mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 02:46:06 +00:00
03bd646d86
In order to generate Group0 SGIs, let's add some decoding logic to access_gic_sgi(), and pass the generating group accordingly. Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2593 lines
70 KiB
C
2593 lines
70 KiB
C
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/coproc.c:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Authors: Rusty Russell <rusty@rustcorp.com.au>
|
|
* Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_coproc.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include "sys_regs.h"
|
|
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* All of this file is extremly similar to the ARM coproc.c, but the
|
|
* types are different. My gut feeling is that it should be pretty
|
|
* easy to merge, but that would be an ABI breakage -- again. VFP
|
|
* would also need to be abstracted.
|
|
*
|
|
* For AArch32, we only take care of what is being trapped. Anything
|
|
* that has to do with init and userspace access has to go via the
|
|
* 64bit interface.
|
|
*/
|
|
|
|
static bool read_from_write_only(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
static bool write_to_read_only(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
|
|
{
|
|
if (!vcpu->arch.sysregs_loaded_on_cpu)
|
|
goto immediate_read;
|
|
|
|
/*
|
|
* System registers listed in the switch are not saved on every
|
|
* exit from the guest but are only saved on vcpu_put.
|
|
*
|
|
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
|
|
* should never be listed below, because the guest cannot modify its
|
|
* own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
|
|
* thread when emulating cross-VCPU communication.
|
|
*/
|
|
switch (reg) {
|
|
case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
|
|
case SCTLR_EL1: return read_sysreg_s(sctlr_EL12);
|
|
case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
|
|
case CPACR_EL1: return read_sysreg_s(cpacr_EL12);
|
|
case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12);
|
|
case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12);
|
|
case TCR_EL1: return read_sysreg_s(tcr_EL12);
|
|
case ESR_EL1: return read_sysreg_s(esr_EL12);
|
|
case AFSR0_EL1: return read_sysreg_s(afsr0_EL12);
|
|
case AFSR1_EL1: return read_sysreg_s(afsr1_EL12);
|
|
case FAR_EL1: return read_sysreg_s(far_EL12);
|
|
case MAIR_EL1: return read_sysreg_s(mair_EL12);
|
|
case VBAR_EL1: return read_sysreg_s(vbar_EL12);
|
|
case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12);
|
|
case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
|
|
case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
|
|
case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
|
|
case AMAIR_EL1: return read_sysreg_s(amair_EL12);
|
|
case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12);
|
|
case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
|
|
case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
|
|
case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
|
|
case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
|
|
}
|
|
|
|
immediate_read:
|
|
return __vcpu_sys_reg(vcpu, reg);
|
|
}
|
|
|
|
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
|
|
{
|
|
if (!vcpu->arch.sysregs_loaded_on_cpu)
|
|
goto immediate_write;
|
|
|
|
/*
|
|
* System registers listed in the switch are not restored on every
|
|
* entry to the guest but are only restored on vcpu_load.
|
|
*
|
|
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
|
|
* should never be listed below, because the the MPIDR should only be
|
|
* set once, before running the VCPU, and never changed later.
|
|
*/
|
|
switch (reg) {
|
|
case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
|
|
case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return;
|
|
case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
|
|
case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return;
|
|
case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return;
|
|
case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return;
|
|
case TCR_EL1: write_sysreg_s(val, tcr_EL12); return;
|
|
case ESR_EL1: write_sysreg_s(val, esr_EL12); return;
|
|
case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return;
|
|
case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return;
|
|
case FAR_EL1: write_sysreg_s(val, far_EL12); return;
|
|
case MAIR_EL1: write_sysreg_s(val, mair_EL12); return;
|
|
case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return;
|
|
case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return;
|
|
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
|
|
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
|
|
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
|
|
case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return;
|
|
case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return;
|
|
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
|
|
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
|
|
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
|
|
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
|
|
}
|
|
|
|
immediate_write:
|
|
__vcpu_sys_reg(vcpu, reg) = val;
|
|
}
|
|
|
|
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
|
|
static u32 cache_levels;
|
|
|
|
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
|
|
#define CSSELR_MAX 12
|
|
|
|
/* Which cache CCSIDR represents depends on CSSELR value. */
|
|
static u32 get_ccsidr(u32 csselr)
|
|
{
|
|
u32 ccsidr;
|
|
|
|
/* Make sure noone else changes CSSELR during this! */
|
|
local_irq_disable();
|
|
write_sysreg(csselr, csselr_el1);
|
|
isb();
|
|
ccsidr = read_sysreg(ccsidr_el1);
|
|
local_irq_enable();
|
|
|
|
return ccsidr;
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*/
|
|
static bool access_dcsw(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
/*
|
|
* Only track S/W ops if we don't have FWB. It still indicates
|
|
* that the guest is a bit broken (S/W operations should only
|
|
* be done by firmware, knowing that there is only a single
|
|
* CPU left in the system, and certainly not from non-secure
|
|
* software).
|
|
*/
|
|
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
|
|
kvm_set_way_flush(vcpu);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Generic accessor for VM registers. Only called as long as HCR_TVM
|
|
* is set. If the guest enables the MMU, we stop trapping the VM
|
|
* sys_regs and leave it in complete control of the caches.
|
|
*/
|
|
static bool access_vm_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
bool was_enabled = vcpu_has_cache_enabled(vcpu);
|
|
u64 val;
|
|
int reg = r->reg;
|
|
|
|
BUG_ON(!p->is_write);
|
|
|
|
/* See the 32bit mapping in kvm_host.h */
|
|
if (p->is_aarch32)
|
|
reg = r->reg / 2;
|
|
|
|
if (!p->is_aarch32 || !p->is_32bit) {
|
|
val = p->regval;
|
|
} else {
|
|
val = vcpu_read_sys_reg(vcpu, reg);
|
|
if (r->reg % 2)
|
|
val = (p->regval << 32) | (u64)lower_32_bits(val);
|
|
else
|
|
val = ((u64)upper_32_bits(val) << 32) |
|
|
lower_32_bits(p->regval);
|
|
}
|
|
vcpu_write_sys_reg(vcpu, val, reg);
|
|
|
|
kvm_toggle_cache(vcpu, was_enabled);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Trap handler for the GICv3 SGI generation system register.
|
|
* Forward the request to the VGIC emulation.
|
|
* The cp15_64 code makes sure this automatically works
|
|
* for both AArch64 and AArch32 accesses.
|
|
*/
|
|
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
bool g1;
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
/*
|
|
* In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
|
|
* Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
|
|
* depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
|
|
* equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
|
|
* group.
|
|
*/
|
|
if (p->is_aarch32) {
|
|
switch (p->Op1) {
|
|
default: /* Keep GCC quiet */
|
|
case 0: /* ICC_SGI1R */
|
|
g1 = true;
|
|
break;
|
|
case 1: /* ICC_ASGI1R */
|
|
case 2: /* ICC_SGI0R */
|
|
g1 = false;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (p->Op2) {
|
|
default: /* Keep GCC quiet */
|
|
case 5: /* ICC_SGI1R_EL1 */
|
|
g1 = true;
|
|
break;
|
|
case 6: /* ICC_ASGI1R_EL1 */
|
|
case 7: /* ICC_SGI0R_EL1 */
|
|
g1 = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_gic_sre(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
|
|
return true;
|
|
}
|
|
|
|
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
else
|
|
return read_zero(vcpu, p);
|
|
}
|
|
|
|
static bool trap_undef(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
p->regval = (1 << 3);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
p->regval = read_sysreg(dbgauthstatus_el1);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want to avoid world-switching all the DBG registers all the
|
|
* time:
|
|
*
|
|
* - If we've touched any debug register, it is likely that we're
|
|
* going to touch more of them. It then makes sense to disable the
|
|
* traps and start doing the save/restore dance
|
|
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
|
|
* then mandatory to save/restore the registers, as the guest
|
|
* depends on them.
