1)) {
|
|
up_read(&zram->init_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (algo) {
|
|
bool found = false;
|
|
|
|
for (; prio < ZRAM_MAX_COMPS; prio++) {
|
|
if (!zram->comp_algs[prio])
|
|
continue;
|
|
|
|
if (!strcmp(zram->comp_algs[prio], algo)) {
|
|
prio_max = min(prio + 1, ZRAM_MAX_COMPS);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
ret = -EINVAL;
|
|
goto release_init_lock;
|
|
}
|
|
}
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
ctl = init_pp_ctl();
|
|
if (!ctl) {
|
|
ret = -ENOMEM;
|
|
goto release_init_lock;
|
|
}
|
|
|
|
scan_slots_for_recompress(zram, mode, ctl);
|
|
|
|
ret = len;
|
|
while ((pps = select_pp_slot(ctl))) {
|
|
int err = 0;
|
|
|
|
if (!num_recomp_pages)
|
|
break;
|
|
|
|
zram_slot_lock(zram, pps->index);
|
|
if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT))
|
|
goto next;
|
|
|
|
err = recompress_slot(zram, pps->index, page,
|
|
&num_recomp_pages, threshold,
|
|
prio, prio_max);
|
|
next:
|
|
zram_slot_unlock(zram, pps->index);
|
|
release_pp_slot(zram, pps);
|
|
|
|
if (err) {
|
|
ret = err;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
__free_page(page);
|
|
|
|
release_init_lock:
|
|
release_pp_ctl(zram, ctl);
|
|
atomic_set(&zram->pp_in_progress, 0);
|
|
up_read(&zram->init_lock);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static void zram_bio_discard(struct zram *zram, struct bio *bio)
|
|
{
|
|
size_t n = bio->bi_iter.bi_size;
|
|
u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
|
|
u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
|
|
SECTOR_SHIFT;
|
|
|
|
/*
|
|
* zram manages data in physical block size units. Because logical block
|
|
* size isn't identical with physical block size on some arch, we
|
|
* could get a discard request pointing to a specific offset within a
|
|
* certain physical block. Although we can handle this request by
|
|
* reading that physiclal block and decompressing and partially zeroing
|
|
* and re-compressing and then re-storing it, this isn't reasonable
|
|
* because our intent with a discard request is to save memory. So
|
|
* skipping this logical block is appropriate here.
|
|
*/
|
|
if (offset) {
|
|
if (n <= (PAGE_SIZE - offset))
|
|
return;
|
|
|
|
n -= (PAGE_SIZE - offset);
|
|
index++;
|
|
}
|
|
|
|
while (n >= PAGE_SIZE) {
|
|
zram_slot_lock(zram, index);
|
|
zram_free_page(zram, index);
|
|
zram_slot_unlock(zram, index);
|
|
atomic64_inc(&zram->stats.notify_free);
|
|
index++;
|
|
n -= PAGE_SIZE;
|
|
}
|
|
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void zram_bio_read(struct zram *zram, struct bio *bio)
|
|
{
|
|
unsigned long start_time = bio_start_io_acct(bio);
|
|
struct bvec_iter iter = bio->bi_iter;
|
|
|
|
do {
|
|
u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
|
|
u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
|
|
SECTOR_SHIFT;
|
|
struct bio_vec bv = bio_iter_iovec(bio, iter);
|
|
|
|
bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
|
|
|
|
if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
|
|
atomic64_inc(&zram->stats.failed_reads);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
break;
|
|
}
|
|
flush_dcache_page(bv.bv_page);
|
|
|
|
zram_slot_lock(zram, index);
|
|
zram_accessed(zram, index);
|
|
zram_slot_unlock(zram, index);
|
|
|
|
bio_advance_iter_single(bio, &iter, bv.bv_len);
|
|
} while (iter.bi_size);
|
|
|
|
bio_end_io_acct(bio, start_time);
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void zram_bio_write(struct zram *zram, struct bio *bio)
|
|
{
|
|
unsigned long start_time = bio_start_io_acct(bio);
|
|
struct bvec_iter iter = bio->bi_iter;
|
|
|
|
do {
|
|
u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
|
|
u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
|
|
SECTOR_SHIFT;
|
|
struct bio_vec bv = bio_iter_iovec(bio, iter);
|
|
|
|
bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
|
|
|
|
if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
|
|
atomic64_inc(&zram->stats.failed_writes);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
break;
|
|
}
|
|
|
|
zram_slot_lock(zram, index);
|
|
zram_accessed(zram, index);
|
|
zram_slot_unlock(zram, index);
|
|
|
|
bio_advance_iter_single(bio, &iter, bv.bv_len);
|
|
} while (iter.bi_size);
|
|
|
|
bio_end_io_acct(bio, start_time);
|
|
bio_endio(bio);
|
|
}
|
|
|
|
/*
|
|
* Handler function for all zram I/O requests.
