linux/drivers/iio/adc/pac1934.c
Marius Cristea 51fafb3cd7 iio: adc: PAC1934: fix accessing out of bounds array index
Fix accessing out of bounds array index for average
current and voltage measurements. The device itself has
only 4 channels, but in sysfs there are "fake"
channels for the average voltages and currents too.

Fixes: 0fb528c825 ("iio: adc: adding support for PAC193x")
Reported-by: Conor Dooley <conor.dooley@microchip.com>
Signed-off-by: Marius Cristea <marius.cristea@microchip.com>
Closes: https://lore.kernel.org/linux-iio/20240405-embellish-bonnet-ab5f10560d93@wendy/
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20240425114232.81390-1-marius.cristea@microchip.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2024-05-03 11:48:56 +01:00

1631 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* IIO driver for PAC1934 Multi-Channel DC Power/Energy Monitor
*
* Copyright (C) 2017-2024 Microchip Technology Inc. and its subsidiaries
*
* Author: Bogdan Bolocan <bogdan.bolocan@microchip.com>
* Author: Victor Tudose
* Author: Marius Cristea <marius.cristea@microchip.com>
*
* Datasheet for PAC1931, PAC1932, PAC1933 and PAC1934 can be found here:
* https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/PAC1931-Family-Data-Sheet-DS20005850E.pdf
*/
#include <linux/acpi.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <asm/unaligned.h>
/*
* maximum accumulation time should be (17 * 60 * 1000) around 17 minutes@1024 sps
* till PAC1934 accumulation registers starts to saturate
*/
#define PAC1934_MAX_RFSH_LIMIT_MS 60000
/* 50msec is the timeout for validity of the cached registers */
#define PAC1934_MIN_POLLING_TIME_MS 50
/*
* 1000usec is the minimum wait time for normal conversions when sample
* rate doesn't change
*/
#define PAC1934_MIN_UPDATE_WAIT_TIME_US 1000
/* 32000mV */
#define PAC1934_VOLTAGE_MILLIVOLTS_MAX 32000
/* voltage bits resolution when set for unsigned values */
#define PAC1934_VOLTAGE_U_RES 16
/* voltage bits resolution when set for signed values */
#define PAC1934_VOLTAGE_S_RES 15
/*
* max signed value that can be stored on 32 bits and 8 digits fractional value
* (2^31 - 1) * 10^8 + 99999999
*/
#define PAC_193X_MAX_POWER_ACC 214748364799999999LL
/*
* min signed value that can be stored on 32 bits and 8 digits fractional value
* -(2^31) * 10^8 - 99999999
*/
#define PAC_193X_MIN_POWER_ACC -214748364899999999LL
#define PAC1934_MAX_NUM_CHANNELS 4
#define PAC1934_MEAS_REG_LEN 76
#define PAC1934_CTRL_REG_LEN 12
#define PAC1934_DEFAULT_CHIP_SAMP_SPEED_HZ 1024
/* I2C address map */
#define PAC1934_REFRESH_REG_ADDR 0x00
#define PAC1934_CTRL_REG_ADDR 0x01
#define PAC1934_ACC_COUNT_REG_ADDR 0x02
#define PAC1934_VPOWER_ACC_1_ADDR 0x03
#define PAC1934_VPOWER_ACC_2_ADDR 0x04
#define PAC1934_VPOWER_ACC_3_ADDR 0x05
#define PAC1934_VPOWER_ACC_4_ADDR 0x06
#define PAC1934_VBUS_1_ADDR 0x07
#define PAC1934_VBUS_2_ADDR 0x08
#define PAC1934_VBUS_3_ADDR 0x09
#define PAC1934_VBUS_4_ADDR 0x0A
#define PAC1934_VSENSE_1_ADDR 0x0B
#define PAC1934_VSENSE_2_ADDR 0x0C
#define PAC1934_VSENSE_3_ADDR 0x0D
#define PAC1934_VSENSE_4_ADDR 0x0E
#define PAC1934_VBUS_AVG_1_ADDR 0x0F
#define PAC1934_VBUS_AVG_2_ADDR 0x10
#define PAC1934_VBUS_AVG_3_ADDR 0x11
#define PAC1934_VBUS_AVG_4_ADDR 0x12
#define PAC1934_VSENSE_AVG_1_ADDR 0x13
#define PAC1934_VSENSE_AVG_2_ADDR 0x14
#define PAC1934_VSENSE_AVG_3_ADDR 0x15
#define PAC1934_VSENSE_AVG_4_ADDR 0x16
#define PAC1934_VPOWER_1_ADDR 0x17
#define PAC1934_VPOWER_2_ADDR 0x18
#define PAC1934_VPOWER_3_ADDR 0x19
#define PAC1934_VPOWER_4_ADDR 0x1A
#define PAC1934_REFRESH_V_REG_ADDR 0x1F
#define PAC1934_CTRL_STAT_REGS_ADDR 0x1C
#define PAC1934_PID_REG_ADDR 0xFD
#define PAC1934_MID_REG_ADDR 0xFE
#define PAC1934_RID_REG_ADDR 0xFF
/* PRODUCT ID REGISTER + MANUFACTURER ID REGISTER + REVISION ID REGISTER */
#define PAC1934_ID_REG_LEN 3
#define PAC1934_PID_IDX 0
#define PAC1934_MID_IDX 1
#define PAC1934_RID_IDX 2
#define PAC1934_ACPI_GET_NAMES_AND_MOHMS_VALS 1
#define PAC1934_ACPI_GET_UOHMS_VALS 2
#define PAC1934_ACPI_GET_BIPOLAR_SETTINGS 4
#define PAC1934_ACPI_GET_SAMP 5
#define PAC1934_SAMPLE_RATE_SHIFT 6
#define PAC1934_VBUS_SENSE_REG_LEN 2
#define PAC1934_ACC_REG_LEN 3
#define PAC1934_VPOWER_REG_LEN 4
#define PAC1934_VPOWER_ACC_REG_LEN 6
#define PAC1934_MAX_REGISTER_LENGTH 6
#define PAC1934_CUSTOM_ATTR_FOR_CHANNEL 1
/*
* relative offsets when using multi-byte reads/writes even though these
* bytes are read one after the other, they are not at adjacent memory
* locations within the I2C memory map. The chip can skip some addresses
*/
#define PAC1934_CHANNEL_DIS_REG_OFF 0
#define PAC1934_NEG_PWR_REG_OFF 1
/*
* when reading/writing multiple bytes from offset PAC1934_CHANNEL_DIS_REG_OFF,
* the chip jumps over the 0x1E (REFRESH_G) and 0x1F (REFRESH_V) offsets
*/
#define PAC1934_SLOW_REG_OFF 2
#define PAC1934_CTRL_ACT_REG_OFF 3
#define PAC1934_CHANNEL_DIS_ACT_REG_OFF 4
#define PAC1934_NEG_PWR_ACT_REG_OFF 5
#define PAC1934_CTRL_LAT_REG_OFF 6
#define PAC1934_CHANNEL_DIS_LAT_REG_OFF 7
#define PAC1934_NEG_PWR_LAT_REG_OFF 8
#define PAC1934_PID_REG_OFF 9
#define PAC1934_MID_REG_OFF 10
#define PAC1934_REV_REG_OFF 11
#define PAC1934_CTRL_STATUS_INFO_LEN 12
#define PAC1934_MID 0x5D
#define PAC1931_PID 0x58
#define PAC1932_PID 0x59
#define PAC1933_PID 0x5A
