linux/drivers/block/zram/zram_drv.c
Liu Shixin f364cdeb38 zram: fix NULL pointer in comp_algorithm_show()
LTP reported a NULL pointer dereference as followed:

 CPU: 7 UID: 0 PID: 5995 Comm: cat Kdump: loaded Not tainted 6.12.0-rc6+ #3
 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
 pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : __pi_strcmp+0x24/0x140
 lr : zcomp_available_show+0x60/0x100 [zram]
 sp : ffff800088b93b90
 x29: ffff800088b93b90 x28: 0000000000000001 x27: 0000000000400cc0
 x26: 0000000000000ffe x25: ffff80007b3e2388 x24: 0000000000000000
 x23: ffff80007b3e2390 x22: ffff0004041a9000 x21: ffff80007b3e2900
 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
 x11: 0000000000000000 x10: ffff80007b3e2900 x9 : ffff80007b3cb280
 x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000
 x5 : 0000000000000040 x4 : 0000000000000000 x3 : 00656c722d6f7a6c
 x2 : 0000000000000000 x1 : ffff80007b3e2900 x0 : 0000000000000000
 Call trace:
  __pi_strcmp+0x24/0x140
  comp_algorithm_show+0x40/0x70 [zram]
  dev_attr_show+0x28/0x80
  sysfs_kf_seq_show+0x90/0x140
  kernfs_seq_show+0x34/0x48
  seq_read_iter+0x1d4/0x4e8
  kernfs_fop_read_iter+0x40/0x58
  new_sync_read+0x9c/0x168
  vfs_read+0x1a8/0x1f8
  ksys_read+0x74/0x108
  __arm64_sys_read+0x24/0x38
  invoke_syscall+0x50/0x120
  el0_svc_common.constprop.0+0xc8/0xf0
  do_el0_svc+0x24/0x38
  el0_svc+0x38/0x138
  el0t_64_sync_handler+0xc0/0xc8
  el0t_64_sync+0x188/0x190

The zram->comp_algs[ZRAM_PRIMARY_COMP] can be NULL in zram_add() if
comp_algorithm_set() has not been called.  User can access the zram device
by sysfs after device_add_disk(), so there is a time window to trigger the
NULL pointer dereference.  Move it ahead device_add_disk() to make sure
when user can access the zram device, it is ready.  comp_algorithm_set()
is protected by zram->init_lock in other places and no such problem.

Link: https://lkml.kernel.org/r/20241108100147.3776123-1-liushixin2@huawei.com
Fixes: 7ac07a26de ("zram: preparation for multi-zcomp support")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-14 22:49:19 -08:00

2788 lines
65 KiB
C

/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
* 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
*/
#define KMSG_COMPONENT "zram"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/err.h>
#include <linux/idr.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/cpuhotplug.h>
#include <linux/part_stat.h>
#include <linux/kernel_read_file.h>
#include "zram_drv.h"
static DEFINE_IDR(zram_index_idr);
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);
static int zram_major;
static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
/* Module params (documentation at end) */
static unsigned int num_devices = 1;
/*
* Pages that compress to sizes equals or greater than this are stored
* uncompressed in memory.
*/
static size_t huge_class_size;
static const struct block_device_operations zram_devops;
static void zram_free_page(struct zram *zram, size_t index);
static int zram_read_page(struct zram *zram, struct page *page, u32 index,
struct bio *parent);
static int zram_slot_trylock(struct zram *zram, u32 index)
{
return spin_trylock(&zram->table[index].lock);
}
static void zram_slot_lock(struct zram *zram, u32 index)
{
spin_lock(&zram->table[index].lock);
}
static void zram_slot_unlock(struct zram *zram, u32 index)
{
spin_unlock(&zram->table[index].lock);
}
static inline bool init_done(struct zram *zram)
{
return zram->disksize;
}
static inline struct zram *dev_to_zram(struct device *dev)
{
return (struct zram *)dev_to_disk(dev)->private_data;
}
static unsigned long zram_get_handle(struct zram *zram, u32 index)
{
return zram->table[index].handle;
}
static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
{
zram->table[index].handle = handle;
}
/* flag operations require table entry bit_spin_lock() being held */
static bool zram_test_flag(struct zram *zram, u32 index,
enum zram_pageflags flag)
{
return zram->table[index].flags & BIT(flag);
}
static void zram_set_flag(struct zram *zram, u32 index,
enum zram_pageflags flag)
{
zram->table[index].flags |= BIT(flag);
}
static void zram_clear_flag(struct zram *zram, u32 index,
enum zram_pageflags flag)
{
zram->table[index].flags &= ~BIT(flag);
}
static inline void zram_set_element(struct zram *zram, u32 index,
unsigned long element)
{
zram->table[index].element = element;
}
static unsigned long zram_get_element(struct zram *zram, u32 index)
{
return zram->table[index].element;
}
static size_t zram_get_obj_size(struct zram *zram, u32 index)
{
return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
}
static void zram_set_obj_size(struct zram *zram,
u32 index, size_t size)
{
unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
}
static inline bool zram_allocated(struct zram *zram, u32 index)
{
return zram_get_obj_size(zram, index) ||
zram_test_flag(zram, index, ZRAM_SAME) ||
zram_test_flag(zram, index, ZRAM_WB);
}
#if PAGE_SIZE != 4096
static inline bool is_partial_io(struct bio_vec *bvec)
{
return bvec->bv_len != PAGE_SIZE;
}
#define ZRAM_PARTIAL_IO 1
#else
static inline bool is_partial_io(struct bio_vec *bvec)
{
return false;
}
#endif
static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
{
prio &= ZRAM_COMP_PRIORITY_MASK;
/*
* Clear previous priority value first, in case if we recompress
* further an already recompressed page
*/
zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
ZRAM_COMP_PRIORITY_BIT1);
zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
}
static inline u32 zram_get_priority(struct zram *zram, u32 index)
{
u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
return prio & ZRAM_COMP_PRIORITY_MASK;
}
static void zram_accessed(struct zram *zram, u32 index)
{
zram_clear_flag(zram, index, ZRAM_IDLE);
zram_clear_flag(zram, index, ZRAM_PP_SLOT);
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
zram->table[index].ac_time = ktime_get_boottime();
#endif
}
#if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
struct zram_pp_slot {
unsigned long index;
struct list_head entry;
};
/*
* A post-processing bucket is, essentially, a size class, this defines
* the range (in bytes) of pp-slots sizes in particular bucket.
*/
#define PP_BUCKET_SIZE_RANGE 64
#define NUM_PP_BUCKETS ((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
struct zram_pp_ctl {
struct list_head pp_buckets[NUM_PP_BUCKETS];
};
static struct zram_pp_ctl *init_pp_ctl(void)
{
struct zram_pp_ctl *ctl;
u32 idx;
ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return NULL;
for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
INIT_LIST_HEAD(&ctl->pp_buckets[idx]);
return ctl;
}
static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
{
list_del_init(&pps->entry);
zram_slot_lock(zram, pps->index);
zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT);
zram_slot_unlock(zram, pps->index);
kfree(pps);
}
static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
{
u32 idx;
if (!ctl)
return;
for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
while (!list_empty(&ctl->pp_buckets[idx])) {
struct zram_pp_slot *pps;
pps = list_first_entry(&ctl->pp_buckets[idx],
struct zram_pp_slot,
entry);
release_pp_slot(zram, pps);
}
}
kfree(ctl);
}
static void place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
struct zram_pp_slot *pps)
{
u32 idx;
idx = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE;
list_add(&pps->entry, &ctl->pp_buckets[idx]);
zram_set_flag(zram, pps->index, ZRAM_PP_SLOT);
}
static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
{
struct zram_pp_slot *pps = NULL;
s32 idx = NUM_PP_BUCKETS - 1;
/* The higher the bucket id the more optimal slot post-processing is */
while (idx >= 0) {
pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
struct zram_pp_slot,
entry);
if (pps)
break;
idx--;
}
return pps;
}
#endif
static inline void update_used_max(struct zram *zram,
const unsigned long pages)
{
unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
do {
if (cur_max >= pages)
return;
} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
&cur_max, pages));
}
static inline void zram_fill_page(void *ptr, unsigned long len,
unsigned long value)
{
WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
memset_l(ptr, value, len / sizeof(unsigned long));
}
static bool page_same_filled(void *ptr, unsigned long *element)
{
unsigned long *page;
unsigned long val;
unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
page = (unsigned long *)ptr;
val = page[0];
if (val != page[last_pos])
return false;
for (pos = 1; pos < last_pos; pos++) {
if (val != page[pos])
return false;
}
*element = val;
return true;
}
static ssize_t initstate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = init_done(zram);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%u\n", val);
}
static ssize_t disksize_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}
static ssize_t mem_limit_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 limit;
char *tmp;
struct zram *zram = dev_to_zram(dev);
limit = memparse(buf, &tmp);
if (buf == tmp) /* no chars parsed, invalid input */
return -EINVAL;
down_write(&zram->init_lock);
zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
up_write(&zram->init_lock);
return len;
}
static ssize_t mem_used_max_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int err;
unsigned long val;
struct zram *zram = dev_to_zram(dev);
err = kstrtoul(buf, 10, &val);
if (err || val != 0)
return -EINVAL;
down_read(&zram->init_lock);
if (init_done(zram)) {
atomic_long_set(&zram->stats.max_used_pages,
zs_get_total_pages(zram->mem_pool));
}
up_read(&zram->init_lock);
return len;
}
/*
* Mark all pages which are older than or equal to cutoff as IDLE.