|
|
*
|
|
* For this, we use a DIRTY bit, indicating the guest has modified the
|
|
* debug registers, used as follow:
|
|
*
|
|
* On guest entry:
|
|
* - If the dirty bit is set (because we're coming back from trapping),
|
|
* disable the traps, save host registers, restore guest registers.
|
|
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
|
|
* set the dirty bit, disable the traps, save host registers,
|
|
* restore guest registers.
|
|
* - Otherwise, enable the traps
|
|
*
|
|
* On guest exit:
|
|
* - If the dirty bit is set, save guest registers, restore host
|
|
* registers and clear the dirty bit. This ensure that the host can
|
|
* now use the debug registers.
|
|
*/
|
|
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
vcpu_write_sys_reg(vcpu, p->regval, r->reg);
|
|
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
} else {
|
|
p->regval = vcpu_read_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* reg_to_dbg/dbg_to_reg
|
|
*
|
|
* A 32 bit write to a debug register leave top bits alone
|
|
* A 32 bit read from a debug register only returns the bottom bits
|
|
*
|
|
* All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
|
|
* hyp.S code switches between host and guest values in future.
|
|
*/
|
|
static void reg_to_dbg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
u64 *dbg_reg)
|
|
{
|
|
u64 val = p->regval;
|
|
|
|
if (p->is_32bit) {
|
|
val &= 0xffffffffUL;
|
|
val |= ((*dbg_reg >> 32) << 32);
|
|
}
|
|
|
|
*dbg_reg = val;
|
|
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
}
|
|
|
|
static void dbg_to_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
u64 *dbg_reg)
|
|
{
|
|
p->regval = *dbg_reg;
|
|
if (p->is_32bit)
|
|
p->regval &= 0xffffffffUL;
|
|
}
|
|
|
|
static bool trap_bvr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static void reset_bvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static bool trap_bcr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static void reset_bcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static bool trap_wvr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write,
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static void reset_wvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static bool trap_wcr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static void reset_wcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 amair = read_sysreg(amair_el1);
|
|
vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
|
|
}
|
|
|
|
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 mpidr;
|
|
|
|
/*
|
|
* Map the vcpu_id into the first three affinity level fields of
|
|
* the MPIDR. We limit the number of VCPUs in level 0 due to a
|
|
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
|
|
* of the GICv3 to be able to address each CPU directly when
|
|
* sending IPIs.
|
|
*/
|
|
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
|
|
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
|
|
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
|
|
vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
|
|
}
|
|
|
|
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 pmcr, val;
|
|
|
|
pmcr = read_sysreg(pmcr_el0);
|
|
/*
|
|
* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
|
|
* except PMCR.E resetting to zero.
|
|
*/
|
|
val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
|
|
| (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
|
|
__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
|
|
}
|
|
|
|
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
|
|
{
|
|
u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
|
|
bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
|
|
|
|
if (!enabled)
|
|
kvm_inject_undefined(vcpu);
|
|
|
|
return !enabled;
|
|
}
|
|
|
|
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 val;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
/* Only update writeable bits of PMCR */
|
|
val = __vcpu_sys_reg(vcpu, PMCR_EL0);
|
|
val &= ~ARMV8_PMU_PMCR_MASK;
|
|
val |= p->regval & ARMV8_PMU_PMCR_MASK;
|
|
__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
|
|
kvm_pmu_handle_pmcr(vcpu, val);
|
|
} else {
|
|
/* PMCR.P & PMCR.C are RAZ */
|
|
val = __vcpu_sys_reg(vcpu, PMCR_EL0)
|
|
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
|
|
p->regval = val;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (p->is_write)
|
|
__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
|
|
else
|
|
/* return PMSELR.SEL field */
|
|
p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
|
|
& ARMV8_PMU_COUNTER_MASK;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 pmceid;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
BUG_ON(p->is_write);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (!(p->Op2 & 1))
|
|
pmceid = read_sysreg(pmceid0_el0);
|
|
else
|
|
pmceid = read_sysreg(pmceid1_el0);
|
|
|
|
p->regval = pmceid;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
|
|
{
|
|
u64 pmcr, val;
|
|
|
|
pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
|
|
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
|
|
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 idx;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (r->CRn == 9 && r->CRm == 13) {
|
|
if (r->Op2 == 2) {
|
|
/* PMXEVCNTR_EL0 */
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
|
|
& ARMV8_PMU_COUNTER_MASK;
|
|
} else if (r->Op2 == 0) {
|
|
/* PMCCNTR_EL0 */
|
|
if (pmu_access_cycle_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = ARMV8_PMU_CYCLE_IDX;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (r->CRn == 0 && r->CRm == 9) {
|
|
/* PMCCNTR */
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = ARMV8_PMU_CYCLE_IDX;
|
|
} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
|
|
/* PMEVCNTRn_EL0 */
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (!pmu_counter_idx_valid(vcpu, idx))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
kvm_pmu_set_counter_value(vcpu, idx, p->regval);
|
|
} else {
|
|
p->regval = kvm_pmu_get_counter_value(vcpu, idx);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 idx, reg;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
|
|
/* PMXEVTYPER_EL0 */
|
|
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
|
|
reg = PMEVTYPER0_EL0 + idx;
|
|
} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
|
|
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
|
|
if (idx == ARMV8_PMU_CYCLE_IDX)
|
|
reg = PMCCFILTR_EL0;
|
|
else
|
|
/* PMEVTYPERn_EL0 */
|
|
reg = PMEVTYPER0_EL0 + idx;
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
if (!pmu_counter_idx_valid(vcpu, idx))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
|
|
__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 val, mask;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
if (p->is_write) {
|
|
val = p->regval & mask;
|
|
if (r->Op2 & 0x1) {
|
|
/* accessing PMCNTENSET_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
|
|
kvm_pmu_enable_counter(vcpu, val);
|
|
} else {
|
|
/* accessing PMCNTENCLR_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
|
|
kvm_pmu_disable_counter(vcpu, val);
|
|
}
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (!vcpu_mode_priv(vcpu)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
if (p->is_write) {
|
|
u64 val = p->regval & mask;
|
|
|
|
if (r->Op2 & 0x1)
|
|
/* accessing PMINTENSET_EL1 */
|
|
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
|
|
else
|
|
/* accessing PMINTENCLR_EL1 */
|
|
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
if (r->CRm & 0x2)
|
|
/* accessing PMOVSSET_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
|
|
else
|
|
/* accessing PMOVSCLR_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
if (pmu_write_swinc_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