#define PAC1934_PID 0x5B
/* Scale constant = (10^3 * 3.2 * 10^9 / 2^28) for mili Watt-second */
#define PAC1934_SCALE_CONSTANT 11921
#define PAC1934_MAX_VPOWER_RSHIFTED_BY_28B 11921
#define PAC1934_MAX_VSENSE_RSHIFTED_BY_16B 1525
#define PAC1934_DEV_ATTR(name) (&iio_dev_attr_##name.dev_attr.attr)
#define PAC1934_CRTL_SAMPLE_RATE_MASK GENMASK(7, 6)
#define PAC1934_CHAN_SLEEP_MASK BIT(5)
#define PAC1934_CHAN_SLEEP_SET BIT(5)
#define PAC1934_CHAN_SINGLE_MASK BIT(4)
#define PAC1934_CHAN_SINGLE_SHOT_SET BIT(4)
#define PAC1934_CHAN_ALERT_MASK BIT(3)
#define PAC1934_CHAN_ALERT_EN BIT(3)
#define PAC1934_CHAN_ALERT_CC_MASK BIT(2)
#define PAC1934_CHAN_ALERT_CC_EN BIT(2)
#define PAC1934_CHAN_OVF_ALERT_MASK BIT(1)
#define PAC1934_CHAN_OVF_ALERT_EN BIT(1)
#define PAC1934_CHAN_OVF_MASK BIT(0)
#define PAC1934_CHAN_DIS_CH1_OFF_MASK BIT(7)
#define PAC1934_CHAN_DIS_CH2_OFF_MASK BIT(6)
#define PAC1934_CHAN_DIS_CH3_OFF_MASK BIT(5)
#define PAC1934_CHAN_DIS_CH4_OFF_MASK BIT(4)
#define PAC1934_SMBUS_TIMEOUT_MASK BIT(3)
#define PAC1934_SMBUS_BYTECOUNT_MASK BIT(2)
#define PAC1934_SMBUS_NO_SKIP_MASK BIT(1)
#define PAC1934_NEG_PWR_CH1_BIDI_MASK BIT(7)
#define PAC1934_NEG_PWR_CH2_BIDI_MASK BIT(6)
#define PAC1934_NEG_PWR_CH3_BIDI_MASK BIT(5)
#define PAC1934_NEG_PWR_CH4_BIDI_MASK BIT(4)
#define PAC1934_NEG_PWR_CH1_BIDV_MASK BIT(3)
#define PAC1934_NEG_PWR_CH2_BIDV_MASK BIT(2)
#define PAC1934_NEG_PWR_CH3_BIDV_MASK BIT(1)
#define PAC1934_NEG_PWR_CH4_BIDV_MASK BIT(0)
/*
* Universal Unique Identifier (UUID),
* 033771E0-1705-47B4-9535-D1BBE14D9A09,
* is reserved to Microchip for the PAC1934.
*/
#define PAC1934_DSM_UUID "033771E0-1705-47B4-9535-D1BBE14D9A09"
enum pac1934_ids {
PAC1931,
PAC1932,
PAC1933,
PAC1934
};
enum pac1934_samps {
PAC1934_SAMP_1024SPS,
PAC1934_SAMP_256SPS,
PAC1934_SAMP_64SPS,
PAC1934_SAMP_8SPS
};
/*
* these indexes are exactly describing the element order within a single
* PAC1934 phys channel IIO channel descriptor; see the static const struct
* iio_chan_spec pac1934_single_channel[] declaration
*/
enum pac1934_ch_idx {
PAC1934_CH_ENERGY,
PAC1934_CH_POWER,
PAC1934_CH_VOLTAGE,
PAC1934_CH_CURRENT,
PAC1934_CH_VOLTAGE_AVERAGE,
PAC1934_CH_CURRENT_AVERAGE
};
/**
* struct pac1934_features - features of a pac1934 instance
* @phys_channels: number of physical channels supported by the chip
* @name: chip's name
*/
struct pac1934_features {
u8 phys_channels;
const char *name;
};
struct samp_rate_mapping {
u16 samp_rate;
u8 shift2value;
};
static const unsigned int samp_rate_map_tbl[] = {
[PAC1934_SAMP_1024SPS] = 1024,
[PAC1934_SAMP_256SPS] = 256,
[PAC1934_SAMP_64SPS] = 64,
[PAC1934_SAMP_8SPS] = 8,
};
static const struct pac1934_features pac1934_chip_config[] = {
[PAC1931] = {
.phys_channels = 1,
.name = "pac1931",
},
[PAC1932] = {
.phys_channels = 2,
.name = "pac1932",
},
[PAC1933] = {
.phys_channels = 3,
.name = "pac1933",
},
[PAC1934] = {
.phys_channels = 4,
.name = "pac1934",
},
};
/**
* struct reg_data - data from the registers
* @meas_regs: snapshot of raw measurements registers
* @ctrl_regs: snapshot of control registers
* @energy_sec_acc: snapshot of energy values
* @vpower_acc: accumulated vpower values
* @vpower: snapshot of vpower registers
* @vbus: snapshot of vbus registers
* @vbus_avg: averages of vbus registers
* @vsense: snapshot of vsense registers
* @vsense_avg: averages of vsense registers
* @num_enabled_channels: count of how many chip channels are currently enabled
*/
struct reg_data {
u8 meas_regs[PAC1934_MEAS_REG_LEN];
u8 ctrl_regs[PAC1934_CTRL_REG_LEN];
s64 energy_sec_acc[PAC1934_MAX_NUM_CHANNELS];
s64 vpower_acc[PAC1934_MAX_NUM_CHANNELS];
s32 vpower[PAC1934_MAX_NUM_CHANNELS];
s32 vbus[PAC1934_MAX_NUM_CHANNELS];
s32 vbus_avg[PAC1934_MAX_NUM_CHANNELS];
s32 vsense[PAC1934_MAX_NUM_CHANNELS];
s32 vsense_avg[PAC1934_MAX_NUM_CHANNELS];
u8 num_enabled_channels;
};
/**
* struct pac1934_chip_info - information about the chip
* @client: the i2c-client attached to the device
* @lock: synchronize access to driver's state members
* @work_chip_rfsh: work queue used for refresh commands
* @phys_channels: phys channels count
* @active_channels: array of values, true means that channel is active
* @enable_energy: array of values, true means that channel energy is measured
* @bi_dir: array of bools, true means that channel is bidirectional
* @chip_variant: chip variant
* @chip_revision: chip revision
* @shunts: shunts
* @chip_reg_data: chip reg data
* @sample_rate_value: sampling frequency
* @labels: table with channels labels
* @iio_info: iio_info
* @tstamp: chip's uptime
*/
struct pac1934_chip_info {
struct i2c_client *client;
struct mutex lock; /* synchronize access to driver's state members */
struct delayed_work work_chip_rfsh;
u8 phys_channels;
bool active_channels[PAC1934_MAX_NUM_CHANNELS];
bool enable_energy[PAC1934_MAX_NUM_CHANNELS];
bool bi_dir[PAC1934_MAX_NUM_CHANNELS];
u8 chip_variant;
u8 chip_revision;
u32 shunts[PAC1934_MAX_NUM_CHANNELS];
struct reg_data chip_reg_data;
s32 sample_rate_value;
char *labels[PAC1934_MAX_NUM_CHANNELS];
struct iio_info iio_info;
unsigned long tstamp;
};
#define TO_PAC1934_CHIP_INFO(d) container_of(d, struct pac1934_chip_info, work_chip_rfsh)
#define PAC1934_VPOWER_ACC_CHANNEL(_index, _si, _address) { \