* Callers should hold the zram init lock in read mode
*/
static void mark_idle(struct zram *zram, ktime_t cutoff)
{
int is_idle = 1;
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
int index;
for (index = 0; index < nr_pages; index++) {
/*
* Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
* post-processing (recompress, writeback) happens to the
* ZRAM_SAME slot.
*
* And ZRAM_WB slots simply cannot be ZRAM_IDLE.
*/
zram_slot_lock(zram, index);
if (!zram_allocated(zram, index) ||
zram_test_flag(zram, index, ZRAM_WB) ||
zram_test_flag(zram, index, ZRAM_SAME)) {
zram_slot_unlock(zram, index);
continue;
}
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
is_idle = !cutoff ||
ktime_after(cutoff, zram->table[index].ac_time);
#endif
if (is_idle)
zram_set_flag(zram, index, ZRAM_IDLE);
else
zram_clear_flag(zram, index, ZRAM_IDLE);
zram_slot_unlock(zram, index);
}
}
static ssize_t idle_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
ktime_t cutoff_time = 0;
ssize_t rv = -EINVAL;
if (!sysfs_streq(buf, "all")) {
/*
* If it did not parse as 'all' try to treat it as an integer
* when we have memory tracking enabled.
*/
u64 age_sec;
if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
cutoff_time = ktime_sub(ktime_get_boottime(),
ns_to_ktime(age_sec * NSEC_PER_SEC));
else
goto out;
}
down_read(&zram->init_lock);
if (!init_done(zram))
goto out_unlock;
/*
* A cutoff_time of 0 marks everything as idle, this is the
* "all" behavior.
*/
mark_idle(zram, cutoff_time);
rv = len;
out_unlock:
up_read(&zram->init_lock);
out:
return rv;
}
#ifdef CONFIG_ZRAM_WRITEBACK
static ssize_t writeback_limit_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
u64 val;
ssize_t ret = -EINVAL;
if (kstrtoull(buf, 10, &val))
return ret;
down_read(&zram->init_lock);
spin_lock(&zram->wb_limit_lock);
zram->wb_limit_enable = val;
spin_unlock(&zram->wb_limit_lock);
up_read(&zram->init_lock);
ret = len;
return ret;
}
static ssize_t writeback_limit_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
bool val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
spin_lock(&zram->wb_limit_lock);
val = zram->wb_limit_enable;
spin_unlock(&zram->wb_limit_lock);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t writeback_limit_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
u64 val;
ssize_t ret = -EINVAL;
if (kstrtoull(buf, 10, &val))
return ret;
down_read(&zram->init_lock);
spin_lock(&zram->wb_limit_lock);
zram->bd_wb_limit = val;
spin_unlock(&zram->wb_limit_lock);
up_read(&zram->init_lock);
ret = len;
return ret;
}
static ssize_t writeback_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
spin_lock(&zram->wb_limit_lock);
val = zram->bd_wb_limit;
spin_unlock(&zram->wb_limit_lock);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
}
static void reset_bdev(struct zram *zram)
{
if (!zram->backing_dev)
return;
/* hope filp_close flush all of IO */
filp_close(zram->backing_dev, NULL);
zram->backing_dev = NULL;
zram->bdev = NULL;
zram->disk->fops = &zram_devops;
kvfree(zram->bitmap);
zram->bitmap = NULL;
}
static ssize_t backing_dev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct file *file;
struct zram *zram = dev_to_zram(dev);
char *p;
ssize_t ret;
down_read(&zram->init_lock);
file = zram->backing_dev;
if (!file) {
memcpy(buf, "none\n", 5);
up_read(&zram->init_lock);
return 5;
}
p = file_path(file, buf, PAGE_SIZE - 1);
if (IS_ERR(p)) {
ret = PTR_ERR(p);
goto out;
}
ret = strlen(p);
memmove(buf, p, ret);
buf[ret++] = '\n';
out:
up_read(&zram->init_lock);
return ret;
}
static ssize_t backing_dev_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
char *file_name;
size_t sz;
struct file *backing_dev = NULL;
struct inode *inode;
unsigned int bitmap_sz;
unsigned long nr_pages, *bitmap = NULL;
int err;
struct zram *zram = dev_to_zram(dev);
file_name = kmalloc(PATH_MAX, GFP_KERNEL);
if (!file_name)
return -ENOMEM;
down_write(&zram->init_lock);
if (init_done(zram)) {
pr_info("Can't setup backing device for initialized device\n");
err = -EBUSY;
goto out;
}
strscpy(file_name, buf, PATH_MAX);
/* ignore trailing newline */
sz = strlen(file_name);
if (sz > 0 && file_name[sz - 1] == '\n')
file_name[sz - 1] = 0x00;
backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
if (IS_ERR(backing_dev)) {
err = PTR_ERR(backing_dev);
backing_dev = NULL;
goto out;
}
inode = backing_dev->f_mapping->host;
/* Support only block device in this moment */
if (!S_ISBLK(inode->i_mode)) {
err = -ENOTBLK;
goto out;
}
nr_pages = i_size_read(inode) >> PAGE_SHIFT;
bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
if (!bitmap) {
err = -ENOMEM;
goto out;
}
reset_bdev(zram);
zram->bdev = I_BDEV(inode);
zram->backing_dev = backing_dev;
zram->bitmap = bitmap;
zram->nr_pages = nr_pages;
up_write(&zram->init_lock);
pr_info("setup backing device %s\n", file_name);
kfree(file_name);
return len;
out:
kvfree(bitmap);
if (backing_dev)
filp_close(backing_dev, NULL);
up_write(&zram->init_lock);
kfree(file_name);
return err;
}
static unsigned long alloc_block_bdev(struct zram *zram)
{
unsigned long blk_idx = 1;
retry:
/* skip 0 bit to confuse zram.handle = 0 */
blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
if (blk_idx == zram->nr_pages)
return 0;
if (test_and_set_bit(blk_idx, zram->bitmap))
goto retry;
atomic64_inc(&zram->stats.bd_count);
return blk_idx;
}
static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
{
int was_set;
was_set = test_and_clear_bit(blk_idx, zram->bitmap);
WARN_ON_ONCE(!was_set);
atomic64_dec(&zram->stats.bd_count);
}
static void read_from_bdev_async(struct zram *zram, struct page *page,
unsigned long entry, struct bio *parent)
{
struct bio *bio;
bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
__bio_add_page(bio, page, PAGE_SIZE, 0);
bio_chain(bio, parent);
submit_bio(bio);
}
#define PAGE_WB_SIG "page_index="
#define PAGE_WRITEBACK 0
#define HUGE_WRITEBACK (1<<0)
#define IDLE_WRITEBACK (1<<1)
#define INCOMPRESSIBLE_WRITEBACK (1<<2)
static int scan_slots_for_writeback(struct zram *zram, u32 mode,
unsigned long nr_pages,
unsigned long index,
struct zram_pp_ctl *ctl)
{
struct zram_pp_slot *pps = NULL;
for (; nr_pages != 0; index++, nr_pages--) {
if (!pps)
pps = kmalloc(sizeof(*pps), GFP_KERNEL);
if (!pps)
return -ENOMEM;
INIT_LIST_HEAD(&pps->entry);
zram_slot_lock(zram, index);
if (!zram_allocated(zram, index))
goto next;
if (zram_test_flag(zram, index, ZRAM_WB) ||
zram_test_flag(zram, index, ZRAM_SAME))
goto next;
if (mode & IDLE_WRITEBACK &&
!zram_test_flag(zram, index, ZRAM_IDLE))
goto next;
if (mode & HUGE_WRITEBACK &&
!zram_test_flag(zram, index, ZRAM_HUGE))
goto next;
if (mode & INCOMPRESSIBLE_WRITEBACK &&
!zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
goto next;
pps->index = index;
place_pp_slot(zram, ctl, pps);
pps = NULL;
next:
zram_slot_unlock(zram, index);
}
kfree(pps);
return 0;
}
static ssize_t writeback_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
struct zram_pp_ctl *ctl = NULL;
struct zram_pp_slot *pps;
unsigned long index = 0;
struct bio bio;
struct bio_vec bio_vec;
struct page *page;
ssize_t ret = len;
int mode, err;
unsigned long blk_idx = 0;
if (sysfs_streq(buf, "idle"))