kvm_pmu_software_increment(vcpu, p->regval & mask);
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return trap_raz_wi(vcpu, p, r);
|
|
|
|
if (p->is_write) {
|
|
if (!vcpu_mode_priv(vcpu)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
|
|
p->regval & ARMV8_PMU_USERENR_MASK;
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
|
|
& ARMV8_PMU_USERENR_MASK;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
|
|
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
|
|
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \
|
|
trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
|
|
{ SYS_DESC(SYS_DBGBCRn_EL1(n)), \
|
|
trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
|
|
{ SYS_DESC(SYS_DBGWVRn_EL1(n)), \
|
|
trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
|
|
{ SYS_DESC(SYS_DBGWCRn_EL1(n)), \
|
|
trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
|
|
|
|
/* Macro to expand the PMEVCNTRn_EL0 register */
|
|
#define PMU_PMEVCNTR_EL0(n) \
|
|
{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
|
|
access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
|
|
|
|
/* Macro to expand the PMEVTYPERn_EL0 register */
|
|
#define PMU_PMEVTYPER_EL0(n) \
|
|
{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
|
|
access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
|
|
|
|
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 now = kvm_phys_timer_read();
|
|
u64 cval;
|
|
|
|
if (p->is_write) {
|
|
kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
|
|
p->regval + now);
|
|
} else {
|
|
cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
|
|
p->regval = cval - now;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
|
|
else
|
|
p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_cntp_cval(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
|
|
else
|
|
p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Read a sanitised cpufeature ID register by sys_reg_desc */
|
|
static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
|
|
{
|
|
u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
|
|
(u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
|
|
u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
|
|
|
|
if (id == SYS_ID_AA64PFR0_EL1) {
|
|
if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
|
|
kvm_debug("SVE unsupported for guests, suppressing\n");
|
|
|
|
val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
|
|
} else if (id == SYS_ID_AA64MMFR1_EL1) {
|
|
if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
|
|
kvm_debug("LORegions unsupported for guests, suppressing\n");
|
|
|
|
val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/* cpufeature ID register access trap handlers */
|
|
|
|
static bool __access_id_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r,
|
|
bool raz)
|
|
{
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
p->regval = read_id_reg(r, raz);
|
|
return true;
|
|
}
|
|
|
|
static bool access_id_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
return __access_id_reg(vcpu, p, r, false);
|
|
}
|
|
|
|
static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
return __access_id_reg(vcpu, p, r, true);
|
|
}
|
|
|
|
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
|
|
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
|
|
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
|
|
|
|
/*
|
|
* cpufeature ID register user accessors
|
|
*
|
|
* For now, these registers are immutable for userspace, so no values
|
|
* are stored, and for set_id_reg() we don't allow the effective value
|
|
* to be changed.
|
|
*/
|
|
static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
|
|
bool raz)
|
|
{
|
|
const u64 id = sys_reg_to_index(rd);
|
|
const u64 val = read_id_reg(rd, raz);
|
|
|
|
return reg_to_user(uaddr, &val, id);
|
|
}
|
|
|
|
static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
|
|
bool raz)
|
|
{
|
|
const u64 id = sys_reg_to_index(rd);
|
|
int err;
|
|
u64 val;
|
|
|
|
err = reg_from_user(&val, uaddr, id);
|
|
if (err)
|
|
return err;
|
|
|
|
/* This is what we mean by invariant: you can't change it. */
|
|
if (val != read_id_reg(rd, raz))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
return __get_id_reg(rd, uaddr, false);
|
|
}
|
|
|
|
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
return __set_id_reg(rd, uaddr, false);
|
|
}
|
|
|
|
static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
return __get_id_reg(rd, uaddr, true);
|
|
}
|
|
|
|
static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
return __set_id_reg(rd, uaddr, true);
|
|
}
|
|
|
|
/* sys_reg_desc initialiser for known cpufeature ID registers */
|
|
#define ID_SANITISED(name) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = access_id_reg, \
|
|
.get_user = get_id_reg, \
|
|
.set_user = set_id_reg, \
|
|
}
|
|
|
|
/*
|
|
* sys_reg_desc initialiser for architecturally unallocated cpufeature ID
|
|
* register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
|
|
* (1 <= crm < 8, 0 <= Op2 < 8).
|
|
*/
|
|
#define ID_UNALLOCATED(crm, op2) { \
|
|
Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
|
|
.access = access_raz_id_reg, \
|
|
.get_user = get_raz_id_reg, \
|
|
.set_user = set_raz_id_reg, \
|
|
}
|
|
|
|
/*
|
|
* sys_reg_desc initialiser for known ID registers that we hide from guests.
|
|
* For now, these are exposed just like unallocated ID regs: they appear
|
|
* RAZ for the guest.
|
|
*/
|
|
#define ID_HIDDEN(name) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = access_raz_id_reg, \
|
|
.get_user = get_raz_id_reg, \
|
|
.set_user = set_raz_id_reg, \
|
|
}
|
|
|
|
/*
|
|
* Architected system registers.
|
|
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
|
|
*
|
|
* Debug handling: We do trap most, if not all debug related system
|
|
* registers. The implementation is good enough to ensure that a guest
|
|
* can use these with minimal performance degradation. The drawback is
|
|
* that we don't implement any of the external debug, none of the
|
|
* OSlock protocol. This should be revisited if we ever encounter a
|
|
* more demanding guest...
|
|
*/
|
|
static const struct sys_reg_desc sys_reg_descs[] = {
|
|
{ SYS_DESC(SYS_DC_ISW), access_dcsw },
|
|
{ SYS_DESC(SYS_DC_CSW), access_dcsw },
|
|
{ SYS_DESC(SYS_DC_CISW), access_dcsw },
|
|
|
|
DBG_BCR_BVR_WCR_WVR_EL1(0),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(1),
|
|
{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
|
|
{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
|
|
DBG_BCR_BVR_WCR_WVR_EL1(2),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(3),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(4),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(5),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(6),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(7),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(8),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(9),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(10),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(11),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(12),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(13),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(14),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(15),
|
|
|
|
{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
|
|
{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
|
|
|
|
{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
|
|
// DBGDTR[TR]X_EL0 share the same encoding
|
|
{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
|
|
|
|
{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
|
|
|
|
{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
|
|
|
|
/*
|
|
* ID regs: all ID_SANITISED() entries here must have corresponding
|
|
* entries in arm64_ftr_regs[].