|
|
*/
|
|
static void zram_submit_bio(struct bio *bio)
|
|
{
|
|
struct zram *zram = bio->bi_bdev->bd_disk->private_data;
|
|
|
|
switch (bio_op(bio)) {
|
|
case REQ_OP_READ:
|
|
zram_bio_read(zram, bio);
|
|
break;
|
|
case REQ_OP_WRITE:
|
|
zram_bio_write(zram, bio);
|
|
break;
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_WRITE_ZEROES:
|
|
zram_bio_discard(zram, bio);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
bio_endio(bio);
|
|
}
|
|
}
|
|
|
|
static void zram_slot_free_notify(struct block_device *bdev,
|
|
unsigned long index)
|
|
{
|
|
struct zram *zram;
|
|
|
|
zram = bdev->bd_disk->private_data;
|
|
|
|
atomic64_inc(&zram->stats.notify_free);
|
|
if (!zram_slot_trylock(zram, index)) {
|
|
atomic64_inc(&zram->stats.miss_free);
|
|
return;
|
|
}
|
|
|
|
zram_free_page(zram, index);
|
|
zram_slot_unlock(zram, index);
|
|
}
|
|
|
|
static void zram_comp_params_reset(struct zram *zram)
|
|
{
|
|
u32 prio;
|
|
|
|
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
|
|
comp_params_reset(zram, prio);
|
|
}
|
|
}
|
|
|
|
static void zram_destroy_comps(struct zram *zram)
|
|
{
|
|
u32 prio;
|
|
|
|
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
|
|
struct zcomp *comp = zram->comps[prio];
|
|
|
|
zram->comps[prio] = NULL;
|
|
if (!comp)
|
|
continue;
|
|
zcomp_destroy(comp);
|
|
zram->num_active_comps--;
|
|
}
|
|
|
|
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
|
|
/* Do not free statically defined compression algorithms */
|
|
if (zram->comp_algs[prio] != default_compressor)
|
|
kfree(zram->comp_algs[prio]);
|
|
zram->comp_algs[prio] = NULL;
|
|
}
|
|
|
|
zram_comp_params_reset(zram);
|
|
}
|
|
|
|
static void zram_reset_device(struct zram *zram)
|
|
{
|
|
down_write(&zram->init_lock);
|
|
|
|
zram->limit_pages = 0;
|
|
|
|
if (!init_done(zram)) {
|
|
up_write(&zram->init_lock);
|
|
return;
|
|
}
|
|
|
|
set_capacity_and_notify(zram->disk, 0);
|
|
part_stat_set_all(zram->disk->part0, 0);
|
|
|
|
/* I/O operation under all of CPU are done so let's free */
|
|
zram_meta_free(zram, zram->disksize);
|
|
zram->disksize = 0;
|
|
zram_destroy_comps(zram);
|
|
memset(&zram->stats, 0, sizeof(zram->stats));
|
|
atomic_set(&zram->pp_in_progress, 0);
|
|
reset_bdev(zram);
|
|
|
|
comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
|
|
up_write(&zram->init_lock);
|
|
}
|
|
|
|
static ssize_t disksize_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
u64 disksize;
|
|
struct zcomp *comp;
|
|
struct zram *zram = dev_to_zram(dev);
|
|
int err;
|
|
u32 prio;
|
|
|
|
disksize = memparse(buf, NULL);
|
|
if (!disksize)
|
|
return -EINVAL;
|
|
|
|
down_write(&zram->init_lock);
|
|
if (init_done(zram)) {
|
|
pr_info("Cannot change disksize for initialized device\n");
|
|
err = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
disksize = PAGE_ALIGN(disksize);
|
|
if (!zram_meta_alloc(zram, disksize)) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
|
|
if (!zram->comp_algs[prio])
|
|
continue;
|
|
|
|
comp = zcomp_create(zram->comp_algs[prio],
|
|
&zram->params[prio]);
|
|
if (IS_ERR(comp)) {
|
|
pr_err("Cannot initialise %s compressing backend\n",
|
|
zram->comp_algs[prio]);
|
|
err = PTR_ERR(comp);
|
|
goto out_free_comps;
|
|
}
|
|
|
|
zram->comps[prio] = comp;
|
|
zram->num_active_comps++;
|
|
}
|
|
zram->disksize = disksize;
|
|
set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
|
|
up_write(&zram->init_lock);
|
|
|
|
return len;