.type = IIO_ENERGY, \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_ENABLE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 48, \
.storagebits = 64, \
.endianness = IIO_CPU, \
} \
}
#define PAC1934_VBUS_CHANNEL(_index, _si, _address) { \
.type = IIO_VOLTAGE, \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
} \
}
#define PAC1934_VBUS_AVG_CHANNEL(_index, _si, _address) { \
.type = IIO_VOLTAGE, \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_AVERAGE_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
} \
}
#define PAC1934_VSENSE_CHANNEL(_index, _si, _address) { \
.type = IIO_CURRENT, \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
} \
}
#define PAC1934_VSENSE_AVG_CHANNEL(_index, _si, _address) { \
.type = IIO_CURRENT, \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_AVERAGE_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
} \
}
#define PAC1934_VPOWER_CHANNEL(_index, _si, _address) { \
.type = IIO_POWER, \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 28, \
.storagebits = 32, \
.shift = 4, \
.endianness = IIO_CPU, \
} \
}
static const struct iio_chan_spec pac1934_single_channel[] = {
PAC1934_VPOWER_ACC_CHANNEL(0, 0, PAC1934_VPOWER_ACC_1_ADDR),
PAC1934_VPOWER_CHANNEL(0, 0, PAC1934_VPOWER_1_ADDR),
PAC1934_VBUS_CHANNEL(0, 0, PAC1934_VBUS_1_ADDR),
PAC1934_VSENSE_CHANNEL(0, 0, PAC1934_VSENSE_1_ADDR),
PAC1934_VBUS_AVG_CHANNEL(0, 0, PAC1934_VBUS_AVG_1_ADDR),
PAC1934_VSENSE_AVG_CHANNEL(0, 0, PAC1934_VSENSE_AVG_1_ADDR),
};
/* Low-level I2c functions used to transfer up to 76 bytes at once */
static int pac1934_i2c_read(struct i2c_client *client, u8 reg_addr,
void *databuf, u8 len)
{
int ret;
struct i2c_msg msgs[2] = {
{
.addr = client->addr,
.len = 1,
.buf = (u8 *)&reg_addr,
},
{
.addr = client->addr,
.len = len,
.buf = databuf,
.flags = I2C_M_RD
}
};
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0)
return ret;
return 0;
}
static int pac1934_get_samp_rate_idx(struct pac1934_chip_info *info,
u32 new_samp_rate)
{
int cnt;
for (cnt = 0; cnt < ARRAY_SIZE(samp_rate_map_tbl); cnt++)
if (new_samp_rate == samp_rate_map_tbl[cnt])
return cnt;
/* not a valid sample rate value */
return -EINVAL;
}
static ssize_t pac1934_shunt_value_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct pac1934_chip_info *info = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
return sysfs_emit(buf, "%u\n", info->shunts[this_attr->address]);
}
static ssize_t pac1934_shunt_value_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct pac1934_chip_info *info = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int sh_val;
if (kstrtouint(buf, 10, &sh_val)) {
dev_err(dev, "Shunt value is not valid\n");
return -EINVAL;
}
scoped_guard(mutex, &info->lock)
info->shunts[this_attr->address] = sh_val;
return count;
}
static int pac1934_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel,
const int **vals, int *type, int *length, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT;
*vals = samp_rate_map_tbl;
*length = ARRAY_SIZE(samp_rate_map_tbl);
return IIO_AVAIL_LIST;
}
return -EINVAL;
}
static int pac1934_send_refresh(struct pac1934_chip_info *info,
u8 refresh_cmd, u32 wait_time)
{
/* this function only sends REFRESH or REFRESH_V */
struct i2c_client *client = info->client;
int ret;
u8 bidir_reg;
bool revision_bug = false;
if (info->chip_revision == 2 || info->chip_revision == 3) {
/*
* chip rev 2 and 3 bug workaround
* see: PAC1934 Family Data Sheet Errata DS80000836A.pdf
*/
revision_bug = true;
bidir_reg =
FIELD_PREP(PAC1934_NEG_PWR_CH1_BIDI_MASK, info->bi_dir[0]) |
FIELD_PREP(PAC1934_NEG_PWR_CH2_BIDI_MASK, info->bi_dir[1]) |
FIELD_PREP(PAC1934_NEG_PWR_CH3_BIDI_MASK, info->bi_dir[2]) |
FIELD_PREP(PAC1934_NEG_PWR_CH4_BIDI_MASK, info->bi_dir[3]) |
FIELD_PREP(PAC1934_NEG_PWR_CH1_BIDV_MASK, info->bi_dir[0]) |
FIELD_PREP(PAC1934_NEG_PWR_CH2_BIDV_MASK, info->bi_dir[1]) |
FIELD_PREP(PAC1934_NEG_PWR_CH3_BIDV_MASK, info->bi_dir[2]) |
FIELD_PREP(PAC1934_NEG_PWR_CH4_BIDV_MASK, info->bi_dir[3]);
ret = i2c_smbus_write_byte_data(client,
PAC1934_CTRL_STAT_REGS_ADDR +
PAC1934_NEG_PWR_REG_OFF,
bidir_reg);
if (ret)
return ret;
}
ret = i2c_smbus_write_byte(client, refresh_cmd);
if (ret) {
dev_err(&client->dev, "%s - cannot send 0x%02X\n",
__func__, refresh_cmd);
return ret;
}
if (revision_bug) {
/*
* chip rev 2 and 3 bug workaround - write again the same
* register write the updated registers back
*/
ret = i2c_smbus_write_byte_data(client,
PAC1934_CTRL_STAT_REGS_ADDR +
PAC1934_NEG_PWR_REG_OFF, bidir_reg);
if (ret)
return ret;
}
/* register data retrieval timestamp */
info->tstamp = jiffies;
/* wait till the data is available */
usleep_range(wait_time, wait_time + 100);
return ret;
}
static int pac1934_reg_snapshot(struct pac1934_chip_info *info,
bool do_refresh, u8 refresh_cmd, u32 wait_time)
{
int ret;
struct i2c_client *client = info->client;
u8 samp_shift, ctrl_regs_tmp;
u8 *offset_reg_data_p;
u16 tmp_value;
u32 samp_rate, cnt, tmp;
s64 curr_energy, inc;
u64 tmp_energy;
struct reg_data *reg_data;
guard(mutex)(&info->lock);
if (do_refresh) {
ret = pac1934_send_refresh(info, refresh_cmd, wait_time);
if (ret < 0) {
dev_err(&client->dev,
"%s - cannot send refresh\n",
__func__);
return ret;
}
}
ret = i2c_smbus_read_i2c_block_data(client, PAC1934_CTRL_STAT_REGS_ADDR,
PAC1934_CTRL_REG_LEN,