|
|
*/
|
|
|
|
/* AArch64 mappings of the AArch32 ID registers */
|
|
/* CRm=1 */
|
|
ID_SANITISED(ID_PFR0_EL1),
|
|
ID_SANITISED(ID_PFR1_EL1),
|
|
ID_SANITISED(ID_DFR0_EL1),
|
|
ID_HIDDEN(ID_AFR0_EL1),
|
|
ID_SANITISED(ID_MMFR0_EL1),
|
|
ID_SANITISED(ID_MMFR1_EL1),
|
|
ID_SANITISED(ID_MMFR2_EL1),
|
|
ID_SANITISED(ID_MMFR3_EL1),
|
|
|
|
/* CRm=2 */
|
|
ID_SANITISED(ID_ISAR0_EL1),
|
|
ID_SANITISED(ID_ISAR1_EL1),
|
|
ID_SANITISED(ID_ISAR2_EL1),
|
|
ID_SANITISED(ID_ISAR3_EL1),
|
|
ID_SANITISED(ID_ISAR4_EL1),
|
|
ID_SANITISED(ID_ISAR5_EL1),
|
|
ID_SANITISED(ID_MMFR4_EL1),
|
|
ID_UNALLOCATED(2,7),
|
|
|
|
/* CRm=3 */
|
|
ID_SANITISED(MVFR0_EL1),
|
|
ID_SANITISED(MVFR1_EL1),
|
|
ID_SANITISED(MVFR2_EL1),
|
|
ID_UNALLOCATED(3,3),
|
|
ID_UNALLOCATED(3,4),
|
|
ID_UNALLOCATED(3,5),
|
|
ID_UNALLOCATED(3,6),
|
|
ID_UNALLOCATED(3,7),
|
|
|
|
/* AArch64 ID registers */
|
|
/* CRm=4 */
|
|
ID_SANITISED(ID_AA64PFR0_EL1),
|
|
ID_SANITISED(ID_AA64PFR1_EL1),
|
|
ID_UNALLOCATED(4,2),
|
|
ID_UNALLOCATED(4,3),
|
|
ID_UNALLOCATED(4,4),
|
|
ID_UNALLOCATED(4,5),
|
|
ID_UNALLOCATED(4,6),
|
|
ID_UNALLOCATED(4,7),
|
|
|
|
/* CRm=5 */
|
|
ID_SANITISED(ID_AA64DFR0_EL1),
|
|
ID_SANITISED(ID_AA64DFR1_EL1),
|
|
ID_UNALLOCATED(5,2),
|
|
ID_UNALLOCATED(5,3),
|
|
ID_HIDDEN(ID_AA64AFR0_EL1),
|
|
ID_HIDDEN(ID_AA64AFR1_EL1),
|
|
ID_UNALLOCATED(5,6),
|
|
ID_UNALLOCATED(5,7),
|
|
|
|
/* CRm=6 */
|
|
ID_SANITISED(ID_AA64ISAR0_EL1),
|
|
ID_SANITISED(ID_AA64ISAR1_EL1),
|
|
ID_UNALLOCATED(6,2),
|
|
ID_UNALLOCATED(6,3),
|
|
ID_UNALLOCATED(6,4),
|
|
ID_UNALLOCATED(6,5),
|
|
ID_UNALLOCATED(6,6),
|
|
ID_UNALLOCATED(6,7),
|
|
|
|
/* CRm=7 */
|
|
ID_SANITISED(ID_AA64MMFR0_EL1),
|
|
ID_SANITISED(ID_AA64MMFR1_EL1),
|
|
ID_SANITISED(ID_AA64MMFR2_EL1),
|
|
ID_UNALLOCATED(7,3),
|
|
ID_UNALLOCATED(7,4),
|
|
ID_UNALLOCATED(7,5),
|
|
ID_UNALLOCATED(7,6),
|
|
ID_UNALLOCATED(7,7),
|
|
|
|
{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
|
|
{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
|
|
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
|
|
{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
|
|
{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
|
|
|
|
{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
|
|
{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
|
|
{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
|
|
|
|
{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
|
|
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
|
|
{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
|
|
|
|
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
|
|
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
|
|
{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
|
|
{ SYS_DESC(SYS_LORN_EL1), trap_undef },
|
|
{ SYS_DESC(SYS_LORC_EL1), trap_undef },
|
|
{ SYS_DESC(SYS_LORID_EL1), trap_undef },
|
|
|
|
{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
|
|
{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
|
|
|
|
{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
|
|
{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
|
|
{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
|
|
{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
|
|
{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
|
|
{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
|
|
{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
|
|
|
|
{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
|
|
{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
|
|
|
|
{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
|
|
{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
|
|
{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
|
|
{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
|
|
{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
|
|
{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
|
|
{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
|
|
{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
|
|
{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
|
|
{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
|
|
{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
|
|
/*
|
|
* PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
|
|
* in 32bit mode. Here we choose to reset it as zero for consistency.
|
|
*/
|
|
{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
|
|
{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
|
|
|
|
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
|
|
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
|
|
|
|
{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
|
|
{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
|
|
{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
|
|
|
|
/* PMEVCNTRn_EL0 */
|
|
PMU_PMEVCNTR_EL0(0),
|
|
PMU_PMEVCNTR_EL0(1),
|
|
PMU_PMEVCNTR_EL0(2),
|
|
PMU_PMEVCNTR_EL0(3),
|
|
PMU_PMEVCNTR_EL0(4),
|
|
PMU_PMEVCNTR_EL0(5),
|
|
PMU_PMEVCNTR_EL0(6),
|
|
PMU_PMEVCNTR_EL0(7),
|
|
PMU_PMEVCNTR_EL0(8),
|
|
PMU_PMEVCNTR_EL0(9),
|
|
PMU_PMEVCNTR_EL0(10),
|
|
PMU_PMEVCNTR_EL0(11),
|
|
PMU_PMEVCNTR_EL0(12),
|
|
PMU_PMEVCNTR_EL0(13),
|
|
PMU_PMEVCNTR_EL0(14),
|
|
PMU_PMEVCNTR_EL0(15),
|
|
PMU_PMEVCNTR_EL0(16),
|
|
PMU_PMEVCNTR_EL0(17),
|
|
PMU_PMEVCNTR_EL0(18),
|
|
PMU_PMEVCNTR_EL0(19),
|
|
PMU_PMEVCNTR_EL0(20),
|
|
PMU_PMEVCNTR_EL0(21),
|
|
PMU_PMEVCNTR_EL0(22),
|
|
PMU_PMEVCNTR_EL0(23),
|
|
PMU_PMEVCNTR_EL0(24),
|
|
PMU_PMEVCNTR_EL0(25),
|
|
PMU_PMEVCNTR_EL0(26),
|
|
PMU_PMEVCNTR_EL0(27),
|
|
PMU_PMEVCNTR_EL0(28),
|
|
PMU_PMEVCNTR_EL0(29),
|
|
PMU_PMEVCNTR_EL0(30),
|
|
/* PMEVTYPERn_EL0 */
|
|
PMU_PMEVTYPER_EL0(0),
|
|
PMU_PMEVTYPER_EL0(1),
|
|
PMU_PMEVTYPER_EL0(2),
|
|
PMU_PMEVTYPER_EL0(3),
|
|
PMU_PMEVTYPER_EL0(4),
|
|
PMU_PMEVTYPER_EL0(5),
|
|
PMU_PMEVTYPER_EL0(6),
|
|
PMU_PMEVTYPER_EL0(7),
|
|
PMU_PMEVTYPER_EL0(8),
|
|
PMU_PMEVTYPER_EL0(9),
|
|
PMU_PMEVTYPER_EL0(10),
|
|
PMU_PMEVTYPER_EL0(11),
|
|
PMU_PMEVTYPER_EL0(12),
|
|
PMU_PMEVTYPER_EL0(13),
|
|
PMU_PMEVTYPER_EL0(14),
|
|
PMU_PMEVTYPER_EL0(15),
|
|
PMU_PMEVTYPER_EL0(16),
|
|
PMU_PMEVTYPER_EL0(17),
|
|
PMU_PMEVTYPER_EL0(18),
|
|
PMU_PMEVTYPER_EL0(19),
|
|
PMU_PMEVTYPER_EL0(20),
|
|
PMU_PMEVTYPER_EL0(21),
|
|
PMU_PMEVTYPER_EL0(22),
|
|
PMU_PMEVTYPER_EL0(23),
|
|
PMU_PMEVTYPER_EL0(24),
|
|
PMU_PMEVTYPER_EL0(25),
|
|
PMU_PMEVTYPER_EL0(26),
|
|
PMU_PMEVTYPER_EL0(27),
|
|
PMU_PMEVTYPER_EL0(28),
|
|
PMU_PMEVTYPER_EL0(29),
|
|
PMU_PMEVTYPER_EL0(30),
|
|
/*
|
|
* PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
|
|
* in 32bit mode. Here we choose to reset it as zero for consistency.