mode = IDLE_WRITEBACK;
else if (sysfs_streq(buf, "huge"))
mode = HUGE_WRITEBACK;
else if (sysfs_streq(buf, "huge_idle"))
mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
else if (sysfs_streq(buf, "incompressible"))
mode = INCOMPRESSIBLE_WRITEBACK;
else {
if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
return -EINVAL;
if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
index >= nr_pages)
return -EINVAL;
nr_pages = 1;
mode = PAGE_WRITEBACK;
}
down_read(&zram->init_lock);
if (!init_done(zram)) {
ret = -EINVAL;
goto release_init_lock;
}
/* Do not permit concurrent post-processing actions. */
if (atomic_xchg(&zram->pp_in_progress, 1)) {
up_read(&zram->init_lock);
return -EAGAIN;
}
if (!zram->backing_dev) {
ret = -ENODEV;
goto release_init_lock;
}
page = alloc_page(GFP_KERNEL);
if (!page) {
ret = -ENOMEM;
goto release_init_lock;
}
ctl = init_pp_ctl();
if (!ctl) {
ret = -ENOMEM;
goto release_init_lock;
}
scan_slots_for_writeback(zram, mode, nr_pages, index, ctl);
while ((pps = select_pp_slot(ctl))) {
spin_lock(&zram->wb_limit_lock);
if (zram->wb_limit_enable && !zram->bd_wb_limit) {
spin_unlock(&zram->wb_limit_lock);
ret = -EIO;
break;
}
spin_unlock(&zram->wb_limit_lock);
if (!blk_idx) {
blk_idx = alloc_block_bdev(zram);
if (!blk_idx) {
ret = -ENOSPC;
break;
}
}
index = pps->index;
zram_slot_lock(zram, index);
/*
* scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so
* slots can change in the meantime. If slots are accessed or
* freed they lose ZRAM_PP_SLOT flag and hence we don't
* post-process them.
*/
if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
goto next;
zram_slot_unlock(zram, index);
if (zram_read_page(zram, page, index, NULL)) {
release_pp_slot(zram, pps);
continue;
}
bio_init(&bio, zram->bdev, &bio_vec, 1,
REQ_OP_WRITE | REQ_SYNC);
bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
__bio_add_page(&bio, page, PAGE_SIZE, 0);
/*
* XXX: A single page IO would be inefficient for write
* but it would be not bad as starter.
*/
err = submit_bio_wait(&bio);
if (err) {
release_pp_slot(zram, pps);
/*
* BIO errors are not fatal, we continue and simply
* attempt to writeback the remaining objects (pages).
* At the same time we need to signal user-space that
* some writes (at least one, but also could be all of
* them) were not successful and we do so by returning
* the most recent BIO error.
*/
ret = err;
continue;
}
atomic64_inc(&zram->stats.bd_writes);
zram_slot_lock(zram, index);
/*
* Same as above, we release slot lock during writeback so
* slot can change under us: slot_free() or slot_free() and
* reallocation (zram_write_page()). In both cases slot loses
* ZRAM_PP_SLOT flag. No concurrent post-processing can set
* ZRAM_PP_SLOT on such slots until current post-processing
* finishes.
*/
if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
goto next;
zram_free_page(zram, index);
zram_set_flag(zram, index, ZRAM_WB);
zram_set_element(zram, index, blk_idx);
blk_idx = 0;
atomic64_inc(&zram->stats.pages_stored);
spin_lock(&zram->wb_limit_lock);
if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
spin_unlock(&zram->wb_limit_lock);
next:
zram_slot_unlock(zram, index);
release_pp_slot(zram, pps);
}
if (blk_idx)
free_block_bdev(zram, blk_idx);
__free_page(page);
release_init_lock:
release_pp_ctl(zram, ctl);
atomic_set(&zram->pp_in_progress, 0);
up_read(&zram->init_lock);
return ret;
}
struct zram_work {
struct work_struct work;
struct zram *zram;
unsigned long entry;
struct page *page;
int error;
};
static void zram_sync_read(struct work_struct *work)
{
struct zram_work *zw = container_of(work, struct zram_work, work);
struct bio_vec bv;
struct bio bio;
bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
zw->error = submit_bio_wait(&bio);
}
/*
* Block layer want one ->submit_bio to be active at a time, so if we use
* chained IO with parent IO in same context, it's a deadlock. To avoid that,
* use a worker thread context.
*/
static int read_from_bdev_sync(struct zram *zram, struct page *page,
unsigned long entry)
{
struct zram_work work;
work.page = page;
work.zram = zram;
work.entry = entry;
INIT_WORK_ONSTACK(&work.work, zram_sync_read);
queue_work(system_unbound_wq, &work.work);
flush_work(&work.work);
destroy_work_on_stack(&work.work);
return work.error;
}
static int read_from_bdev(struct zram *zram, struct page *page,
unsigned long entry, struct bio *parent)
{
atomic64_inc(&zram->stats.bd_reads);
if (!parent) {
if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
return -EIO;
return read_from_bdev_sync(zram, page, entry);
}
read_from_bdev_async(zram, page, entry, parent);
return 0;
}
#else
static inline void reset_bdev(struct zram *zram) {};
static int read_from_bdev(struct zram *zram, struct page *page,
unsigned long entry, struct bio *parent)
{
return -EIO;
}
static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
#endif
#ifdef CONFIG_ZRAM_MEMORY_TRACKING
static struct dentry *zram_debugfs_root;
static void zram_debugfs_create(void)
{
zram_debugfs_root = debugfs_create_dir("zram", NULL);
}
static void zram_debugfs_destroy(void)
{
debugfs_remove_recursive(zram_debugfs_root);
}
static ssize_t read_block_state(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
char *kbuf;
ssize_t index, written = 0;
struct zram *zram = file->private_data;
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
struct timespec64 ts;
kbuf = kvmalloc(count, GFP_KERNEL);
if (!kbuf)
return -ENOMEM;
down_read(&zram->init_lock);
if (!init_done(zram)) {
up_read(&zram->init_lock);
kvfree(kbuf);
return -EINVAL;
}
for (index = *ppos; index < nr_pages; index++) {
int copied;
zram_slot_lock(zram, index);
if (!zram_allocated(zram, index))
goto next;
ts = ktime_to_timespec64(zram->table[index].ac_time);
copied = snprintf(kbuf + written, count,
"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
index, (s64)ts.tv_sec,
ts.tv_nsec / NSEC_PER_USEC,
zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
zram_get_priority(zram, index) ? 'r' : '.',
zram_test_flag(zram, index,
ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
if (count <= copied) {
zram_slot_unlock(zram, index);
break;
}
written += copied;
count -= copied;
next:
zram_slot_unlock(zram, index);
*ppos += 1;
}
up_read(&zram->init_lock);
if (copy_to_user(buf, kbuf, written))
written = -EFAULT;
kvfree(kbuf);
return written;
}
static const struct file_operations proc_zram_block_state_op = {
.open = simple_open,
.read = read_block_state,
.llseek = default_llseek,
};
static void zram_debugfs_register(struct zram *zram)
{
if (!zram_debugfs_root)
return;
zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
zram_debugfs_root);
debugfs_create_file("block_state", 0400, zram->debugfs_dir,
zram, &proc_zram_block_state_op);
}
static void zram_debugfs_unregister(struct zram *zram)
{
debugfs_remove_recursive(zram->debugfs_dir);
}
#else
static void zram_debugfs_create(void) {};
static void zram_debugfs_destroy(void) {};
static void zram_debugfs_register(struct zram *zram) {};
static void zram_debugfs_unregister(struct zram *zram) {};
#endif
/*
* We switched to per-cpu streams and this attr is not needed anymore.