|
|
|
|
out_free_comps:
|
|
zram_destroy_comps(zram);
|
|
zram_meta_free(zram, disksize);
|
|
out_unlock:
|
|
up_write(&zram->init_lock);
|
|
return err;
|
|
}
|
|
|
|
static ssize_t reset_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
int ret;
|
|
unsigned short do_reset;
|
|
struct zram *zram;
|
|
struct gendisk *disk;
|
|
|
|
ret = kstrtou16(buf, 10, &do_reset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!do_reset)
|
|
return -EINVAL;
|
|
|
|
zram = dev_to_zram(dev);
|
|
disk = zram->disk;
|
|
|
|
mutex_lock(&disk->open_mutex);
|
|
/* Do not reset an active device or claimed device */
|
|
if (disk_openers(disk) || zram->claim) {
|
|
mutex_unlock(&disk->open_mutex);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* From now on, anyone can't open /dev/zram[0-9] */
|
|
zram->claim = true;
|
|
mutex_unlock(&disk->open_mutex);
|
|
|
|
/* Make sure all the pending I/O are finished */
|
|
sync_blockdev(disk->part0);
|
|
zram_reset_device(zram);
|
|
|
|
mutex_lock(&disk->open_mutex);
|
|
zram->claim = false;
|
|
mutex_unlock(&disk->open_mutex);
|
|
|
|
return len;
|
|
}
|
|
|
|
static int zram_open(struct gendisk *disk, blk_mode_t mode)
|
|
{
|
|
struct zram *zram = disk->private_data;
|
|
|
|
WARN_ON(!mutex_is_locked(&disk->open_mutex));
|
|
|
|
/* zram was claimed to reset so open request fails */
|
|
if (zram->claim)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
static const struct block_device_operations zram_devops = {
|
|
.open = zram_open,
|
|
.submit_bio = zram_submit_bio,
|
|
.swap_slot_free_notify = zram_slot_free_notify,
|
|
.owner = THIS_MODULE
|
|
};
|
|
|
|
static DEVICE_ATTR_WO(compact);
|
|
static DEVICE_ATTR_RW(disksize);
|
|
static DEVICE_ATTR_RO(initstate);
|
|
static DEVICE_ATTR_WO(reset);
|
|
static DEVICE_ATTR_WO(mem_limit);
|
|
static DEVICE_ATTR_WO(mem_used_max);
|
|
static DEVICE_ATTR_WO(idle);
|
|
static DEVICE_ATTR_RW(max_comp_streams);
|
|
static DEVICE_ATTR_RW(comp_algorithm);
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
static DEVICE_ATTR_RW(backing_dev);
|
|
static DEVICE_ATTR_WO(writeback);
|
|
static DEVICE_ATTR_RW(writeback_limit);
|
|
static DEVICE_ATTR_RW(writeback_limit_enable);
|
|
#endif
|
|
#ifdef CONFIG_ZRAM_MULTI_COMP
|
|
static DEVICE_ATTR_RW(recomp_algorithm);
|
|
static DEVICE_ATTR_WO(recompress);
|
|
#endif
|
|
static DEVICE_ATTR_WO(algorithm_params);
|
|
|
|
static struct attribute *zram_disk_attrs[] = {
|
|
&dev_attr_disksize.attr,
|
|
&dev_attr_initstate.attr,
|
|
&dev_attr_reset.attr,
|
|
&dev_attr_compact.attr,
|
|
&dev_attr_mem_limit.attr,
|
|
&dev_attr_mem_used_max.attr,
|
|
&dev_attr_idle.attr,
|
|
&dev_attr_max_comp_streams.attr,
|
|
&dev_attr_comp_algorithm.attr,
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
&dev_attr_backing_dev.attr,
|
|
&dev_attr_writeback.attr,
|
|
&dev_attr_writeback_limit.attr,
|
|
&dev_attr_writeback_limit_enable.attr,
|
|
#endif
|
|
&dev_attr_io_stat.attr,
|
|
&dev_attr_mm_stat.attr,
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
&dev_attr_bd_stat.attr,
|
|
#endif
|
|
&dev_attr_debug_stat.attr,
|
|
#ifdef CONFIG_ZRAM_MULTI_COMP
|
|
&dev_attr_recomp_algorithm.attr,
|
|
&dev_attr_recompress.attr,
|
|
#endif
|
|
&dev_attr_algorithm_params.attr,
|
|
NULL,
|
|
};
|
|
|
|
ATTRIBUTE_GROUPS(zram_disk);
|
|
|
|
/*
|
|
* Allocate and initialize new zram device. the function returns
|
|
* '>= 0' device_id upon success, and negative value otherwise.