|
|
*/
|
|
{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
|
|
|
|
{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
|
|
{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
|
|
{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
|
|
};
|
|
|
|
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
|
|
u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
|
|
u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
|
|
|
|
p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
|
|
(((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
|
|
(((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
|
|
| (6 << 16) | (el3 << 14) | (el3 << 12));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool trap_debug32(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
vcpu_cp14(vcpu, r->reg) = p->regval;
|
|
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
} else {
|
|
p->regval = vcpu_cp14(vcpu, r->reg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* AArch32 debug register mappings
|
|
*
|
|
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
|
|
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
|
|
*
|
|
* All control registers and watchpoint value registers are mapped to
|
|
* the lower 32 bits of their AArch64 equivalents. We share the trap
|
|
* handlers with the above AArch64 code which checks what mode the
|
|
* system is in.
|
|
*/
|
|
|
|
static bool trap_xvr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (p->is_write) {
|
|
u64 val = *dbg_reg;
|
|
|
|
val &= 0xffffffffUL;
|
|
val |= p->regval << 32;
|
|
*dbg_reg = val;
|
|
|
|
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
} else {
|
|
p->regval = *dbg_reg >> 32;
|
|
}
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
#define DBG_BCR_BVR_WCR_WVR(n) \
|
|
/* DBGBVRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
|
|
/* DBGBCRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
|
|
/* DBGWVRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
|
|
/* DBGWCRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
|
|
|
|
#define DBGBXVR(n) \
|
|
{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
|
|
|
|
/*
|
|
* Trapped cp14 registers. We generally ignore most of the external
|
|
* debug, on the principle that they don't really make sense to a
|
|
* guest. Revisit this one day, would this principle change.
|
|
*/
|
|
static const struct sys_reg_desc cp14_regs[] = {
|
|
/* DBGIDR */
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
|
|
/* DBGDTRRXext */
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
|
|
|
|
DBG_BCR_BVR_WCR_WVR(0),
|
|
/* DBGDSCRint */
|
|
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(1),
|
|
/* DBGDCCINT */
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
|
|
/* DBGDSCRext */
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
|
|
DBG_BCR_BVR_WCR_WVR(2),
|
|
/* DBGDTR[RT]Xint */
|
|
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
|
|
/* DBGDTR[RT]Xext */
|
|
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(3),
|
|
DBG_BCR_BVR_WCR_WVR(4),
|
|
DBG_BCR_BVR_WCR_WVR(5),
|
|
/* DBGWFAR */
|
|
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
|
|
/* DBGOSECCR */
|
|
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(6),
|
|
/* DBGVCR */
|
|
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
|
|
DBG_BCR_BVR_WCR_WVR(7),
|
|
DBG_BCR_BVR_WCR_WVR(8),
|
|
DBG_BCR_BVR_WCR_WVR(9),
|
|
DBG_BCR_BVR_WCR_WVR(10),
|
|
DBG_BCR_BVR_WCR_WVR(11),
|
|
DBG_BCR_BVR_WCR_WVR(12),
|
|
DBG_BCR_BVR_WCR_WVR(13),
|
|
DBG_BCR_BVR_WCR_WVR(14),
|
|
DBG_BCR_BVR_WCR_WVR(15),
|
|
|
|
/* DBGDRAR (32bit) */
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
|
|
|
|
DBGBXVR(0),
|
|
/* DBGOSLAR */
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(1),
|
|
/* DBGOSLSR */
|
|
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
|
|
DBGBXVR(2),
|
|
DBGBXVR(3),
|
|
/* DBGOSDLR */
|
|
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(4),
|
|
/* DBGPRCR */
|
|
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(5),
|
|
DBGBXVR(6),
|
|
DBGBXVR(7),
|
|
DBGBXVR(8),
|
|
DBGBXVR(9),
|
|
DBGBXVR(10),
|
|
DBGBXVR(11),
|
|
DBGBXVR(12),
|
|
DBGBXVR(13),
|
|
DBGBXVR(14),
|
|
DBGBXVR(15),
|
|
|
|
/* DBGDSAR (32bit) */
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
|
|
|
|
/* DBGDEVID2 */
|
|
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
|
|
/* DBGDEVID1 */
|
|
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
|
|
/* DBGDEVID */
|
|
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
|
|
/* DBGCLAIMSET */
|
|
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
|
|
/* DBGCLAIMCLR */
|
|
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
|
|
/* DBGAUTHSTATUS */
|
|
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
|
|
};
|
|
|
|
/* Trapped cp14 64bit registers */
|
|
static const struct sys_reg_desc cp14_64_regs[] = {
|
|
/* DBGDRAR (64bit) */
|
|
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
|
|
|
|
/* DBGDSAR (64bit) */
|
|
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
|
|
};
|
|
|
|
/* Macro to expand the PMEVCNTRn register */
|
|
#define PMU_PMEVCNTR(n) \
|
|
/* PMEVCNTRn */ \
|
|
{ Op1(0), CRn(0b1110), \
|
|
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
|
|
access_pmu_evcntr }
|
|
|
|
/* Macro to expand the PMEVTYPERn register */
|
|
#define PMU_PMEVTYPER(n) \
|
|
/* PMEVTYPERn */ \
|
|
{ Op1(0), CRn(0b1110), \
|
|
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
|
|
access_pmu_evtyper }
|
|
|
|
/*
|
|
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
|
|
* depending on the way they are accessed (as a 32bit or a 64bit
|
|
* register).