* However, we will keep it around for some time, because:
* a) we may revert per-cpu streams in the future
* b) it's visible to user space and we need to follow our 2 years
* retirement rule; but we already have a number of 'soon to be
* altered' attrs, so max_comp_streams need to wait for the next
* layoff cycle.
*/
static ssize_t max_comp_streams_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
}
static ssize_t max_comp_streams_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
return len;
}
static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
{
/* Do not free statically defined compression algorithms */
if (zram->comp_algs[prio] != default_compressor)
kfree(zram->comp_algs[prio]);
zram->comp_algs[prio] = alg;
}
static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
{
ssize_t sz;
down_read(&zram->init_lock);
sz = zcomp_available_show(zram->comp_algs[prio], buf);
up_read(&zram->init_lock);
return sz;
}
static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
{
char *compressor;
size_t sz;
sz = strlen(buf);
if (sz >= CRYPTO_MAX_ALG_NAME)
return -E2BIG;
compressor = kstrdup(buf, GFP_KERNEL);
if (!compressor)
return -ENOMEM;
/* ignore trailing newline */
if (sz > 0 && compressor[sz - 1] == '\n')
compressor[sz - 1] = 0x00;
if (!zcomp_available_algorithm(compressor)) {
kfree(compressor);
return -EINVAL;
}
down_write(&zram->init_lock);
if (init_done(zram)) {
up_write(&zram->init_lock);
kfree(compressor);
pr_info("Can't change algorithm for initialized device\n");
return -EBUSY;
}
comp_algorithm_set(zram, prio, compressor);
up_write(&zram->init_lock);
return 0;
}
static void comp_params_reset(struct zram *zram, u32 prio)
{
struct zcomp_params *params = &zram->params[prio];
vfree(params->dict);
params->level = ZCOMP_PARAM_NO_LEVEL;
params->dict_sz = 0;
params->dict = NULL;
}
static int comp_params_store(struct zram *zram, u32 prio, s32 level,
const char *dict_path)
{
ssize_t sz = 0;
comp_params_reset(zram, prio);
if (dict_path) {
sz = kernel_read_file_from_path(dict_path, 0,
&zram->params[prio].dict,
INT_MAX,
NULL,
READING_POLICY);
if (sz < 0)
return -EINVAL;
}
zram->params[prio].dict_sz = sz;
zram->params[prio].level = level;
return 0;
}
static ssize_t algorithm_params_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL;
char *args, *param, *val, *algo = NULL, *dict_path = NULL;
struct zram *zram = dev_to_zram(dev);
int ret;
args = skip_spaces(buf);
while (*args) {
args = next_arg(args, &param, &val);
if (!val || !*val)
return -EINVAL;
if (!strcmp(param, "priority")) {
ret = kstrtoint(val, 10, &prio);
if (ret)
return ret;
continue;
}
if (!strcmp(param, "level")) {
ret = kstrtoint(val, 10, &level);
if (ret)
return ret;
continue;
}
if (!strcmp(param, "algo")) {
algo = val;
continue;
}
if (!strcmp(param, "dict")) {
dict_path = val;
continue;
}
}
/* Lookup priority by algorithm name */
if (algo) {
s32 p;
prio = -EINVAL;
for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
if (!zram->comp_algs[p])
continue;
if (!strcmp(zram->comp_algs[p], algo)) {
prio = p;
break;
}
}
}
if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
return -EINVAL;
ret = comp_params_store(zram, prio, level, dict_path);
return ret ? ret : len;
}
static ssize_t comp_algorithm_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct zram *zram = dev_to_zram(dev);
return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
}
static ssize_t comp_algorithm_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct zram *zram = dev_to_zram(dev);
int ret;
ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
return ret ? ret : len;
}
#ifdef CONFIG_ZRAM_MULTI_COMP
static ssize_t recomp_algorithm_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct zram *zram = dev_to_zram(dev);
ssize_t sz = 0;
u32 prio;
for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
if (!zram->comp_algs[prio])
continue;
sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
sz += __comp_algorithm_show(zram, prio, buf + sz);
}
return sz;
}
static ssize_t recomp_algorithm_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct zram *zram = dev_to_zram(dev);
int prio = ZRAM_SECONDARY_COMP;
char *args, *param, *val;
char *alg = NULL;
int ret;
args = skip_spaces(buf);
while (*args) {
args = next_arg(args, &param, &val);
if (!val || !*val)
return -EINVAL;
if (!strcmp(param, "algo")) {
alg = val;
continue;
}
if (!strcmp(param, "priority")) {
ret = kstrtoint(val, 10, &prio);
if (ret)
return ret;
continue;
}
}
if (!alg)
return -EINVAL;
if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
return -EINVAL;
ret = __comp_algorithm_store(zram, prio, alg);
return ret ? ret : len;
}
#endif
static ssize_t compact_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
if (!init_done(zram)) {
up_read(&zram->init_lock);
return -EINVAL;
}
zs_compact(zram->mem_pool);
up_read(&zram->init_lock);
return len;
}
static ssize_t io_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
ssize_t ret;
down_read(&zram->init_lock);
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu 0 %8llu\n",
(u64)atomic64_read(&zram->stats.failed_reads),
(u64)atomic64_read(&zram->stats.failed_writes),
(u64)atomic64_read(&zram->stats.notify_free));
up_read(&zram->init_lock);
return ret;
}
static ssize_t mm_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
struct zs_pool_stats pool_stats;
u64 orig_size, mem_used = 0;
long max_used;
ssize_t ret;
memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
down_read(&zram->init_lock);
if (init_done(zram)) {
mem_used = zs_get_total_pages(zram->mem_pool);
zs_pool_stats(zram->mem_pool, &pool_stats);
}
orig_size = atomic64_read(&zram->stats.pages_stored);
max_used = atomic_long_read(&zram->stats.max_used_pages);
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
orig_size << PAGE_SHIFT,
(u64)atomic64_read(&zram->stats.compr_data_size),
mem_used << PAGE_SHIFT,
zram->limit_pages << PAGE_SHIFT,
max_used << PAGE_SHIFT,
(u64)atomic64_read(&zram->stats.same_pages),
atomic_long_read(&pool_stats.pages_compacted),
(u64)atomic64_read(&zram->stats.huge_pages),
(u64)atomic64_read(&zram->stats.huge_pages_since));
up_read(&zram->init_lock);
return ret;
}
#ifdef CONFIG_ZRAM_WRITEBACK
#define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
static ssize_t bd_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
ssize_t ret;
down_read(&zram->init_lock);
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu %8llu\n",
FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
up_read(&zram->init_lock);
return ret;
}
#endif
static ssize_t debug_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int version = 1;
struct zram *zram = dev_to_zram(dev);
ssize_t ret;
down_read(&zram->init_lock);
ret = scnprintf(buf, PAGE_SIZE,
"version: %d\n%8llu %8llu\n",
version,
(u64)atomic64_read(&zram->stats.writestall),
(u64)atomic64_read(&zram->stats.miss_free));
up_read(&zram->init_lock);
return ret;
}
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
#ifdef CONFIG_ZRAM_WRITEBACK
static DEVICE_ATTR_RO(bd_stat);
#endif
static DEVICE_ATTR_RO(debug_stat);
static void zram_meta_free(struct zram *zram, u64 disksize)
{
size_t num_pages = disksize >> PAGE_SHIFT;
size_t index;
/* Free all pages that are still in this zram device */
for (index = 0; index < num_pages; index++)
zram_free_page(zram, index);
zs_destroy_pool(zram->mem_pool);
vfree(zram->table);
}
static bool zram_meta_alloc(struct zram *zram, u64 disksize)
{
size_t num_pages, index;
num_pages = disksize >> PAGE_SHIFT;
zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
if (!zram->table)
return false;
zram->mem_pool = zs_create_pool(zram->disk->disk_name);
if (!zram->mem_pool) {
vfree(zram->table);
return false;
}
if (!huge_class_size)
huge_class_size = zs_huge_class_size(zram->mem_pool);
for (index = 0; index < num_pages; index++)
spin_lock_init(&zram->table[index].lock);
return true;
}
/*
* To protect concurrent access to the same index entry,
* caller should hold this table index entry's bit_spinlock to
* indicate this index entry is accessing.