|
|
*/
|
|
static int zram_add(void)
|
|
{
|
|
struct queue_limits lim = {
|
|
.logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE,
|
|
/*
|
|
* To ensure that we always get PAGE_SIZE aligned and
|
|
* n*PAGE_SIZED sized I/O requests.
|
|
*/
|
|
.physical_block_size = PAGE_SIZE,
|
|
.io_min = PAGE_SIZE,
|
|
.io_opt = PAGE_SIZE,
|
|
.max_hw_discard_sectors = UINT_MAX,
|
|
/*
|
|
* zram_bio_discard() will clear all logical blocks if logical
|
|
* block size is identical with physical block size(PAGE_SIZE).
|
|
* But if it is different, we will skip discarding some parts of
|
|
* logical blocks in the part of the request range which isn't
|
|
* aligned to physical block size. So we can't ensure that all
|
|
* discarded logical blocks are zeroed.
|
|
*/
|
|
#if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
|
|
.max_write_zeroes_sectors = UINT_MAX,
|
|
#endif
|
|
.features = BLK_FEAT_STABLE_WRITES |
|
|
BLK_FEAT_SYNCHRONOUS,
|
|
};
|
|
struct zram *zram;
|
|
int ret, device_id;
|
|
|
|
zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
|
|
if (!zram)
|
|
return -ENOMEM;
|
|
|
|
ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto out_free_dev;
|
|
device_id = ret;
|
|
|
|
init_rwsem(&zram->init_lock);
|
|
#ifdef CONFIG_ZRAM_WRITEBACK
|
|
spin_lock_init(&zram->wb_limit_lock);
|
|
#endif
|
|
|
|
/* gendisk structure */
|
|
zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
|
|
if (IS_ERR(zram->disk)) {
|
|
pr_err("Error allocating disk structure for device %d\n",
|
|
device_id);
|
|
ret = PTR_ERR(zram->disk);
|
|
goto out_free_idr;
|
|
}
|
|
|
|
zram->disk->major = zram_major;
|
|
zram->disk->first_minor = device_id;
|
|
zram->disk->minors = 1;
|
|
zram->disk->flags |= GENHD_FL_NO_PART;
|
|
zram->disk->fops = &zram_devops;
|
|
zram->disk->private_data = zram;
|
|
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
|
|
atomic_set(&zram->pp_in_progress, 0);
|
|
zram_comp_params_reset(zram);
|
|
comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
|
|
|
|
/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
|
|
set_capacity(zram->disk, 0);
|
|
ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
|
|
if (ret)
|
|
goto out_cleanup_disk;
|
|
|
|
zram_debugfs_register(zram);
|
|
pr_info("Added device: %s\n", zram->disk->disk_name);
|
|
return device_id;
|
|
|
|
out_cleanup_disk:
|
|
put_disk(zram->disk);
|
|
out_free_idr:
|
|
idr_remove(&zram_index_idr, device_id);
|
|
out_free_dev:
|
|
kfree(zram);
|
|
return ret;
|
|
}
|
|
|
|
static int zram_remove(struct zram *zram)
|
|
{
|
|
bool claimed;
|
|
|
|
mutex_lock(&zram->disk->open_mutex);
|
|
if (disk_openers(zram->disk)) {
|
|
mutex_unlock(&zram->disk->open_mutex);
|
|
return -EBUSY;
|
|
}
|
|
|
|
claimed = zram->claim;
|
|
if (!claimed)
|
|
zram->claim = true;
|
|
mutex_unlock(&zram->disk->open_mutex);
|
|
|
|
zram_debugfs_unregister(zram);
|
|
|
|
if (claimed) {
|
|
/*
|
|
* If we were claimed by reset_store(), del_gendisk() will
|
|
* wait until reset_store() is done, so nothing need to do.