(u8 *)info->chip_reg_data.ctrl_regs);
if (ret < 0) {
dev_err(&client->dev,
"%s - cannot read ctrl/status registers\n",
__func__);
return ret;
}
reg_data = &info->chip_reg_data;
/* read the data registers */
ret = pac1934_i2c_read(client, PAC1934_ACC_COUNT_REG_ADDR,
(u8 *)reg_data->meas_regs, PAC1934_MEAS_REG_LEN);
if (ret) {
dev_err(&client->dev,
"%s - cannot read ACC_COUNT register: %d:%d\n",
__func__, ret, PAC1934_MEAS_REG_LEN);
return ret;
}
/* see how much shift is required by the sample rate */
samp_rate = samp_rate_map_tbl[((reg_data->ctrl_regs[PAC1934_CTRL_LAT_REG_OFF]) >> 6)];
samp_shift = get_count_order(samp_rate);
ctrl_regs_tmp = reg_data->ctrl_regs[PAC1934_CHANNEL_DIS_LAT_REG_OFF];
offset_reg_data_p = &reg_data->meas_regs[PAC1934_ACC_REG_LEN];
/* start with VPOWER_ACC */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
/* check if the channel is active, skip all fields if disabled */
if ((ctrl_regs_tmp << cnt) & 0x80)
continue;
/* skip if the energy accumulation is disabled */
if (info->enable_energy[cnt]) {
curr_energy = info->chip_reg_data.energy_sec_acc[cnt];
tmp_energy = get_unaligned_be48(offset_reg_data_p);
if (info->bi_dir[cnt])
reg_data->vpower_acc[cnt] = sign_extend64(tmp_energy, 47);
else
reg_data->vpower_acc[cnt] = tmp_energy;
/*
* compute the scaled to 1 second accumulated energy value;
* energy accumulator scaled to 1sec = VPOWER_ACC/2^samp_shift
* the chip's sampling rate is 2^samp_shift samples/sec
*/
inc = (reg_data->vpower_acc[cnt] >> samp_shift);
/* add the power_acc field */
curr_energy += inc;
clamp(curr_energy, PAC_193X_MIN_POWER_ACC, PAC_193X_MAX_POWER_ACC);
reg_data->energy_sec_acc[cnt] = curr_energy;
}
offset_reg_data_p += PAC1934_VPOWER_ACC_REG_LEN;
}
/* continue with VBUS */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if ((ctrl_regs_tmp << cnt) & 0x80)
continue;
tmp_value = get_unaligned_be16(offset_reg_data_p);
if (info->bi_dir[cnt])
reg_data->vbus[cnt] = sign_extend32((u32)(tmp_value), 15);
else
reg_data->vbus[cnt] = tmp_value;
offset_reg_data_p += PAC1934_VBUS_SENSE_REG_LEN;
}
/* VSENSE */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if ((ctrl_regs_tmp << cnt) & 0x80)
continue;
tmp_value = get_unaligned_be16(offset_reg_data_p);
if (info->bi_dir[cnt])
reg_data->vsense[cnt] = sign_extend32((u32)(tmp_value), 15);
else
reg_data->vsense[cnt] = tmp_value;
offset_reg_data_p += PAC1934_VBUS_SENSE_REG_LEN;
}
/* VBUS_AVG */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if ((ctrl_regs_tmp << cnt) & 0x80)
continue;
tmp_value = get_unaligned_be16(offset_reg_data_p);
if (info->bi_dir[cnt])
reg_data->vbus_avg[cnt] = sign_extend32((u32)(tmp_value), 15);
else
reg_data->vbus_avg[cnt] = tmp_value;
offset_reg_data_p += PAC1934_VBUS_SENSE_REG_LEN;
}
/* VSENSE_AVG */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if ((ctrl_regs_tmp << cnt) & 0x80)
continue;
tmp_value = get_unaligned_be16(offset_reg_data_p);
if (info->bi_dir[cnt])
reg_data->vsense_avg[cnt] = sign_extend32((u32)(tmp_value), 15);
else
reg_data->vsense_avg[cnt] = tmp_value;
offset_reg_data_p += PAC1934_VBUS_SENSE_REG_LEN;
}
/* VPOWER */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if ((ctrl_regs_tmp << cnt) & 0x80)
continue;
tmp = get_unaligned_be32(offset_reg_data_p) >> 4;
if (info->bi_dir[cnt])
reg_data->vpower[cnt] = sign_extend32(tmp, 27);
else
reg_data->vpower[cnt] = tmp;
offset_reg_data_p += PAC1934_VPOWER_REG_LEN;
}
return 0;
}
static int pac1934_retrieve_data(struct pac1934_chip_info *info,
u32 wait_time)
{
int ret = 0;
/*
* check if the minimal elapsed time has passed and if so,
* re-read the chip, otherwise the cached info is just fine
*/
if (time_after(jiffies, info->tstamp + msecs_to_jiffies(PAC1934_MIN_POLLING_TIME_MS))) {
ret = pac1934_reg_snapshot(info, true, PAC1934_REFRESH_REG_ADDR,
wait_time);
/*
* Re-schedule the work for the read registers on timeout
* (to prevent chip registers saturation)
*/
mod_delayed_work(system_wq, &info->work_chip_rfsh,
msecs_to_jiffies(PAC1934_MAX_RFSH_LIMIT_MS));
}
return ret;
}
static int pac1934_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct pac1934_chip_info *info = iio_priv(indio_dev);
s64 curr_energy;
int ret, channel = chan->channel - 1;
/*
* For AVG the index should be between 5 to 8.
* To calculate PAC1934_CH_VOLTAGE_AVERAGE,
* respectively PAC1934_CH_CURRENT real index, we need
* to remove the added offset (PAC1934_MAX_NUM_CHANNELS).
*/
if (channel >= PAC1934_MAX_NUM_CHANNELS)
channel = channel - PAC1934_MAX_NUM_CHANNELS;
ret = pac1934_retrieve_data(info, PAC1934_MIN_UPDATE_WAIT_TIME_US);
if (ret < 0)
return ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_VOLTAGE:
*val = info->chip_reg_data.vbus[channel];
return IIO_VAL_INT;
case IIO_CURRENT:
*val = info->chip_reg_data.vsense[channel];
return IIO_VAL_INT;
case IIO_POWER:
*val = info->chip_reg_data.vpower[channel];
return IIO_VAL_INT;
case IIO_ENERGY:
curr_energy = info->chip_reg_data.energy_sec_acc[channel];
*val = (u32)curr_energy;
*val2 = (u32)(curr_energy >> 32);
return IIO_VAL_INT_64;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_AVERAGE_RAW:
switch (chan->type) {
case IIO_VOLTAGE:
*val = info->chip_reg_data.vbus_avg[channel];
return IIO_VAL_INT;
case IIO_CURRENT:
*val = info->chip_reg_data.vsense_avg[channel];
