mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 02:46:06 +00:00
11137d3849
With UTIL_EST_FASTUP now being permanent, we can take advantage of the fact that the ewma jumps directly to a higher utilization at dequeue to simplify util_est and remove the enqueued field. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com> Reviewed-by: Alex Shi <alexs@kernel.org> Link: https://lore.kernel.org/r/20231201161652.1241695-3-vincent.guittot@linaro.org
236 lines
6.0 KiB
C
236 lines
6.0 KiB
C
#ifdef CONFIG_SMP
|
|
#include "sched-pelt.h"
|
|
|
|
int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
|
|
int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
|
|
int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
|
|
int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
|
|
int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
|
|
|
|
#ifdef CONFIG_SCHED_THERMAL_PRESSURE
|
|
int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
|
|
|
|
static inline u64 thermal_load_avg(struct rq *rq)
|
|
{
|
|
return READ_ONCE(rq->avg_thermal.load_avg);
|
|
}
|
|
#else
|
|
static inline int
|
|
update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 thermal_load_avg(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
|
|
int update_irq_load_avg(struct rq *rq, u64 running);
|
|
#else
|
|
static inline int
|
|
update_irq_load_avg(struct rq *rq, u64 running)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024)
|
|
|
|
static inline u32 get_pelt_divider(struct sched_avg *avg)
|
|
{
|
|
return PELT_MIN_DIVIDER + avg->period_contrib;
|
|
}
|
|
|
|
static inline void cfs_se_util_change(struct sched_avg *avg)
|
|
{
|
|
unsigned int enqueued;
|
|
|
|
if (!sched_feat(UTIL_EST))
|
|
return;
|
|
|
|
/* Avoid store if the flag has been already reset */
|
|
enqueued = avg->util_est;
|
|
if (!(enqueued & UTIL_AVG_UNCHANGED))
|
|
return;
|
|
|
|
/* Reset flag to report util_avg has been updated */
|
|
enqueued &= ~UTIL_AVG_UNCHANGED;
|
|
WRITE_ONCE(avg->util_est, enqueued);
|
|
}
|
|
|
|
static inline u64 rq_clock_pelt(struct rq *rq)
|
|
{
|
|
lockdep_assert_rq_held(rq);
|
|
assert_clock_updated(rq);
|
|
|
|
return rq->clock_pelt - rq->lost_idle_time;
|
|
}
|
|
|
|
/* The rq is idle, we can sync to clock_task */
|
|
static inline void _update_idle_rq_clock_pelt(struct rq *rq)
|
|
{
|
|
rq->clock_pelt = rq_clock_task(rq);
|
|
|
|
u64_u32_store(rq->clock_idle, rq_clock(rq));
|
|
/* Paired with smp_rmb in migrate_se_pelt_lag() */
|
|
smp_wmb();
|
|
u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq));
|
|
}
|
|
|
|
/*
|
|
* The clock_pelt scales the time to reflect the effective amount of
|
|
* computation done during the running delta time but then sync back to
|
|
* clock_task when rq is idle.
|
|
*
|
|
*
|
|
* absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
|
|
* @ max capacity ------******---------------******---------------
|
|
* @ half capacity ------************---------************---------
|
|
* clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
|
|
*
|
|
*/
|
|
static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
|
|
{
|
|
if (unlikely(is_idle_task(rq->curr))) {
|
|
_update_idle_rq_clock_pelt(rq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* When a rq runs at a lower compute capacity, it will need
|
|
* more time to do the same amount of work than at max
|
|
* capacity. In order to be invariant, we scale the delta to
|
|
* reflect how much work has been really done.
|
|
* Running longer results in stealing idle time that will
|
|
* disturb the load signal compared to max capacity. This
|
|
* stolen idle time will be automatically reflected when the
|
|
* rq will be idle and the clock will be synced with
|
|
* rq_clock_task.
|
|
*/
|
|
|
|
/*
|
|
* Scale the elapsed time to reflect the real amount of
|
|
* computation
|
|
*/
|
|
delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
|
|
delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
|
|
|
|
rq->clock_pelt += delta;
|
|
}
|
|
|
|
/*
|
|
* When rq becomes idle, we have to check if it has lost idle time
|
|
* because it was fully busy. A rq is fully used when the /Sum util_sum
|
|
* is greater or equal to:
|
|
* (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
|
|
* For optimization and computing rounding purpose, we don't take into account
|
|
* the position in the current window (period_contrib) and we use the higher
|
|
* bound of util_sum to decide.
|
|
*/
|
|
static inline void update_idle_rq_clock_pelt(struct rq *rq)
|
|
{
|
|
u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
|
|
u32 util_sum = rq->cfs.avg.util_sum;
|
|
util_sum += rq->avg_rt.util_sum;
|
|
util_sum += rq->avg_dl.util_sum;
|
|
|
|
/*
|
|
* Reflecting stolen time makes sense only if the idle
|
|
* phase would be present at max capacity. As soon as the
|
|
* utilization of a rq has reached the maximum value, it is
|
|
* considered as an always running rq without idle time to
|
|
* steal. This potential idle time is considered as lost in
|
|
* this case. We keep track of this lost idle time compare to
|
|
* rq's clock_task.
|
|
*/
|
|
if (util_sum >= divider)
|
|
rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
|
|
|
|
_update_idle_rq_clock_pelt(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
|
|
{
|
|
u64 throttled;
|
|
|
|
if (unlikely(cfs_rq->throttle_count))
|
|
throttled = U64_MAX;
|
|
else
|
|
throttled = cfs_rq->throttled_clock_pelt_time;
|
|
|
|
u64_u32_store(cfs_rq->throttled_pelt_idle, throttled);
|
|
}
|
|
|
|
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
|
|
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (unlikely(cfs_rq->throttle_count))
|
|
return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
|
|
|
|
return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
|
|
}
|
|
#else
|
|
static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
|
|
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
|
|
{
|
|
return rq_clock_pelt(rq_of(cfs_rq));
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
static inline int
|
|
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 thermal_load_avg(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
update_irq_load_avg(struct rq *rq, u64 running)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 rq_clock_pelt(struct rq *rq)
|
|
{
|
|
return rq_clock_task(rq);
|
|
}
|
|
|
|
static inline void
|
|
update_rq_clock_pelt(struct rq *rq, s64 delta) { }
|
|
|
|
static inline void
|
|
update_idle_rq_clock_pelt(struct rq *rq) { }
|
|
|
|
static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
|
|
#endif
|
|
|
|
|