*/
static void zram_free_page(struct zram *zram, size_t index)
{
unsigned long handle;
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
zram->table[index].ac_time = 0;
#endif
zram_clear_flag(zram, index, ZRAM_IDLE);
zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
zram_clear_flag(zram, index, ZRAM_PP_SLOT);
zram_set_priority(zram, index, 0);
if (zram_test_flag(zram, index, ZRAM_HUGE)) {
zram_clear_flag(zram, index, ZRAM_HUGE);
atomic64_dec(&zram->stats.huge_pages);
}
if (zram_test_flag(zram, index, ZRAM_WB)) {
zram_clear_flag(zram, index, ZRAM_WB);
free_block_bdev(zram, zram_get_element(zram, index));
goto out;
}
/*
* No memory is allocated for same element filled pages.
* Simply clear same page flag.
*/
if (zram_test_flag(zram, index, ZRAM_SAME)) {
zram_clear_flag(zram, index, ZRAM_SAME);
atomic64_dec(&zram->stats.same_pages);
goto out;
}
handle = zram_get_handle(zram, index);
if (!handle)
return;
zs_free(zram->mem_pool, handle);
atomic64_sub(zram_get_obj_size(zram, index),
&zram->stats.compr_data_size);
out:
atomic64_dec(&zram->stats.pages_stored);
zram_set_handle(zram, index, 0);
zram_set_obj_size(zram, index, 0);
}
/*
* Reads (decompresses if needed) a page from zspool (zsmalloc).
* Corresponding ZRAM slot should be locked.
*/
static int zram_read_from_zspool(struct zram *zram, struct page *page,
u32 index)
{
struct zcomp_strm *zstrm;
unsigned long handle;
unsigned int size;
void *src, *dst;
u32 prio;
int ret;
handle = zram_get_handle(zram, index);
if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
unsigned long value;
void *mem;
value = handle ? zram_get_element(zram, index) : 0;
mem = kmap_local_page(page);
zram_fill_page(mem, PAGE_SIZE, value);
kunmap_local(mem);
return 0;
}
size = zram_get_obj_size(zram, index);
if (size != PAGE_SIZE) {
prio = zram_get_priority(zram, index);
zstrm = zcomp_stream_get(zram->comps[prio]);
}
src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
if (size == PAGE_SIZE) {
dst = kmap_local_page(page);
copy_page(dst, src);
kunmap_local(dst);
ret = 0;
} else {
dst = kmap_local_page(page);
ret = zcomp_decompress(zram->comps[prio], zstrm,
src, size, dst);
kunmap_local(dst);
zcomp_stream_put(zram->comps[prio]);
}
zs_unmap_object(zram->mem_pool, handle);
return ret;
}
static int zram_read_page(struct zram *zram, struct page *page, u32 index,
struct bio *parent)
{
int ret;
zram_slot_lock(zram, index);
if (!zram_test_flag(zram, index, ZRAM_WB)) {
/* Slot should be locked through out the function call */
ret = zram_read_from_zspool(zram, page, index);
zram_slot_unlock(zram, index);
} else {
/*
* The slot should be unlocked before reading from the backing
* device.
*/
zram_slot_unlock(zram, index);
ret = read_from_bdev(zram, page, zram_get_element(zram, index),
parent);
}
/* Should NEVER happen. Return bio error if it does. */
if (WARN_ON(ret < 0))
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
return ret;
}
/*
* Use a temporary buffer to decompress the page, as the decompressor
* always expects a full page for the output.
*/
static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset)
{
struct page *page = alloc_page(GFP_NOIO);
int ret;
if (!page)
return -ENOMEM;
ret = zram_read_page(zram, page, index, NULL);
if (likely(!ret))
memcpy_to_bvec(bvec, page_address(page) + offset);
__free_page(page);
return ret;
}
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset, struct bio *bio)
{
if (is_partial_io(bvec))
return zram_bvec_read_partial(zram, bvec, index, offset);
return zram_read_page(zram, bvec->bv_page, index, bio);
}
static int zram_write_page(struct zram *zram, struct page *page, u32 index)
{
int ret = 0;
unsigned long alloced_pages;
unsigned long handle = -ENOMEM;
unsigned int comp_len = 0;
void *src, *dst, *mem;
struct zcomp_strm *zstrm;
unsigned long element = 0;
enum zram_pageflags flags = 0;
mem = kmap_local_page(page);
if (page_same_filled(mem, &element)) {
kunmap_local(mem);
/* Free memory associated with this sector now. */
flags = ZRAM_SAME;
atomic64_inc(&zram->stats.same_pages);
goto out;
}
kunmap_local(mem);
compress_again:
zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
src = kmap_local_page(page);
ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
src, &comp_len);
kunmap_local(src);
if (unlikely(ret)) {
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
pr_err("Compression failed! err=%d\n", ret);
zs_free(zram->mem_pool, handle);
return ret;
}
if (comp_len >= huge_class_size)
comp_len = PAGE_SIZE;
/*
* handle allocation has 2 paths:
* a) fast path is executed with preemption disabled (for
* per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
* since we can't sleep;
* b) slow path enables preemption and attempts to allocate
* the page with __GFP_DIRECT_RECLAIM bit set. we have to
* put per-cpu compression stream and, thus, to re-do
* the compression once handle is allocated.
*
* if we have a 'non-null' handle here then we are coming
* from the slow path and handle has already been allocated.
*/
if (IS_ERR_VALUE(handle))
handle = zs_malloc(zram->mem_pool, comp_len,
__GFP_KSWAPD_RECLAIM |
__GFP_NOWARN |
__GFP_HIGHMEM |
__GFP_MOVABLE);
if (IS_ERR_VALUE(handle)) {
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
atomic64_inc(&zram->stats.writestall);
handle = zs_malloc(zram->mem_pool, comp_len,
GFP_NOIO | __GFP_HIGHMEM |
__GFP_MOVABLE);
if (IS_ERR_VALUE(handle))
return PTR_ERR((void *)handle);
if (comp_len != PAGE_SIZE)
goto compress_again;
/*
* If the page is not compressible, you need to acquire the
* lock and execute the code below. The zcomp_stream_get()
* call is needed to disable the cpu hotplug and grab the
* zstrm buffer back. It is necessary that the dereferencing
* of the zstrm variable below occurs correctly.
*/
zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
}
alloced_pages = zs_get_total_pages(zram->mem_pool);
update_used_max(zram, alloced_pages);
if (zram->limit_pages && alloced_pages > zram->limit_pages) {
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
zs_free(zram->mem_pool, handle);
return -ENOMEM;
}
dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
src = zstrm->buffer;
if (comp_len == PAGE_SIZE)
src = kmap_local_page(page);
memcpy(dst, src, comp_len);
if (comp_len == PAGE_SIZE)
kunmap_local(src);
zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
zs_unmap_object(zram->mem_pool, handle);
atomic64_add(comp_len, &zram->stats.compr_data_size);
out:
/*
* Free memory associated with this sector
* before overwriting unused sectors.
*/
zram_slot_lock(zram, index);
zram_free_page(zram, index);
if (comp_len == PAGE_SIZE) {
zram_set_flag(zram, index, ZRAM_HUGE);
atomic64_inc(&zram->stats.huge_pages);
atomic64_inc(&zram->stats.huge_pages_since);
}
if (flags) {
zram_set_flag(zram, index, flags);
zram_set_element(zram, index, element);
} else {
zram_set_handle(zram, index, handle);
zram_set_obj_size(zram, index, comp_len);
}
zram_slot_unlock(zram, index);
/* Update stats */
atomic64_inc(&zram->stats.pages_stored);
return ret;
}
/*
* This is a partial IO. Read the full page before writing the changes.