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->address) {
/* Voltages - scale for millivolts */
case PAC1934_VBUS_1_ADDR:
case PAC1934_VBUS_2_ADDR:
case PAC1934_VBUS_3_ADDR:
case PAC1934_VBUS_4_ADDR:
case PAC1934_VBUS_AVG_1_ADDR:
case PAC1934_VBUS_AVG_2_ADDR:
case PAC1934_VBUS_AVG_3_ADDR:
case PAC1934_VBUS_AVG_4_ADDR:
*val = PAC1934_VOLTAGE_MILLIVOLTS_MAX;
if (chan->scan_type.sign == 'u')
*val2 = PAC1934_VOLTAGE_U_RES;
else
*val2 = PAC1934_VOLTAGE_S_RES;
return IIO_VAL_FRACTIONAL_LOG2;
/*
* Currents - scale for mA - depends on the
* channel's shunt value
* (100mV * 1000000) / (2^16 * shunt(uohm))
*/
case PAC1934_VSENSE_1_ADDR:
case PAC1934_VSENSE_2_ADDR:
case PAC1934_VSENSE_3_ADDR:
case PAC1934_VSENSE_4_ADDR:
case PAC1934_VSENSE_AVG_1_ADDR:
case PAC1934_VSENSE_AVG_2_ADDR:
case PAC1934_VSENSE_AVG_3_ADDR:
case PAC1934_VSENSE_AVG_4_ADDR:
*val = PAC1934_MAX_VSENSE_RSHIFTED_BY_16B;
if (chan->scan_type.sign == 'u')
*val2 = info->shunts[channel];
else
*val2 = info->shunts[channel] >> 1;
return IIO_VAL_FRACTIONAL;
/*
* Power - uW - it will use the combined scale
* for current and voltage
* current(mA) * voltage(mV) = power (uW)
*/
case PAC1934_VPOWER_1_ADDR:
case PAC1934_VPOWER_2_ADDR:
case PAC1934_VPOWER_3_ADDR:
case PAC1934_VPOWER_4_ADDR:
*val = PAC1934_MAX_VPOWER_RSHIFTED_BY_28B;
if (chan->scan_type.sign == 'u')
*val2 = info->shunts[channel];
else
*val2 = info->shunts[channel] >> 1;
return IIO_VAL_FRACTIONAL;
case PAC1934_VPOWER_ACC_1_ADDR:
case PAC1934_VPOWER_ACC_2_ADDR:
case PAC1934_VPOWER_ACC_3_ADDR:
case PAC1934_VPOWER_ACC_4_ADDR:
/*
* expresses the 32 bit scale value here compute
* the scale for energy (miliWatt-second or miliJoule)
*/
*val = PAC1934_SCALE_CONSTANT;
if (chan->scan_type.sign == 'u')
*val2 = info->shunts[channel];
else
*val2 = info->shunts[channel] >> 1;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
*val = info->sample_rate_value;
return IIO_VAL_INT;
case IIO_CHAN_INFO_ENABLE:
*val = info->enable_energy[channel];
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int pac1934_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct pac1934_chip_info *info = iio_priv(indio_dev);
struct i2c_client *client = info->client;
int ret = -EINVAL;
s32 old_samp_rate;
u8 ctrl_reg;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
ret = pac1934_get_samp_rate_idx(info, val);
if (ret < 0)
return ret;
/* write the new sampling value and trigger a snapshot(incl refresh) */
scoped_guard(mutex, &info->lock) {
ctrl_reg = FIELD_PREP(PAC1934_CRTL_SAMPLE_RATE_MASK, ret);
ret = i2c_smbus_write_byte_data(client, PAC1934_CTRL_REG_ADDR, ctrl_reg);
if (ret) {
dev_err(&client->dev,
"%s - can't update sample rate\n",
__func__);
return ret;
}
}
old_samp_rate = info->sample_rate_value;
info->sample_rate_value = val;
/*
* now, force a snapshot with refresh - call retrieve
* data in order to update the refresh timer
* alter the timestamp in order to force trigger a
* register snapshot and a timestamp update
*/
info->tstamp -= msecs_to_jiffies(PAC1934_MIN_POLLING_TIME_MS);
ret = pac1934_retrieve_data(info, (1024 / old_samp_rate) * 1000);
if (ret < 0) {
dev_err(&client->dev,
"%s - cannot snapshot ctrl and measurement regs\n",
__func__);
return ret;
}
return 0;
case IIO_CHAN_INFO_ENABLE:
scoped_guard(mutex, &info->lock) {
info->enable_energy[chan->channel - 1] = val ? true : false;
if (!val)
info->chip_reg_data.energy_sec_acc[chan->channel - 1] = 0;
}
return 0;
default:
return -EINVAL;
}
}
static int pac1934_read_label(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, char *label)
{
struct pac1934_chip_info *info = iio_priv(indio_dev);
switch (chan->address) {
case PAC1934_VBUS_1_ADDR:
case PAC1934_VBUS_2_ADDR:
case PAC1934_VBUS_3_ADDR:
case PAC1934_VBUS_4_ADDR:
return sysfs_emit(label, "%s_VBUS_%d\n",
info->labels[chan->scan_index],
chan->scan_index + 1);
case PAC1934_VBUS_AVG_1_ADDR:
case PAC1934_VBUS_AVG_2_ADDR:
case PAC1934_VBUS_AVG_3_ADDR:
case PAC1934_VBUS_AVG_4_ADDR:
return sysfs_emit(label, "%s_VBUS_AVG_%d\n",
info->labels[chan->scan_index],
chan->scan_index + 1);
case PAC1934_VSENSE_1_ADDR:
case PAC1934_VSENSE_2_ADDR:
case PAC1934_VSENSE_3_ADDR:
case PAC1934_VSENSE_4_ADDR:
return sysfs_emit(label, "%s_IBUS_%d\n",
info->labels[chan->scan_index],
chan->scan_index + 1);
case PAC1934_VSENSE_AVG_1_ADDR:
case PAC1934_VSENSE_AVG_2_ADDR:
case PAC1934_VSENSE_AVG_3_ADDR:
case PAC1934_VSENSE_AVG_4_ADDR:
return sysfs_emit(label, "%s_IBUS_AVG_%d\n",
info->labels[chan->scan_index],
chan->scan_index + 1);
case PAC1934_VPOWER_1_ADDR:
case PAC1934_VPOWER_2_ADDR:
case PAC1934_VPOWER_3_ADDR:
case PAC1934_VPOWER_4_ADDR:
return sysfs_emit(label, "%s_POWER_%d\n",
info->labels[chan->scan_index],
chan->scan_index + 1);
case PAC1934_VPOWER_ACC_1_ADDR:
case PAC1934_VPOWER_ACC_2_ADDR:
case PAC1934_VPOWER_ACC_3_ADDR:
case PAC1934_VPOWER_ACC_4_ADDR:
return sysfs_emit(label, "%s_ENERGY_%d\n",
info->labels[chan->scan_index],
chan->scan_index + 1);
}
return 0;
}
static void pac1934_work_periodic_rfsh(struct work_struct *work)
{
struct pac1934_chip_info *info = TO_PAC1934_CHIP_INFO((struct delayed_work *)work);
struct device *dev = &info->client->dev;
dev_dbg(dev, "%s - Periodic refresh\n", __func__);
/* do a REFRESH, then read */
pac1934_reg_snapshot(info, true, PAC1934_REFRESH_REG_ADDR,