|
|
*/
|
|
static const struct sys_reg_desc cp15_regs[] = {
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
|
|
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
|
|
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
|
|
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
|
|
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
|
|
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
|
|
{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
|
|
{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
|
|
|
|
/*
|
|
* DC{C,I,CI}SW operations:
|
|
*/
|
|
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
|
|
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
|
|
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
|
|
|
|
/* PMU */
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
|
|
{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
|
|
{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
|
|
{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
|
|
|
|
{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
|
|
{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
|
|
{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
|
|
{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
|
|
|
|
/* ICC_SRE */
|
|
{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
|
|
|
|
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
|
|
|
|
/* CNTP_TVAL */
|
|
{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
|
|
/* CNTP_CTL */
|
|
{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
|
|
|
|
/* PMEVCNTRn */
|
|
PMU_PMEVCNTR(0),
|
|
PMU_PMEVCNTR(1),
|
|
PMU_PMEVCNTR(2),
|
|
PMU_PMEVCNTR(3),
|
|
PMU_PMEVCNTR(4),
|
|
PMU_PMEVCNTR(5),
|
|
PMU_PMEVCNTR(6),
|
|
PMU_PMEVCNTR(7),
|
|
PMU_PMEVCNTR(8),
|
|
PMU_PMEVCNTR(9),
|
|
PMU_PMEVCNTR(10),
|
|
PMU_PMEVCNTR(11),
|
|
PMU_PMEVCNTR(12),
|
|
PMU_PMEVCNTR(13),
|
|
PMU_PMEVCNTR(14),
|
|
PMU_PMEVCNTR(15),
|
|
PMU_PMEVCNTR(16),
|
|
PMU_PMEVCNTR(17),
|
|
PMU_PMEVCNTR(18),
|
|
PMU_PMEVCNTR(19),
|
|
PMU_PMEVCNTR(20),
|
|
PMU_PMEVCNTR(21),
|
|
PMU_PMEVCNTR(22),
|
|
PMU_PMEVCNTR(23),
|
|
PMU_PMEVCNTR(24),
|
|
PMU_PMEVCNTR(25),
|
|
PMU_PMEVCNTR(26),
|
|
PMU_PMEVCNTR(27),
|
|
PMU_PMEVCNTR(28),
|
|
PMU_PMEVCNTR(29),
|
|
PMU_PMEVCNTR(30),
|
|
/* PMEVTYPERn */
|
|
PMU_PMEVTYPER(0),
|
|
PMU_PMEVTYPER(1),
|
|
PMU_PMEVTYPER(2),
|
|
PMU_PMEVTYPER(3),
|
|
PMU_PMEVTYPER(4),
|
|
PMU_PMEVTYPER(5),
|
|
PMU_PMEVTYPER(6),
|
|
PMU_PMEVTYPER(7),
|
|
PMU_PMEVTYPER(8),
|
|
PMU_PMEVTYPER(9),
|
|
PMU_PMEVTYPER(10),
|
|
PMU_PMEVTYPER(11),
|
|
PMU_PMEVTYPER(12),
|
|
PMU_PMEVTYPER(13),
|
|
PMU_PMEVTYPER(14),
|
|
PMU_PMEVTYPER(15),
|
|
PMU_PMEVTYPER(16),
|
|
PMU_PMEVTYPER(17),
|
|
PMU_PMEVTYPER(18),
|
|
PMU_PMEVTYPER(19),
|
|
PMU_PMEVTYPER(20),
|
|
PMU_PMEVTYPER(21),
|
|
PMU_PMEVTYPER(22),
|
|
PMU_PMEVTYPER(23),
|
|
PMU_PMEVTYPER(24),
|
|
PMU_PMEVTYPER(25),
|
|
PMU_PMEVTYPER(26),
|
|
PMU_PMEVTYPER(27),
|
|
PMU_PMEVTYPER(28),
|
|
PMU_PMEVTYPER(29),
|
|
PMU_PMEVTYPER(30),
|
|
/* PMCCFILTR */
|
|
{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
|
|
};
|
|
|
|
static const struct sys_reg_desc cp15_64_regs[] = {
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
|
|
{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
|
|
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
|
|
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
|
|
{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
|
|
{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
|
|
{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
|
|
};
|
|
|
|
/* Target specific emulation tables */
|
|
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
|
|
|
|
void kvm_register_target_sys_reg_table(unsigned int target,
|
|
struct kvm_sys_reg_target_table *table)
|
|
{
|
|
target_tables[target] = table;
|
|
}
|
|
|
|
/* Get specific register table for this target. */
|
|
static const struct sys_reg_desc *get_target_table(unsigned target,
|
|
bool mode_is_64,
|
|
size_t *num)
|
|
{
|
|
struct kvm_sys_reg_target_table *table;
|
|
|
|
table = target_tables[target];
|
|
if (mode_is_64) {
|
|
*num = table->table64.num;
|
|
return table->table64.table;
|
|
} else {
|
|
*num = table->table32.num;
|
|
return table->table32.table;
|
|
}
|
|
}
|
|
|
|
#define reg_to_match_value(x) \
|
|
({ \
|
|
unsigned long val; \
|
|
val = (x)->Op0 << 14; \
|
|
val |= (x)->Op1 << 11; \
|
|
val |= (x)->CRn << 7; \
|
|
val |= (x)->CRm << 3; \
|
|
val |= (x)->Op2; \
|
|
val; \
|
|
})
|
|
|
|
static int match_sys_reg(const void *key, const void *elt)
|
|
{
|
|
const unsigned long pval = (unsigned long)key;
|
|
const struct sys_reg_desc *r = elt;
|
|
|
|
return pval - reg_to_match_value(r);
|
|
}
|
|
|
|
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
|
|
const struct sys_reg_desc table[],
|
|
unsigned int num)
|
|
{
|
|
unsigned long pval = reg_to_match_value(params);
|
|
|
|
return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
|
|
}
|
|
|
|
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static void perform_access(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
/*
|
|
* Not having an accessor means that we have configured a trap
|
|
* that we don't know how to handle. This certainly qualifies
|
|
* as a gross bug that should be fixed right away.
|
|
*/
|
|
BUG_ON(!r->access);
|
|
|
|
/* Skip instruction if instructed so */
|
|
if (likely(r->access(vcpu, params, r)))
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
}
|
|
|
|
/*
|
|
* emulate_cp -- tries to match a sys_reg access in a handling table, and
|
|
* call the corresponding trap handler.
|
|
*
|
|
* @params: pointer to the descriptor of the access
|
|
* @table: array of trap descriptors
|
|
* @num: size of the trap descriptor array
|
|
*
|
|
* Return 0 if the access has been handled, and -1 if not.
|
|
*/
|
|
static int emulate_cp(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *table,
|
|
size_t num)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
|
|
if (!table)
|
|
return -1; /* Not handled */
|
|
|
|
r = find_reg(params, table, num);
|
|
|
|
if (r) {
|
|
perform_access(vcpu, params, r);
|
|
return 0;
|
|
}
|
|
|
|
/* Not handled */
|
|
return -1;
|
|
}
|
|
|
|
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params)
|
|
{
|
|
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
int cp = -1;
|
|
|
|
switch(hsr_ec) {
|
|
case ESR_ELx_EC_CP15_32:
|
|
case ESR_ELx_EC_CP15_64:
|
|
cp = 15;
|
|
break;
|
|
case ESR_ELx_EC_CP14_MR:
|
|
case ESR_ELx_EC_CP14_64:
|
|
cp = 14;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
kvm_err("Unsupported guest CP%d access at: %08lx\n",
|
|
cp, *vcpu_pc(vcpu));
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *global,
|
|
size_t nr_global,
|
|
const struct sys_reg_desc *target_specific,
|
|
size_t nr_specific)
|
|
{
|
|
struct sys_reg_params params;
|
|
u32 hsr = kvm_vcpu_get_hsr(vcpu);
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
int Rt2 = (hsr >> 10) & 0x1f;
|
|
|
|
params.is_aarch32 = true;
|
|
params.is_32bit = false;
|
|
params.CRm = (hsr >> 1) & 0xf;
|
|
params.is_write = ((hsr & 1) == 0);
|
|
|
|
params.Op0 = 0;
|
|
params.Op1 = (hsr >> 16) & 0xf;
|
|
params.Op2 = 0;
|
|
params.CRn = 0;
|
|
|
|
/*
|
|
* Make a 64-bit value out of Rt and Rt2. As we use the same trap
|
|
* backends between AArch32 and AArch64, we get away with it.
|
|
*/
|
|
if (params.is_write) {
|
|
params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
|
|
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
|
|
}
|
|
|
|
/*
|
|
* Try to emulate the coprocessor access using the target
|
|
* specific table first, and using the global table afterwards.
|
|
* If either of the tables contains a handler, handle the
|
|
* potential register operation in the case of a read and return
|
|
* with success.