*/
static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset, struct bio *bio)
{
struct page *page = alloc_page(GFP_NOIO);
int ret;
if (!page)
return -ENOMEM;
ret = zram_read_page(zram, page, index, bio);
if (!ret) {
memcpy_from_bvec(page_address(page) + offset, bvec);
ret = zram_write_page(zram, page, index);
}
__free_page(page);
return ret;
}
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset, struct bio *bio)
{
if (is_partial_io(bvec))
return zram_bvec_write_partial(zram, bvec, index, offset, bio);
return zram_write_page(zram, bvec->bv_page, index);
}
#ifdef CONFIG_ZRAM_MULTI_COMP
#define RECOMPRESS_IDLE (1 << 0)
#define RECOMPRESS_HUGE (1 << 1)
static int scan_slots_for_recompress(struct zram *zram, u32 mode,
struct zram_pp_ctl *ctl)
{
unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
struct zram_pp_slot *pps = NULL;
unsigned long index;
for (index = 0; index < nr_pages; index++) {
if (!pps)
pps = kmalloc(sizeof(*pps), GFP_KERNEL);
if (!pps)
return -ENOMEM;
INIT_LIST_HEAD(&pps->entry);
zram_slot_lock(zram, index);
if (!zram_allocated(zram, index))
goto next;
if (mode & RECOMPRESS_IDLE &&
!zram_test_flag(zram, index, ZRAM_IDLE))
goto next;
if (mode & RECOMPRESS_HUGE &&
!zram_test_flag(zram, index, ZRAM_HUGE))
goto next;
if (zram_test_flag(zram, index, ZRAM_WB) ||
zram_test_flag(zram, index, ZRAM_SAME) ||
zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
goto next;
pps->index = index;
place_pp_slot(zram, ctl, pps);
pps = NULL;
next:
zram_slot_unlock(zram, index);
}
kfree(pps);
return 0;
}
/*
* This function will decompress (unless it's ZRAM_HUGE) the page and then
* attempt to compress it using provided compression algorithm priority
* (which is potentially more effective).
*
* Corresponding ZRAM slot should be locked.
*/
static int recompress_slot(struct zram *zram, u32 index, struct page *page,
u64 *num_recomp_pages, u32 threshold, u32 prio,
u32 prio_max)
{
struct zcomp_strm *zstrm = NULL;
unsigned long handle_old;
unsigned long handle_new;
unsigned int comp_len_old;
unsigned int comp_len_new;
unsigned int class_index_old;
unsigned int class_index_new;
u32 num_recomps = 0;
void *src, *dst;
int ret;
handle_old = zram_get_handle(zram, index);
if (!handle_old)
return -EINVAL;
comp_len_old = zram_get_obj_size(zram, index);
/*
* Do not recompress objects that are already "small enough".
*/
if (comp_len_old < threshold)
return 0;
ret = zram_read_from_zspool(zram, page, index);
if (ret)
return ret;
/*
* We touched this entry so mark it as non-IDLE. This makes sure that
* we don't preserve IDLE flag and don't incorrectly pick this entry
* for different post-processing type (e.g. writeback).
*/
zram_clear_flag(zram, index, ZRAM_IDLE);
class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
/*
* Iterate the secondary comp algorithms list (in order of priority)
* and try to recompress the page.
*/
for (; prio < prio_max; prio++) {
if (!zram->comps[prio])
continue;
/*
* Skip if the object is already re-compressed with a higher
* priority algorithm (or same algorithm).
*/
if (prio <= zram_get_priority(zram, index))
continue;
num_recomps++;
zstrm = zcomp_stream_get(zram->comps[prio]);
src = kmap_local_page(page);
ret = zcomp_compress(zram->comps[prio], zstrm,
src, &comp_len_new);
kunmap_local(src);
if (ret) {
zcomp_stream_put(zram->comps[prio]);
return ret;
}
class_index_new = zs_lookup_class_index(zram->mem_pool,
comp_len_new);
/* Continue until we make progress */
if (class_index_new >= class_index_old ||
(threshold && comp_len_new >= threshold)) {
zcomp_stream_put(zram->comps[prio]);
continue;
}
/* Recompression was successful so break out */
break;
}
/*
* We did not try to recompress, e.g. when we have only one
* secondary algorithm and the page is already recompressed
* using that algorithm
*/
if (!zstrm)
return 0;
/*
* Decrement the limit (if set) on pages we can recompress, even
* when current recompression was unsuccessful or did not compress
* the page below the threshold, because we still spent resources
* on it.
*/
if (*num_recomp_pages)
*num_recomp_pages -= 1;
if (class_index_new >= class_index_old) {
/*
* Secondary algorithms failed to re-compress the page
* in a way that would save memory, mark the object as
* incompressible so that we will not try to compress
* it again.
*
* We need to make sure that all secondary algorithms have
* failed, so we test if the number of recompressions matches
* the number of active secondary algorithms.
*/
if (num_recomps == zram->num_active_comps - 1)
zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
return 0;
}
/* Successful recompression but above threshold */
if (threshold && comp_len_new >= threshold)
return 0;
/*
* No direct reclaim (slow path) for handle allocation and no
* re-compression attempt (unlike in zram_write_bvec()) since
* we already have stored that object in zsmalloc. If we cannot
* alloc memory for recompressed object then we bail out and
* simply keep the old (existing) object in zsmalloc.
*/
handle_new = zs_malloc(zram->mem_pool, comp_len_new,
__GFP_KSWAPD_RECLAIM |
__GFP_NOWARN |
__GFP_HIGHMEM |
__GFP_MOVABLE);
if (IS_ERR_VALUE(handle_new)) {
zcomp_stream_put(zram->comps[prio]);
return PTR_ERR((void *)handle_new);
}
dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
memcpy(dst, zstrm->buffer, comp_len_new);
zcomp_stream_put(zram->comps[prio]);
zs_unmap_object(zram->mem_pool, handle_new);
zram_free_page(zram, index);
zram_set_handle(zram, index, handle_new);
zram_set_obj_size(zram, index, comp_len_new);
zram_set_priority(zram, index, prio);
atomic64_add(comp_len_new, &zram->stats.compr_data_size);
atomic64_inc(&zram->stats.pages_stored);
return 0;
}
static ssize_t recompress_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
struct zram *zram = dev_to_zram(dev);
char *args, *param, *val, *algo = NULL;
u64 num_recomp_pages = ULLONG_MAX;
struct zram_pp_ctl *ctl = NULL;
struct zram_pp_slot *pps;
u32 mode = 0, threshold = 0;
struct page *page;
ssize_t ret;
args = skip_spaces(buf);
while (*args) {
args = next_arg(args, &param, &val);
if (!val || !*val)
return -EINVAL;
if (!strcmp(param, "type")) {
if (!strcmp(val, "idle"))
mode = RECOMPRESS_IDLE;
if (!strcmp(val, "huge"))
mode = RECOMPRESS_HUGE;
if (!strcmp(val, "huge_idle"))
mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
continue;
}
if (!strcmp(param, "max_pages")) {
/*
* Limit the number of entries (pages) we attempt to
* recompress.
*/
ret = kstrtoull(val, 10, &num_recomp_pages);
if (ret)
return ret;
continue;
}
if (!strcmp(param, "threshold")) {
/*
* We will re-compress only idle objects equal or
* greater in size than watermark.