PAC1934_MIN_UPDATE_WAIT_TIME_US);
schedule_delayed_work(&info->work_chip_rfsh,
msecs_to_jiffies(PAC1934_MAX_RFSH_LIMIT_MS));
}
static int pac1934_read_revision(struct pac1934_chip_info *info, u8 *buf)
{
int ret;
struct i2c_client *client = info->client;
ret = i2c_smbus_read_i2c_block_data(client, PAC1934_PID_REG_ADDR,
PAC1934_ID_REG_LEN,
buf);
if (ret < 0) {
dev_err(&client->dev, "cannot read revision\n");
return ret;
}
return 0;
}
static int pac1934_chip_identify(struct pac1934_chip_info *info)
{
u8 rev_info[PAC1934_ID_REG_LEN];
struct device *dev = &info->client->dev;
int ret = 0;
ret = pac1934_read_revision(info, (u8 *)rev_info);
if (ret)
return ret;
info->chip_variant = rev_info[PAC1934_PID_IDX];
info->chip_revision = rev_info[PAC1934_RID_IDX];
dev_dbg(dev, "Chip variant: 0x%02X\n", info->chip_variant);
dev_dbg(dev, "Chip revision: 0x%02X\n", info->chip_revision);
switch (info->chip_variant) {
case PAC1934_PID:
return PAC1934;
case PAC1933_PID:
return PAC1933;
case PAC1932_PID:
return PAC1932;
case PAC1931_PID:
return PAC1931;
default:
return -EINVAL;
}
}
/*
* documentation related to the ACPI device definition
* https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/ApplicationNotes/PAC1934-Integration-Notes-for-Microsoft-Windows-10-and-Windows-11-Driver-Support-DS00002534.pdf
*/
static int pac1934_acpi_parse_channel_config(struct i2c_client *client,
struct pac1934_chip_info *info)
{
acpi_handle handle;
union acpi_object *rez;
struct device *dev = &client->dev;
unsigned short bi_dir_mask;
int idx, i;
guid_t guid;
handle = ACPI_HANDLE(dev);
guid_parse(PAC1934_DSM_UUID, &guid);
rez = acpi_evaluate_dsm(handle, &guid, 0, PAC1934_ACPI_GET_NAMES_AND_MOHMS_VALS, NULL);
if (!rez)
return -EINVAL;
for (i = 0; i < rez->package.count; i += 2) {
idx = i / 2;
info->labels[idx] =
devm_kmemdup(dev, rez->package.elements[i].string.pointer,
(size_t)rez->package.elements[i].string.length + 1,
GFP_KERNEL);
info->labels[idx][rez->package.elements[i].string.length] = '\0';
info->shunts[idx] = rez->package.elements[i + 1].integer.value * 1000;
info->active_channels[idx] = (info->shunts[idx] != 0);
}
ACPI_FREE(rez);
rez = acpi_evaluate_dsm(handle, &guid, 1, PAC1934_ACPI_GET_UOHMS_VALS, NULL);
if (!rez) {
/*
* initializing with default values
* we assume all channels are unidirectional(the mask is zero)
* and assign the default sampling rate
*/
info->sample_rate_value = PAC1934_DEFAULT_CHIP_SAMP_SPEED_HZ;
return 0;
}
for (i = 0; i < rez->package.count; i++) {
idx = i;
info->shunts[idx] = rez->package.elements[i].integer.value;
info->active_channels[idx] = (info->shunts[idx] != 0);
}
ACPI_FREE(rez);
rez = acpi_evaluate_dsm(handle, &guid, 1, PAC1934_ACPI_GET_BIPOLAR_SETTINGS, NULL);
if (!rez)
return -EINVAL;
bi_dir_mask = rez->package.elements[0].integer.value;
info->bi_dir[0] = ((bi_dir_mask & (1 << 3)) | (bi_dir_mask & (1 << 7))) != 0;
info->bi_dir[1] = ((bi_dir_mask & (1 << 2)) | (bi_dir_mask & (1 << 6))) != 0;
info->bi_dir[2] = ((bi_dir_mask & (1 << 1)) | (bi_dir_mask & (1 << 5))) != 0;
info->bi_dir[3] = ((bi_dir_mask & (1 << 0)) | (bi_dir_mask & (1 << 4))) != 0;
ACPI_FREE(rez);
rez = acpi_evaluate_dsm(handle, &guid, 1, PAC1934_ACPI_GET_SAMP, NULL);
if (!rez)
return -EINVAL;
info->sample_rate_value = rez->package.elements[0].integer.value;
ACPI_FREE(rez);
return 0;
}
static int pac1934_fw_parse_channel_config(struct i2c_client *client,
struct pac1934_chip_info *info)
{
struct device *dev = &client->dev;
unsigned int current_channel;
int idx, ret;
info->sample_rate_value = 1024;
current_channel = 1;
device_for_each_child_node_scoped(dev, node) {
ret = fwnode_property_read_u32(node, "reg", &idx);
if (ret)
return dev_err_probe(dev, ret,
"reading invalid channel index\n");
/* adjust idx to match channel index (1 to 4) from the datasheet */
idx--;
if (current_channel >= (info->phys_channels + 1) ||
idx >= info->phys_channels || idx < 0)
return dev_err_probe(dev, -EINVAL,
"%s: invalid channel_index %d value\n",
fwnode_get_name(node), idx);
/* enable channel */
info->active_channels[idx] = true;
ret = fwnode_property_read_u32(node, "shunt-resistor-micro-ohms",
&info->shunts[idx]);
if (ret)
return dev_err_probe(dev, ret,
"%s: invalid shunt-resistor value: %d\n",
fwnode_get_name(node), info->shunts[idx]);
if (fwnode_property_present(node, "label")) {
ret = fwnode_property_read_string(node, "label",
(const char **)&info->labels[idx]);
if (ret)
return dev_err_probe(dev, ret,
"%s: invalid rail-name value\n",
fwnode_get_name(node));
}
info->bi_dir[idx] = fwnode_property_read_bool(node, "bipolar");
current_channel++;
}
return 0;
}
static void pac1934_cancel_delayed_work(void *dwork)
{
cancel_delayed_work_sync(dwork);
}
static int pac1934_chip_configure(struct pac1934_chip_info *info)
{
int cnt, ret;
struct i2c_client *client = info->client;
u8 regs[PAC1934_CTRL_STATUS_INFO_LEN], idx, ctrl_reg;
u32 wait_time;
info->chip_reg_data.num_enabled_channels = 0;
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if (info->active_channels[cnt])
info->chip_reg_data.num_enabled_channels++;
}
/*
* read whatever information was gathered before the driver was loaded
* establish which channels are enabled/disabled and then establish the
* information retrieval mode (using SKIP or no).