|
|
*/
|
|
;
|
|
} else {
|
|
/* Make sure all the pending I/O are finished */
|
|
sync_blockdev(zram->disk->part0);
|
|
zram_reset_device(zram);
|
|
}
|
|
|
|
pr_info("Removed device: %s\n", zram->disk->disk_name);
|
|
|
|
del_gendisk(zram->disk);
|
|
|
|
/* del_gendisk drains pending reset_store */
|
|
WARN_ON_ONCE(claimed && zram->claim);
|
|
|
|
/*
|
|
* disksize_store() may be called in between zram_reset_device()
|
|
* and del_gendisk(), so run the last reset to avoid leaking
|
|
* anything allocated with disksize_store()
|
|
*/
|
|
zram_reset_device(zram);
|
|
|
|
put_disk(zram->disk);
|
|
kfree(zram);
|
|
return 0;
|
|
}
|
|
|
|
/* zram-control sysfs attributes */
|
|
|
|
/*
|
|
* NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
|
|
* sense that reading from this file does alter the state of your system -- it
|
|
* creates a new un-initialized zram device and returns back this device's
|
|
* device_id (or an error code if it fails to create a new device).
|
|
*/
|
|
static ssize_t hot_add_show(const struct class *class,
|
|
const struct class_attribute *attr,
|
|
char *buf)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&zram_index_mutex);
|
|
ret = zram_add();
|
|
mutex_unlock(&zram_index_mutex);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
|
|
}
|
|
/* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
|
|
static struct class_attribute class_attr_hot_add =
|
|
__ATTR(hot_add, 0400, hot_add_show, NULL);
|
|
|
|
static ssize_t hot_remove_store(const struct class *class,
|
|
const struct class_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct zram *zram;
|
|
int ret, dev_id;
|
|
|
|
/* dev_id is gendisk->first_minor, which is `int' */
|
|
ret = kstrtoint(buf, 10, &dev_id);
|
|
if (ret)
|
|
return ret;
|
|
if (dev_id < 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&zram_index_mutex);
|
|
|
|
zram = idr_find(&zram_index_idr, dev_id);
|
|
if (zram) {
|
|
ret = zram_remove(zram);
|
|
if (!ret)
|
|
idr_remove(&zram_index_idr, dev_id);
|
|
} else {
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
mutex_unlock(&zram_index_mutex);
|
|
return ret ? ret : count;
|
|
}
|
|
static CLASS_ATTR_WO(hot_remove);
|
|
|
|
static struct attribute *zram_control_class_attrs[] = {
|
|
&class_attr_hot_add.attr,
|
|
&class_attr_hot_remove.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(zram_control_class);
|
|
|
|
static struct class zram_control_class = {
|
|
.name = "zram-control",
|
|
.class_groups = zram_control_class_groups,
|
|
};
|
|
|
|
static int zram_remove_cb(int id, void *ptr, void *data)
|
|
{
|
|
WARN_ON_ONCE(zram_remove(ptr));
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_devices(void)
|
|
{
|
|
class_unregister(&zram_control_class);
|
|
idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
|
|
zram_debugfs_destroy();
|
|
idr_destroy(&zram_index_idr);
|
|
unregister_blkdev(zram_major, "zram");
|
|
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
|
|
}
|
|
|
|
static int __init zram_init(void)
|
|
{
|
|
struct zram_table_entry zram_te;
|
|
int ret;
|
|
|
|
BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
|
|
|
|
ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
|
|
zcomp_cpu_up_prepare, zcomp_cpu_dead);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = class_register(&zram_control_class);
|
|
if (ret) {
|
|
pr_err("Unable to register zram-control class\n");
|
|
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
|
|
return ret;
|
|
}
|
|
|
|
zram_debugfs_create();
|
|
zram_major = register_blkdev(0, "zram");
|
|
if (zram_major <= 0) {
|
|
pr_err("Unable to get major number\n");
|
|
class_unregister(&zram_control_class);
|
|
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
|
|
return -EBUSY;
|
|
}
|
|
|
|
while (num_devices != 0) {
|
|
mutex_lock(&zram_index_mutex);
|
|
ret = zram_add();
|
|
mutex_unlock(&zram_index_mutex);
|
|
if (ret < 0)
|
|
goto out_error;
|
|
num_devices--;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_error:
|
|
destroy_devices();
|
|
return ret;
|
|
}
|
|
|
|
static void __exit zram_exit(void)
|
|
{
|
|
destroy_devices();
|
|
}
|
|
|
|
module_init(zram_init);
|
|
module_exit(zram_exit);
|
|
|
|
module_param(num_devices, uint, 0);
|
|
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
|
|
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
|
|
MODULE_DESCRIPTION("Compressed RAM Block Device");
|