*/
ret = kstrtouint(val, 10, &threshold);
if (ret)
return ret;
continue;
}
if (!strcmp(param, "algo")) {
algo = val;
continue;
}
if (!strcmp(param, "priority")) {
ret = kstrtouint(val, 10, &prio);
if (ret)
return ret;
if (prio == ZRAM_PRIMARY_COMP)
prio = ZRAM_SECONDARY_COMP;
prio_max = min(prio + 1, ZRAM_MAX_COMPS);
continue;
}
}
if (threshold >= huge_class_size)
return -EINVAL;
down_read(&zram->init_lock);
if (!init_done(zram)) {
ret = -EINVAL;
goto release_init_lock;
}
/* Do not permit concurrent post-processing actions. */
if (atomic_xchg(&zram->pp_in_progress, 1)) {
up_read(&zram->init_lock);
return -EAGAIN;
}
if (algo) {
bool found = false;
for (; prio < ZRAM_MAX_COMPS; prio++) {
if (!zram->comp_algs[prio])
continue;
if (!strcmp(zram->comp_algs[prio], algo)) {
prio_max = min(prio + 1, ZRAM_MAX_COMPS);
found = true;
break;
}
}
if (!found) {
ret = -EINVAL;
goto release_init_lock;
}
}
page = alloc_page(GFP_KERNEL);
if (!page) {
ret = -ENOMEM;
goto release_init_lock;
}
ctl = init_pp_ctl();
if (!ctl) {
ret = -ENOMEM;
goto release_init_lock;
}
scan_slots_for_recompress(zram, mode, ctl);
ret = len;
while ((pps = select_pp_slot(ctl))) {
int err = 0;
if (!num_recomp_pages)
break;
zram_slot_lock(zram, pps->index);
if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT))
goto next;
err = recompress_slot(zram, pps->index, page,
&num_recomp_pages, threshold,
prio, prio_max);
next:
zram_slot_unlock(zram, pps->index);
release_pp_slot(zram, pps);
if (err) {
ret = err;
break;
}
cond_resched();
}
__free_page(page);
release_init_lock:
release_pp_ctl(zram, ctl);
atomic_set(&zram->pp_in_progress, 0);
up_read(&zram->init_lock);
return ret;
}
#endif
static void zram_bio_discard(struct zram *zram, struct bio *bio)
{
size_t n = bio->bi_iter.bi_size;
u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
SECTOR_SHIFT;
/*
* zram manages data in physical block size units. Because logical block
* size isn't identical with physical block size on some arch, we
* could get a discard request pointing to a specific offset within a
* certain physical block. Although we can handle this request by
* reading that physiclal block and decompressing and partially zeroing
* and re-compressing and then re-storing it, this isn't reasonable
* because our intent with a discard request is to save memory. So
* skipping this logical block is appropriate here.
*/
if (offset) {
if (n <= (PAGE_SIZE - offset))
return;
n -= (PAGE_SIZE - offset);
index++;
}
while (n >= PAGE_SIZE) {
zram_slot_lock(zram, index);
zram_free_page(zram, index);
zram_slot_unlock(zram, index);
atomic64_inc(&zram->stats.notify_free);
index++;
n -= PAGE_SIZE;
}
bio_endio(bio);
}
static void zram_bio_read(struct zram *zram, struct bio *bio)
{
unsigned long start_time = bio_start_io_acct(bio);
struct bvec_iter iter = bio->bi_iter;
do {
u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
SECTOR_SHIFT;
struct bio_vec bv = bio_iter_iovec(bio, iter);
bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
atomic64_inc(&zram->stats.failed_reads);
bio->bi_status = BLK_STS_IOERR;
break;
}
flush_dcache_page(bv.bv_page);
zram_slot_lock(zram, index);
zram_accessed(zram, index);
zram_slot_unlock(zram, index);
bio_advance_iter_single(bio, &iter, bv.bv_len);
} while (iter.bi_size);
bio_end_io_acct(bio, start_time);
bio_endio(bio);
}
static void zram_bio_write(struct zram *zram, struct bio *bio)
{
unsigned long start_time = bio_start_io_acct(bio);
struct bvec_iter iter = bio->bi_iter;
do {
u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
SECTOR_SHIFT;
struct bio_vec bv = bio_iter_iovec(bio, iter);
bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
atomic64_inc(&zram->stats.failed_writes);
bio->bi_status = BLK_STS_IOERR;
break;
}
zram_slot_lock(zram, index);
zram_accessed(zram, index);
zram_slot_unlock(zram, index);
bio_advance_iter_single(bio, &iter, bv.bv_len);
} while (iter.bi_size);
bio_end_io_acct(bio, start_time);
bio_endio(bio);
}
/*
* Handler function for all zram I/O requests.
*/
static void zram_submit_bio(struct bio *bio)
{
struct zram *zram = bio->bi_bdev->bd_disk->private_data;
switch (bio_op(bio)) {
case REQ_OP_READ:
zram_bio_read(zram, bio);
break;
case REQ_OP_WRITE:
zram_bio_write(zram, bio);
break;
case REQ_OP_DISCARD:
case REQ_OP_WRITE_ZEROES:
zram_bio_discard(zram, bio);
break;
default:
WARN_ON_ONCE(1);
bio_endio(bio);
}
}
static void zram_slot_free_notify(struct block_device *bdev,
unsigned long index)
{
struct zram *zram;
zram = bdev->bd_disk->private_data;
atomic64_inc(&zram->stats.notify_free);
if (!zram_slot_trylock(zram, index)) {
atomic64_inc(&zram->stats.miss_free);
return;
}
zram_free_page(zram, index);
zram_slot_unlock(zram, index);
}
static void zram_comp_params_reset(struct zram *zram)
{
u32 prio;
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
comp_params_reset(zram, prio);
}
}
static void zram_destroy_comps(struct zram *zram)
{
u32 prio;
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
struct zcomp *comp = zram->comps[prio];
zram->comps[prio] = NULL;
if (!comp)
continue;
zcomp_destroy(comp);
zram->num_active_comps--;
}
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
/* Do not free statically defined compression algorithms */
if (zram->comp_algs[prio] != default_compressor)
kfree(zram->comp_algs[prio]);
zram->comp_algs[prio] = NULL;
}
zram_comp_params_reset(zram);
}
static void zram_reset_device(struct zram *zram)
{
down_write(&zram->init_lock);
zram->limit_pages = 0;
if (!init_done(zram)) {
up_write(&zram->init_lock);
return;
}
set_capacity_and_notify(zram->disk, 0);
part_stat_set_all(zram->disk->part0, 0);
/* I/O operation under all of CPU are done so let's free */
zram_meta_free(zram, zram->disksize);
zram->disksize = 0;
zram_destroy_comps(zram);
memset(&zram->stats, 0, sizeof(zram->stats));
atomic_set(&zram->pp_in_progress, 0);
reset_bdev(zram);
comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
up_write(&zram->init_lock);
}
static ssize_t disksize_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 disksize;
struct zcomp *comp;
struct zram *zram = dev_to_zram(dev);
int err;
u32 prio;
disksize = memparse(buf, NULL);
if (!disksize)
return -EINVAL;
down_write(&zram->init_lock);
if (init_done(zram)) {
pr_info("Cannot change disksize for initialized device\n");
err = -EBUSY;
goto out_unlock;
}
disksize = PAGE_ALIGN(disksize);
if (!zram_meta_alloc(zram, disksize)) {
err = -ENOMEM;
goto out_unlock;
}
for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
if (!zram->comp_algs[prio])
continue;
comp = zcomp_create(zram->comp_algs[prio],
&zram->params[prio]);
if (IS_ERR(comp)) {
pr_err("Cannot initialise %s compressing backend\n",
zram->comp_algs[prio]);
err = PTR_ERR(comp);
goto out_free_comps;
}
zram->comps[prio] = comp;
zram->num_active_comps++;
}
zram->disksize = disksize;
set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
up_write(&zram->init_lock);
return len;
out_free_comps:
zram_destroy_comps(zram);
zram_meta_free(zram, disksize);
out_unlock:
up_write(&zram->init_lock);
return err;
}
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int ret;
unsigned short do_reset;
struct zram *zram;
struct gendisk *disk;
ret = kstrtou16(buf, 10, &do_reset);
if (ret)
return ret;
if (!do_reset)
return -EINVAL;
zram = dev_to_zram(dev);
disk = zram->disk;
mutex_lock(&disk->open_mutex);
/* Do not reset an active device or claimed device */
if (disk_openers(disk) || zram->claim) {
mutex_unlock(&disk->open_mutex);
return -EBUSY;
}
/* From now on, anyone can't open /dev/zram[0-9] */
zram->claim = true;
mutex_unlock(&disk->open_mutex);
/* Make sure all the pending I/O are finished */
sync_blockdev(disk->part0);
zram_reset_device(zram);
mutex_lock(&disk->open_mutex);
zram->claim = false;
mutex_unlock(&disk->open_mutex);
return len;
}
static int zram_open(struct gendisk *disk, blk_mode_t mode)
{
struct zram *zram = disk->private_data;
WARN_ON(!mutex_is_locked(&disk->open_mutex));
/* zram was claimed to reset so open request fails */
if (zram->claim)
return -EBUSY;
return 0;
}
static const struct block_device_operations zram_devops = {
.open = zram_open,
.submit_bio = zram_submit_bio,
.swap_slot_free_notify = zram_slot_free_notify,
.owner = THIS_MODULE
};
static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
static DEVICE_ATTR_WO(mem_limit);
static DEVICE_ATTR_WO(mem_used_max);
static DEVICE_ATTR_WO(idle);
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
#ifdef CONFIG_ZRAM_WRITEBACK
static DEVICE_ATTR_RW(backing_dev);
static DEVICE_ATTR_WO(writeback);
static DEVICE_ATTR_RW(writeback_limit);
static DEVICE_ATTR_RW(writeback_limit_enable);
#endif
#ifdef CONFIG_ZRAM_MULTI_COMP
static DEVICE_ATTR_RW(recomp_algorithm);
static DEVICE_ATTR_WO(recompress);
#endif
static DEVICE_ATTR_WO(algorithm_params);
static struct attribute *zram_disk_attrs[] = {
&dev_attr_disksize.attr,
&dev_attr_initstate.attr,
&dev_attr_reset.attr,
&dev_attr_compact.attr,
&dev_attr_mem_limit.attr,
&dev_attr_mem_used_max.attr,
&dev_attr_idle.attr,
&dev_attr_max_comp_streams.attr,
&dev_attr_comp_algorithm.attr,
#ifdef CONFIG_ZRAM_WRITEBACK
&dev_attr_backing_dev.attr,
&dev_attr_writeback.attr,
&dev_attr_writeback_limit.attr,
&dev_attr_writeback_limit_enable.attr,
#endif
&dev_attr_io_stat.attr,
&dev_attr_mm_stat.attr,
#ifdef CONFIG_ZRAM_WRITEBACK
&dev_attr_bd_stat.attr,
#endif
&dev_attr_debug_stat.attr,
#ifdef CONFIG_ZRAM_MULTI_COMP
&dev_attr_recomp_algorithm.attr,
&dev_attr_recompress.attr,
#endif
&dev_attr_algorithm_params.attr,
NULL,
};
ATTRIBUTE_GROUPS(zram_disk);
/*
* Allocate and initialize new zram device. the function returns
* '>= 0' device_id upon success, and negative value otherwise.