* Read the chip ID values
*/
ret = i2c_smbus_read_i2c_block_data(client, PAC1934_CTRL_STAT_REGS_ADDR,
ARRAY_SIZE(regs),
(u8 *)regs);
if (ret < 0) {
dev_err_probe(&client->dev, ret,
"%s - cannot read regs from 0x%02X\n",
__func__, PAC1934_CTRL_STAT_REGS_ADDR);
return ret;
}
/* write the CHANNEL_DIS and the NEG_PWR registers */
regs[PAC1934_CHANNEL_DIS_REG_OFF] =
FIELD_PREP(PAC1934_CHAN_DIS_CH1_OFF_MASK, info->active_channels[0] ? 0 : 1) |
FIELD_PREP(PAC1934_CHAN_DIS_CH2_OFF_MASK, info->active_channels[1] ? 0 : 1) |
FIELD_PREP(PAC1934_CHAN_DIS_CH3_OFF_MASK, info->active_channels[2] ? 0 : 1) |
FIELD_PREP(PAC1934_CHAN_DIS_CH4_OFF_MASK, info->active_channels[3] ? 0 : 1) |
FIELD_PREP(PAC1934_SMBUS_TIMEOUT_MASK, 0) |
FIELD_PREP(PAC1934_SMBUS_BYTECOUNT_MASK, 0) |
FIELD_PREP(PAC1934_SMBUS_NO_SKIP_MASK, 0);
regs[PAC1934_NEG_PWR_REG_OFF] =
FIELD_PREP(PAC1934_NEG_PWR_CH1_BIDI_MASK, info->bi_dir[0]) |
FIELD_PREP(PAC1934_NEG_PWR_CH2_BIDI_MASK, info->bi_dir[1]) |
FIELD_PREP(PAC1934_NEG_PWR_CH3_BIDI_MASK, info->bi_dir[2]) |
FIELD_PREP(PAC1934_NEG_PWR_CH4_BIDI_MASK, info->bi_dir[3]) |
FIELD_PREP(PAC1934_NEG_PWR_CH1_BIDV_MASK, info->bi_dir[0]) |
FIELD_PREP(PAC1934_NEG_PWR_CH2_BIDV_MASK, info->bi_dir[1]) |
FIELD_PREP(PAC1934_NEG_PWR_CH3_BIDV_MASK, info->bi_dir[2]) |
FIELD_PREP(PAC1934_NEG_PWR_CH4_BIDV_MASK, info->bi_dir[3]);
/* no SLOW triggered REFRESH, clear POR */
regs[PAC1934_SLOW_REG_OFF] = 0;
ret = i2c_smbus_write_block_data(client, PAC1934_CTRL_STAT_REGS_ADDR,
ARRAY_SIZE(regs), (u8 *)regs);
if (ret)
return ret;
/* Default sampling rate */
ctrl_reg = FIELD_PREP(PAC1934_CRTL_SAMPLE_RATE_MASK, PAC1934_SAMP_1024SPS);
ret = i2c_smbus_write_byte_data(client, PAC1934_CTRL_REG_ADDR, ctrl_reg);
if (ret)
return ret;
/*
* send a REFRESH to the chip, so the new settings take place
* as well as resetting the accumulators
*/
ret = i2c_smbus_write_byte(client, PAC1934_REFRESH_REG_ADDR);
if (ret) {
dev_err(&client->dev,
"%s - cannot send 0x%02X\n",
__func__, PAC1934_REFRESH_REG_ADDR);
return ret;
}
/*
* get the current(in the chip) sampling speed and compute the
* required timeout based on its value
* the timeout is 1/sampling_speed
*/
idx = regs[PAC1934_CTRL_ACT_REG_OFF] >> PAC1934_SAMPLE_RATE_SHIFT;
wait_time = (1024 / samp_rate_map_tbl[idx]) * 1000;
/*
* wait the maximum amount of time to be on the safe side
* the maximum wait time is for 8sps
*/
usleep_range(wait_time, wait_time + 100);
INIT_DELAYED_WORK(&info->work_chip_rfsh, pac1934_work_periodic_rfsh);
/* Setup the latest moment for reading the regs before saturation */
schedule_delayed_work(&info->work_chip_rfsh,
msecs_to_jiffies(PAC1934_MAX_RFSH_LIMIT_MS));
return devm_add_action_or_reset(&client->dev, pac1934_cancel_delayed_work,
&info->work_chip_rfsh);
}
static int pac1934_prep_iio_channels(struct pac1934_chip_info *info, struct iio_dev *indio_dev)
{
struct iio_chan_spec *ch_sp;
int channel_size, attribute_count, cnt;
void *dyn_ch_struct, *tmp_data;
struct device *dev = &info->client->dev;
/* find out dynamically how many IIO channels we need */
attribute_count = 0;
channel_size = 0;
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if (!info->active_channels[cnt])
continue;
/* add the size of the properties of one chip physical channel */
channel_size += sizeof(pac1934_single_channel);
/* count how many enabled channels we have */
attribute_count += ARRAY_SIZE(pac1934_single_channel);
dev_dbg(dev, ":%s: Channel %d active\n", __func__, cnt + 1);
}
dyn_ch_struct = devm_kzalloc(dev, channel_size, GFP_KERNEL);
if (!dyn_ch_struct)
return -EINVAL;
tmp_data = dyn_ch_struct;
/* populate the dynamic channels and make all the adjustments */
for (cnt = 0; cnt < info->phys_channels; cnt++) {
if (!info->active_channels[cnt])
continue;
memcpy(tmp_data, pac1934_single_channel, sizeof(pac1934_single_channel));
ch_sp = (struct iio_chan_spec *)tmp_data;
ch_sp[PAC1934_CH_ENERGY].channel = cnt + 1;
ch_sp[PAC1934_CH_ENERGY].scan_index = cnt;
ch_sp[PAC1934_CH_ENERGY].address = cnt + PAC1934_VPOWER_ACC_1_ADDR;
ch_sp[PAC1934_CH_POWER].channel = cnt + 1;
ch_sp[PAC1934_CH_POWER].scan_index = cnt;
ch_sp[PAC1934_CH_POWER].address = cnt + PAC1934_VPOWER_1_ADDR;
ch_sp[PAC1934_CH_VOLTAGE].channel = cnt + 1;
ch_sp[PAC1934_CH_VOLTAGE].scan_index = cnt;
ch_sp[PAC1934_CH_VOLTAGE].address = cnt + PAC1934_VBUS_1_ADDR;
ch_sp[PAC1934_CH_CURRENT].channel = cnt + 1;
ch_sp[PAC1934_CH_CURRENT].scan_index = cnt;
ch_sp[PAC1934_CH_CURRENT].address = cnt + PAC1934_VSENSE_1_ADDR;
/*
* In order to be able to use labels for PAC1934_CH_VOLTAGE, and
* PAC1934_CH_VOLTAGE_AVERAGE,respectively PAC1934_CH_CURRENT
* and PAC1934_CH_CURRENT_AVERAGE we need to use different
* channel numbers. We will add +5 (+1 to maximum PAC channels).
*/
ch_sp[PAC1934_CH_VOLTAGE_AVERAGE].channel = cnt + 5;
ch_sp[PAC1934_CH_VOLTAGE_AVERAGE].scan_index = cnt;
ch_sp[PAC1934_CH_VOLTAGE_AVERAGE].address = cnt + PAC1934_VBUS_AVG_1_ADDR;
ch_sp[PAC1934_CH_CURRENT_AVERAGE].channel = cnt + 5;
ch_sp[PAC1934_CH_CURRENT_AVERAGE].scan_index = cnt;
ch_sp[PAC1934_CH_CURRENT_AVERAGE].address = cnt + PAC1934_VSENSE_AVG_1_ADDR;
/*
* now modify the parameters in all channels if the
* whole chip rail(channel) is bi-directional
*/
if (info->bi_dir[cnt]) {
ch_sp[PAC1934_CH_ENERGY].scan_type.sign = 's';
ch_sp[PAC1934_CH_ENERGY].scan_type.realbits = 47;
ch_sp[PAC1934_CH_POWER].scan_type.sign = 's';
ch_sp[PAC1934_CH_POWER].scan_type.realbits = 27;
ch_sp[PAC1934_CH_VOLTAGE].scan_type.sign = 's';
ch_sp[PAC1934_CH_VOLTAGE].scan_type.realbits = 15;
ch_sp[PAC1934_CH_CURRENT].scan_type.sign = 's';
ch_sp[PAC1934_CH_CURRENT].scan_type.realbits = 15;
ch_sp[PAC1934_CH_VOLTAGE_AVERAGE].scan_type.sign = 's';
ch_sp[PAC1934_CH_VOLTAGE_AVERAGE].scan_type.realbits = 15;
ch_sp[PAC1934_CH_CURRENT_AVERAGE].scan_type.sign = 's';
ch_sp[PAC1934_CH_CURRENT_AVERAGE].scan_type.realbits = 15;
}
tmp_data += sizeof(pac1934_single_channel);
}
/*
* send the updated dynamic channel structure information towards IIO
* prepare the required field for IIO class registration
*/
indio_dev->num_channels = attribute_count;