|
|
*/
|
|
if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
|
|
!emulate_cp(vcpu, ¶ms, global, nr_global)) {
|
|
/* Split up the value between registers for the read side */
|
|
if (!params.is_write) {
|
|
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
|
|
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
unhandled_cp_access(vcpu, ¶ms);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *global,
|
|
size_t nr_global,
|
|
const struct sys_reg_desc *target_specific,
|
|
size_t nr_specific)
|
|
{
|
|
struct sys_reg_params params;
|
|
u32 hsr = kvm_vcpu_get_hsr(vcpu);
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
|
|
params.is_aarch32 = true;
|
|
params.is_32bit = true;
|
|
params.CRm = (hsr >> 1) & 0xf;
|
|
params.regval = vcpu_get_reg(vcpu, Rt);
|
|
params.is_write = ((hsr & 1) == 0);
|
|
params.CRn = (hsr >> 10) & 0xf;
|
|
params.Op0 = 0;
|
|
params.Op1 = (hsr >> 14) & 0x7;
|
|
params.Op2 = (hsr >> 17) & 0x7;
|
|
|
|
if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
|
|
!emulate_cp(vcpu, ¶ms, global, nr_global)) {
|
|
if (!params.is_write)
|
|
vcpu_set_reg(vcpu, Rt, params.regval);
|
|
return 1;
|
|
}
|
|
|
|
unhandled_cp_access(vcpu, ¶ms);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
const struct sys_reg_desc *target_specific;
|
|
size_t num;
|
|
|
|
target_specific = get_target_table(vcpu->arch.target, false, &num);
|
|
return kvm_handle_cp_64(vcpu,
|
|
cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
|
|
target_specific, num);
|
|
}
|
|
|
|
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
const struct sys_reg_desc *target_specific;
|
|
size_t num;
|
|
|
|
target_specific = get_target_table(vcpu->arch.target, false, &num);
|
|
return kvm_handle_cp_32(vcpu,
|
|
cp15_regs, ARRAY_SIZE(cp15_regs),
|
|
target_specific, num);
|
|
}
|
|
|
|
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
return kvm_handle_cp_64(vcpu,
|
|
cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
|
|
NULL, 0);
|
|
}
|
|
|
|
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
return kvm_handle_cp_32(vcpu,
|
|
cp14_regs, ARRAY_SIZE(cp14_regs),
|
|
NULL, 0);
|
|
}
|
|
|
|
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params)
|
|
{
|
|
size_t num;
|
|
const struct sys_reg_desc *table, *r;
|
|
|
|
table = get_target_table(vcpu->arch.target, true, &num);
|
|
|
|
/* Search target-specific then generic table. */
|
|
r = find_reg(params, table, num);
|
|
if (!r)
|
|
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
if (likely(r)) {
|
|
perform_access(vcpu, params, r);
|
|
} else {
|
|
kvm_err("Unsupported guest sys_reg access at: %lx\n",
|
|
*vcpu_pc(vcpu));
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *table, size_t num)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < num; i++)
|
|
if (table[i].reset)
|
|
table[i].reset(vcpu, &table[i]);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
struct sys_reg_params params;
|
|
unsigned long esr = kvm_vcpu_get_hsr(vcpu);
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
int ret;
|
|
|
|
trace_kvm_handle_sys_reg(esr);
|
|
|
|
params.is_aarch32 = false;
|
|
params.is_32bit = false;
|
|
params.Op0 = (esr >> 20) & 3;
|
|
params.Op1 = (esr >> 14) & 0x7;
|
|
params.CRn = (esr >> 10) & 0xf;
|
|
params.CRm = (esr >> 1) & 0xf;
|
|
params.Op2 = (esr >> 17) & 0x7;
|
|
params.regval = vcpu_get_reg(vcpu, Rt);
|
|
params.is_write = !(esr & 1);
|
|
|
|
ret = emulate_sys_reg(vcpu, ¶ms);
|
|
|
|
if (!params.is_write)
|
|
vcpu_set_reg(vcpu, Rt, params.regval);
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Userspace API
|
|
*****************************************************************************/
|
|
|
|
static bool index_to_params(u64 id, struct sys_reg_params *params)
|
|
{
|
|
switch (id & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U64:
|
|
/* Any unused index bits means it's not valid. */
|
|
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
|
|
| KVM_REG_ARM_COPROC_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP0_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP1_MASK
|
|
| KVM_REG_ARM64_SYSREG_CRN_MASK
|
|
| KVM_REG_ARM64_SYSREG_CRM_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP2_MASK))
|
|
return false;
|
|
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
|
|
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
|
|
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
|
|
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
|
|
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const struct sys_reg_desc *find_reg_by_id(u64 id,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc table[],
|
|
unsigned int num)
|
|
{
|
|
if (!index_to_params(id, params))
|
|
return NULL;
|
|
|
|
return find_reg(params, table, num);
|
|
}
|
|
|
|
/* Decode an index value, and find the sys_reg_desc entry. */
|
|
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
|
|
u64 id)
|
|
{
|
|
size_t num;
|
|
const struct sys_reg_desc *table, *r;
|
|
struct sys_reg_params params;
|
|
|
|
/* We only do sys_reg for now. */
|
|
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
|
|
return NULL;
|
|
|
|
table = get_target_table(vcpu->arch.target, true, &num);
|
|
r = find_reg_by_id(id, ¶ms, table, num);
|
|
if (!r)
|
|
r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
/* Not saved in the sys_reg array and not otherwise accessible? */
|
|
if (r && !(r->reg || r->get_user))
|
|
r = NULL;
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* These are the invariant sys_reg registers: we let the guest see the
|
|
* host versions of these, so they're part of the guest state.
|
|
*
|
|
* A future CPU may provide a mechanism to present different values to
|
|
* the guest, or a future kvm may trap them.