*/
static int zram_add(void)
{
struct queue_limits lim = {
.logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE,
/*
* To ensure that we always get PAGE_SIZE aligned and
* n*PAGE_SIZED sized I/O requests.
*/
.physical_block_size = PAGE_SIZE,
.io_min = PAGE_SIZE,
.io_opt = PAGE_SIZE,
.max_hw_discard_sectors = UINT_MAX,
/*
* zram_bio_discard() will clear all logical blocks if logical
* block size is identical with physical block size(PAGE_SIZE).
* But if it is different, we will skip discarding some parts of
* logical blocks in the part of the request range which isn't
* aligned to physical block size. So we can't ensure that all
* discarded logical blocks are zeroed.
*/
#if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
.max_write_zeroes_sectors = UINT_MAX,
#endif
.features = BLK_FEAT_STABLE_WRITES |
BLK_FEAT_SYNCHRONOUS,
};
struct zram *zram;
int ret, device_id;
zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
if (!zram)
return -ENOMEM;
ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
if (ret < 0)
goto out_free_dev;
device_id = ret;
init_rwsem(&zram->init_lock);
#ifdef CONFIG_ZRAM_WRITEBACK
spin_lock_init(&zram->wb_limit_lock);
#endif
/* gendisk structure */
zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
if (IS_ERR(zram->disk)) {
pr_err("Error allocating disk structure for device %d\n",
device_id);
ret = PTR_ERR(zram->disk);
goto out_free_idr;
}
zram->disk->major = zram_major;
zram->disk->first_minor = device_id;
zram->disk->minors = 1;
zram->disk->flags |= GENHD_FL_NO_PART;
zram->disk->fops = &zram_devops;
zram->disk->private_data = zram;
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
atomic_set(&zram->pp_in_progress, 0);
zram_comp_params_reset(zram);
comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
set_capacity(zram->disk, 0);
ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
if (ret)
goto out_cleanup_disk;
zram_debugfs_register(zram);
pr_info("Added device: %s\n", zram->disk->disk_name);
return device_id;
out_cleanup_disk:
put_disk(zram->disk);
out_free_idr:
idr_remove(&zram_index_idr, device_id);
out_free_dev:
kfree(zram);
return ret;
}
static int zram_remove(struct zram *zram)
{
bool claimed;
mutex_lock(&zram->disk->open_mutex);
if (disk_openers(zram->disk)) {
mutex_unlock(&zram->disk->open_mutex);
return -EBUSY;
}
claimed = zram->claim;
if (!claimed)
zram->claim = true;
mutex_unlock(&zram->disk->open_mutex);
zram_debugfs_unregister(zram);
if (claimed) {
/*
* If we were claimed by reset_store(), del_gendisk() will
* wait until reset_store() is done, so nothing need to do.
*/
;
} else {
/* Make sure all the pending I/O are finished */
sync_blockdev(zram->disk->part0);
zram_reset_device(zram);
}
pr_info("Removed device: %s\n", zram->disk->disk_name);
del_gendisk(zram->disk);
/* del_gendisk drains pending reset_store */
WARN_ON_ONCE(claimed && zram->claim);
/*
* disksize_store() may be called in between zram_reset_device()
* and del_gendisk(), so run the last reset to avoid leaking
* anything allocated with disksize_store()
*/
zram_reset_device(zram);
put_disk(zram->disk);
kfree(zram);
return 0;
}
/* zram-control sysfs attributes */
/*
* NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
* sense that reading from this file does alter the state of your system -- it
* creates a new un-initialized zram device and returns back this device's
* device_id (or an error code if it fails to create a new device).
*/
static ssize_t hot_add_show(const struct class *class,
const struct class_attribute *attr,
char *buf)
{
int ret;
mutex_lock(&zram_index_mutex);
ret = zram_add();
mutex_unlock(&zram_index_mutex);
if (ret < 0)
return ret;
return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}
/* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
static struct class_attribute class_attr_hot_add =
__ATTR(hot_add, 0400, hot_add_show, NULL);
static ssize_t hot_remove_store(const struct class *class,
const struct class_attribute *attr,
const char *buf,
size_t count)
{
struct zram *zram;
int ret, dev_id;
/* dev_id is gendisk->first_minor, which is `int' */
ret = kstrtoint(buf, 10, &dev_id);
if (ret)
return ret;
if (dev_id < 0)
return -EINVAL;
mutex_lock(&zram_index_mutex);
zram = idr_find(&zram_index_idr, dev_id);
if (zram) {
ret = zram_remove(zram);
if (!ret)
idr_remove(&zram_index_idr, dev_id);
} else {
ret = -ENODEV;
}
mutex_unlock(&zram_index_mutex);
return ret ? ret : count;
}
static CLASS_ATTR_WO(hot_remove);
static struct attribute *zram_control_class_attrs[] = {
&class_attr_hot_add.attr,
&class_attr_hot_remove.attr,
NULL,
};
ATTRIBUTE_GROUPS(zram_control_class);
static struct class zram_control_class = {
.name = "zram-control",
.class_groups = zram_control_class_groups,
};
static int zram_remove_cb(int id, void *ptr, void *data)
{
WARN_ON_ONCE(zram_remove(ptr));
return 0;
}
static void destroy_devices(void)
{
class_unregister(&zram_control_class);
idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
zram_debugfs_destroy();
idr_destroy(&zram_index_idr);
unregister_blkdev(zram_major, "zram");
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
}
static int __init zram_init(void)
{
struct zram_table_entry zram_te;
int ret;
BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
zcomp_cpu_up_prepare, zcomp_cpu_dead);
if (ret < 0)
return ret;
ret = class_register(&zram_control_class);
if (ret) {
pr_err("Unable to register zram-control class\n");
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
return ret;
}
zram_debugfs_create();
zram_major = register_blkdev(0, "zram");
if (zram_major <= 0) {
pr_err("Unable to get major number\n");
class_unregister(&zram_control_class);
cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
return -EBUSY;
}
while (num_devices != 0) {
mutex_lock(&zram_index_mutex);
ret = zram_add();
mutex_unlock(&zram_index_mutex);
if (ret < 0)
goto out_error;
num_devices--;
}
return 0;
out_error:
destroy_devices();
return ret;
}
static void __exit zram_exit(void)
{
destroy_devices();
}
module_init(zram_init);
module_exit(zram_exit);
module_param(num_devices, uint, 0);
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");