indio_dev->channels = (const struct iio_chan_spec *)dyn_ch_struct;
return 0;
}
static IIO_DEVICE_ATTR(in_shunt_resistor1, 0644,
pac1934_shunt_value_show, pac1934_shunt_value_store, 0);
static IIO_DEVICE_ATTR(in_shunt_resistor2, 0644,
pac1934_shunt_value_show, pac1934_shunt_value_store, 1);
static IIO_DEVICE_ATTR(in_shunt_resistor3, 0644,
pac1934_shunt_value_show, pac1934_shunt_value_store, 2);
static IIO_DEVICE_ATTR(in_shunt_resistor4, 0644,
pac1934_shunt_value_show, pac1934_shunt_value_store, 3);
static int pac1934_prep_custom_attributes(struct pac1934_chip_info *info,
struct iio_dev *indio_dev)
{
int i, active_channels_count = 0;
struct attribute **pac1934_custom_attr;
struct attribute_group *pac1934_group;
struct device *dev = &info->client->dev;
for (i = 0 ; i < info->phys_channels; i++)
if (info->active_channels[i])
active_channels_count++;
pac1934_group = devm_kzalloc(dev, sizeof(*pac1934_group), GFP_KERNEL);
if (!pac1934_group)
return -ENOMEM;
pac1934_custom_attr = devm_kzalloc(dev,
(PAC1934_CUSTOM_ATTR_FOR_CHANNEL *
active_channels_count)
* sizeof(*pac1934_group) + 1,
GFP_KERNEL);
if (!pac1934_custom_attr)
return -ENOMEM;
i = 0;
if (info->active_channels[0])
pac1934_custom_attr[i++] = PAC1934_DEV_ATTR(in_shunt_resistor1);
if (info->active_channels[1])
pac1934_custom_attr[i++] = PAC1934_DEV_ATTR(in_shunt_resistor2);
if (info->active_channels[2])
pac1934_custom_attr[i++] = PAC1934_DEV_ATTR(in_shunt_resistor3);
if (info->active_channels[3])
pac1934_custom_attr[i] = PAC1934_DEV_ATTR(in_shunt_resistor4);
pac1934_group->attrs = pac1934_custom_attr;
info->iio_info.attrs = pac1934_group;
return 0;
}
static void pac1934_mutex_destroy(void *data)
{
struct mutex *lock = data;
mutex_destroy(lock);
}
static const struct iio_info pac1934_info = {
.read_raw = pac1934_read_raw,
.write_raw = pac1934_write_raw,
.read_avail = pac1934_read_avail,
.read_label = pac1934_read_label,
};
static int pac1934_probe(struct i2c_client *client)
{
struct pac1934_chip_info *info;
const struct pac1934_features *chip;
struct iio_dev *indio_dev;
int cnt, ret;
struct device *dev = &client->dev;
indio_dev = devm_iio_device_alloc(dev, sizeof(*info));
if (!indio_dev)
return -ENOMEM;
info = iio_priv(indio_dev);
info->client = client;
/* always start with energy accumulation enabled */
for (cnt = 0; cnt < PAC1934_MAX_NUM_CHANNELS; cnt++)
info->enable_energy[cnt] = true;
ret = pac1934_chip_identify(info);
if (ret < 0) {
/*
* If failed to identify the hardware based on internal
* registers, try using fallback compatible in device tree
* to deal with some newer part number.
*/
chip = i2c_get_match_data(client);
if (!chip)
return -EINVAL;
info->phys_channels = chip->phys_channels;
indio_dev->name = chip->name;
} else {
info->phys_channels = pac1934_chip_config[ret].phys_channels;
indio_dev->name = pac1934_chip_config[ret].name;
}
if (acpi_match_device(dev->driver->acpi_match_table, dev))
ret = pac1934_acpi_parse_channel_config(client, info);
else
/*
* This makes it possible to use also ACPI PRP0001 for
* registering the device using device tree properties.
*/
ret = pac1934_fw_parse_channel_config(client, info);
if (ret)
return dev_err_probe(dev, ret,
"parameter parsing returned an error\n");
mutex_init(&info->lock);
ret = devm_add_action_or_reset(dev, pac1934_mutex_destroy,
&info->lock);
if (ret < 0)
return ret;
/*
* do now any chip specific initialization (e.g. read/write
* some registers), enable/disable certain channels, change the sampling
* rate to the requested value
*/
ret = pac1934_chip_configure(info);
if (ret < 0)
return ret;
/* prepare the channel information */
ret = pac1934_prep_iio_channels(info, indio_dev);
if (ret < 0)
return ret;
info->iio_info = pac1934_info;
indio_dev->info = &info->iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = pac1934_prep_custom_attributes(info, indio_dev);
if (ret < 0)
return dev_err_probe(dev, ret,
"Can't configure custom attributes for PAC1934 device\n");
/*
* read whatever has been accumulated in the chip so far
* and reset the accumulators
*/
ret = pac1934_reg_snapshot(info, true, PAC1934_REFRESH_REG_ADDR,
PAC1934_MIN_UPDATE_WAIT_TIME_US);
if (ret < 0)
return ret;
ret = devm_iio_device_register(dev, indio_dev);
if (ret < 0)
return dev_err_probe(dev, ret,
"Can't register IIO device\n");
return 0;
}
static const struct i2c_device_id pac1934_id[] = {
{ .name = "pac1931", .driver_data = (kernel_ulong_t)&pac1934_chip_config[PAC1931] },
{ .name = "pac1932", .driver_data = (kernel_ulong_t)&pac1934_chip_config[PAC1932] },
{ .name = "pac1933", .driver_data = (kernel_ulong_t)&pac1934_chip_config[PAC1933] },
{ .name = "pac1934", .driver_data = (kernel_ulong_t)&pac1934_chip_config[PAC1934] },
{}
};
MODULE_DEVICE_TABLE(i2c, pac1934_id);
static const struct of_device_id pac1934_of_match[] = {
{
.compatible = "microchip,pac1931",
.data = &pac1934_chip_config[PAC1931]
},
{
.compatible = "microchip,pac1932",
.data = &pac1934_chip_config[PAC1932]
},
{
.compatible = "microchip,pac1933",
.data = &pac1934_chip_config[PAC1933]
},
{
.compatible = "microchip,pac1934",
.data = &pac1934_chip_config[PAC1934]
},
{}
};
MODULE_DEVICE_TABLE(of, pac1934_of_match);
/*
* using MCHP1930 to be compatible with BIOS ACPI. See example:
* https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/ApplicationNotes/PAC1934-Integration-Notes-for-Microsoft-Windows-10-and-Windows-11-Driver-Support-DS00002534.pdf
*/
static const struct acpi_device_id pac1934_acpi_match[] = {
{ "MCHP1930", .driver_data = (kernel_ulong_t)&pac1934_chip_config[PAC1934] },
{}
};
MODULE_DEVICE_TABLE(acpi, pac1934_acpi_match);
static struct i2c_driver pac1934_driver = {
.driver = {
.name = "pac1934",
.of_match_table = pac1934_of_match,
.acpi_match_table = pac1934_acpi_match
},
.probe = pac1934_probe,
.id_table = pac1934_id,
};
module_i2c_driver(pac1934_driver);
MODULE_AUTHOR("Bogdan Bolocan <bogdan.bolocan@microchip.com>");
MODULE_AUTHOR("Victor Tudose");
MODULE_AUTHOR("Marius Cristea <marius.cristea@microchip.com>");
MODULE_DESCRIPTION("IIO driver for PAC1934 Multi-Channel DC Power/Energy Monitor");
MODULE_LICENSE("GPL");