|
|
*/
|
|
|
|
#define FUNCTION_INVARIANT(reg) \
|
|
static void get_##reg(struct kvm_vcpu *v, \
|
|
const struct sys_reg_desc *r) \
|
|
{ \
|
|
((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
|
|
}
|
|
|
|
FUNCTION_INVARIANT(midr_el1)
|
|
FUNCTION_INVARIANT(ctr_el0)
|
|
FUNCTION_INVARIANT(revidr_el1)
|
|
FUNCTION_INVARIANT(clidr_el1)
|
|
FUNCTION_INVARIANT(aidr_el1)
|
|
|
|
/* ->val is filled in by kvm_sys_reg_table_init() */
|
|
static struct sys_reg_desc invariant_sys_regs[] = {
|
|
{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
|
|
{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
|
|
{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
|
|
{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
|
|
{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
|
|
};
|
|
|
|
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
|
|
{
|
|
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
|
|
{
|
|
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_invariant_sys_reg(u64 id, void __user *uaddr)
|
|
{
|
|
struct sys_reg_params params;
|
|
const struct sys_reg_desc *r;
|
|
|
|
r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
|
|
ARRAY_SIZE(invariant_sys_regs));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
return reg_to_user(uaddr, &r->val, id);
|
|
}
|
|
|
|
static int set_invariant_sys_reg(u64 id, void __user *uaddr)
|
|
{
|
|
struct sys_reg_params params;
|
|
const struct sys_reg_desc *r;
|
|
int err;
|
|
u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
|
|
|
|
r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
|
|
ARRAY_SIZE(invariant_sys_regs));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
err = reg_from_user(&val, uaddr, id);
|
|
if (err)
|
|
return err;
|
|
|
|
/* This is what we mean by invariant: you can't change it. */
|
|
if (r->val != val)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_valid_cache(u32 val)
|
|
{
|
|
u32 level, ctype;
|
|
|
|
if (val >= CSSELR_MAX)
|
|
return false;
|
|
|
|
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
|
|
level = (val >> 1);
|
|
ctype = (cache_levels >> (level * 3)) & 7;
|
|
|
|
switch (ctype) {
|
|
case 0: /* No cache */
|
|
return false;
|
|
case 1: /* Instruction cache only */
|
|
return (val & 1);
|
|
case 2: /* Data cache only */
|
|
case 4: /* Unified cache */
|
|
return !(val & 1);
|
|
case 3: /* Separate instruction and data caches */
|
|
return true;
|
|
default: /* Reserved: we can't know instruction or data. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int demux_c15_get(u64 id, void __user *uaddr)
|
|
{
|
|
u32 val;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (!is_valid_cache(val))
|
|
return -ENOENT;
|
|
|
|
return put_user(get_ccsidr(val), uval);
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
static int demux_c15_set(u64 id, void __user *uaddr)
|
|
{
|
|
u32 val, newval;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (!is_valid_cache(val))
|
|
return -ENOENT;
|
|
|
|
if (get_user(newval, uval))
|
|
return -EFAULT;
|
|
|
|
/* This is also invariant: you can't change it. */
|
|
if (newval != get_ccsidr(val))
|
|
return -EINVAL;
|
|
return 0;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_get(reg->id, uaddr);
|
|
|
|
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
|
|
return -ENOENT;
|
|
|
|
r = index_to_sys_reg_desc(vcpu, reg->id);
|
|
if (!r)
|
|
return get_invariant_sys_reg(reg->id, uaddr);
|
|
|
|
if (r->get_user)
|
|
return (r->get_user)(vcpu, r, reg, uaddr);
|
|
|
|
return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
|
|
}
|
|
|
|
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_set(reg->id, uaddr);
|
|
|
|
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
|
|
return -ENOENT;
|
|
|
|
r = index_to_sys_reg_desc(vcpu, reg->id);
|
|
if (!r)
|
|
return set_invariant_sys_reg(reg->id, uaddr);
|
|
|
|
if (r->set_user)
|
|
return (r->set_user)(vcpu, r, reg, uaddr);
|
|
|
|
return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
|
|
}
|
|
|
|
static unsigned int num_demux_regs(void)
|
|
{
|
|
unsigned int i, count = 0;
|
|
|
|
for (i = 0; i < CSSELR_MAX; i++)
|
|
if (is_valid_cache(i))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
static int write_demux_regids(u64 __user *uindices)
|
|
{
|
|
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
|
|
unsigned int i;
|
|
|
|
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
|
|
for (i = 0; i < CSSELR_MAX; i++) {
|
|
if (!is_valid_cache(i))
|
|
continue;
|
|
if (put_user(val | i, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
|
|
{
|
|
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
|
|
KVM_REG_ARM64_SYSREG |
|
|
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
|
|
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
|
|
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
|
|
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
|
|
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
|
|
}
|
|
|
|
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
|
|
{
|
|
if (!*uind)
|
|
return true;
|
|
|
|
if (put_user(sys_reg_to_index(reg), *uind))
|
|
return false;
|
|
|
|
(*uind)++;
|
|
return true;
|
|
}
|
|
|
|
static int walk_one_sys_reg(const struct sys_reg_desc *rd,
|
|
u64 __user **uind,
|
|
unsigned int *total)
|
|
{
|
|
/*
|
|
* Ignore registers we trap but don't save,
|
|
* and for which no custom user accessor is provided.
|
|
*/
|
|
if (!(rd->reg || rd->get_user))
|
|
return 0;
|
|
|
|
if (!copy_reg_to_user(rd, uind))
|
|
return -EFAULT;
|
|
|
|
(*total)++;
|
|
return 0;
|
|
}
|
|
|
|
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
|
|
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
|
|
{
|
|
const struct sys_reg_desc *i1, *i2, *end1, *end2;
|
|
unsigned int total = 0;
|
|
size_t num;
|
|
int err;
|
|
|
|
/* We check for duplicates here, to allow arch-specific overrides. */
|
|
i1 = get_target_table(vcpu->arch.target, true, &num);
|
|
end1 = i1 + num;
|
|
i2 = sys_reg_descs;
|
|
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
|
|
|
|
BUG_ON(i1 == end1 || i2 == end2);
|
|
|
|
/* Walk carefully, as both tables may refer to the same register. */
|
|
while (i1 || i2) {
|
|
int cmp = cmp_sys_reg(i1, i2);
|
|
/* target-specific overrides generic entry. */
|
|
if (cmp <= 0)
|
|
err = walk_one_sys_reg(i1, &uind, &total);
|
|
else
|
|
err = walk_one_sys_reg(i2, &uind, &total);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (cmp <= 0 && ++i1 == end1)
|
|
i1 = NULL;
|
|
if (cmp >= 0 && ++i2 == end2)
|
|
i2 = NULL;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
|
|
{
|
|
return ARRAY_SIZE(invariant_sys_regs)
|
|
+ num_demux_regs()
|
|
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
|
|
}
|
|
|
|
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* Then give them all the invariant registers' indices. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
|
|
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
err = walk_sys_regs(vcpu, uindices);
|
|
if (err < 0)
|
|
return err;
|
|
uindices += err;
|
|
|
|
return write_demux_regids(uindices);
|
|
}
|
|
|
|
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 1; i < n; i++) {
|
|
if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
|
|
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_sys_reg_table_init(void)
|
|
{
|
|
unsigned int i;
|
|
struct sys_reg_desc clidr;
|
|
|
|
/* Make sure tables are unique and in order. */
|
|
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
|
|
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
|
|
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
|
|
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
|
|
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
|
|
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
|
|
|
|
/* We abuse the reset function to overwrite the table itself. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
|
|
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
|
|
|
|
/*
|
|
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
|
|
*
|
|
* If software reads the Cache Type fields from Ctype1
|
|
* upwards, once it has seen a value of 0b000, no caches
|
|
* exist at further-out levels of the hierarchy. So, for
|
|
* example, if Ctype3 is the first Cache Type field with a
|
|
* value of 0b000, the values of Ctype4 to Ctype7 must be
|
|
* ignored.
|
|
*/
|
|
get_clidr_el1(NULL, &clidr); /* Ugly... */
|
|
cache_levels = clidr.val;
|
|
for (i = 0; i < 7; i++)
|
|
if (((cache_levels >> (i*3)) & 7) == 0)
|
|
break;
|
|
/* Clear all higher bits. */
|
|
cache_levels &= (1 << (i*3))-1;
|
|
}
|
|
|
|
/**
|
|
* kvm_reset_sys_regs - sets system registers to reset value
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function finds the right table above and sets the registers on the
|
|
* virtual CPU struct to their architecturally defined reset values.
|
|
*/
|
|
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
size_t num;
|
|
const struct sys_reg_desc *table;
|
|
|
|
/* Catch someone adding a register without putting in reset entry. */
|
|
memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
|
|
|
|
/* Generic chip reset first (so target could override). */
|
|
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
table = get_target_table(vcpu->arch.target, true, &num);
|
|
reset_sys_reg_descs(vcpu, table, num);
|
|
|
|
for (num = 1; num < NR_SYS_REGS; num++)
|
|
if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
|
|
panic("Didn't reset __vcpu_sys_reg(%zi)", num);
|
|
}
|