linux/fs/xfs/xfs_inode_item_recover.c
Dave Chinner 7930d9e103 xfs: recovery should not clear di_flushiter unconditionally
Because on v3 inodes, di_flushiter doesn't exist. It overlaps with
zero padding in the inode, except when NREXT64=1 configurations are
in use and the zero padding is no longer padding but holds the 64
bit extent counter.

This manifests obviously on big endian platforms (e.g. s390) because
the log dinode is in host order and the overlap is the LSBs of the
extent count field. It is not noticed on little endian machines
because the overlap is at the MSB end of the extent count field and
we need to get more than 2^^48 extents in the inode before it
manifests. i.e. the heat death of the universe will occur before we
see the problem in little endian machines.

This is a zero-day issue for NREXT64=1 configuraitons on big endian
machines. Fix it by only clearing di_flushiter on v2 inodes during
recovery.

Fixes: 9b7d16e34bbe ("xfs: Introduce XFS_DIFLAG2_NREXT64 and associated helpers")
cc: stable@kernel.org # 5.19+
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:11:41 +05:30

565 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_trace.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_error.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_icache.h"
#include "xfs_bmap_btree.h"
STATIC void
xlog_recover_inode_ra_pass2(
struct xlog *log,
struct xlog_recover_item *item)
{
if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
struct xfs_inode_log_format *ilfp = item->ri_buf[0].i_addr;
xlog_buf_readahead(log, ilfp->ilf_blkno, ilfp->ilf_len,
&xfs_inode_buf_ra_ops);
} else {
struct xfs_inode_log_format_32 *ilfp = item->ri_buf[0].i_addr;
xlog_buf_readahead(log, ilfp->ilf_blkno, ilfp->ilf_len,
&xfs_inode_buf_ra_ops);
}
}
/*
* Inode fork owner changes
*
* If we have been told that we have to reparent the inode fork, it's because an
* extent swap operation on a CRC enabled filesystem has been done and we are
* replaying it. We need to walk the BMBT of the appropriate fork and change the
* owners of it.
*
* The complexity here is that we don't have an inode context to work with, so
* after we've replayed the inode we need to instantiate one. This is where the
* fun begins.
*
* We are in the middle of log recovery, so we can't run transactions. That
* means we cannot use cache coherent inode instantiation via xfs_iget(), as
* that will result in the corresponding iput() running the inode through
* xfs_inactive(). If we've just replayed an inode core that changes the link
* count to zero (i.e. it's been unlinked), then xfs_inactive() will run
* transactions (bad!).
*
* So, to avoid this, we instantiate an inode directly from the inode core we've
* just recovered. We have the buffer still locked, and all we really need to
* instantiate is the inode core and the forks being modified. We can do this
* manually, then run the inode btree owner change, and then tear down the
* xfs_inode without having to run any transactions at all.
*
* Also, because we don't have a transaction context available here but need to
* gather all the buffers we modify for writeback so we pass the buffer_list
* instead for the operation to use.
*/
STATIC int
xfs_recover_inode_owner_change(
struct xfs_mount *mp,
struct xfs_dinode *dip,
struct xfs_inode_log_format *in_f,
struct list_head *buffer_list)
{
struct xfs_inode *ip;
int error;
ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
ip = xfs_inode_alloc(mp, in_f->ilf_ino);
if (!ip)
return -ENOMEM;
/* instantiate the inode */
ASSERT(dip->di_version >= 3);
error = xfs_inode_from_disk(ip, dip);
if (error)
goto out_free_ip;
if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
ip->i_ino, buffer_list);
if (error)
goto out_free_ip;
}
if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
ip->i_ino, buffer_list);
if (error)
goto out_free_ip;
}
out_free_ip:
xfs_inode_free(ip);
return error;
}
static inline bool xfs_log_dinode_has_bigtime(const struct xfs_log_dinode *ld)
{
return ld->di_version >= 3 &&
(ld->di_flags2 & XFS_DIFLAG2_BIGTIME);
}
/* Convert a log timestamp to an ondisk timestamp. */
static inline xfs_timestamp_t
xfs_log_dinode_to_disk_ts(
struct xfs_log_dinode *from,
const xfs_log_timestamp_t its)
{
struct xfs_legacy_timestamp *lts;
struct xfs_log_legacy_timestamp *lits;
xfs_timestamp_t ts;
if (xfs_log_dinode_has_bigtime(from))
return cpu_to_be64(its);
lts = (struct xfs_legacy_timestamp *)&ts;
lits = (struct xfs_log_legacy_timestamp *)&its;
lts->t_sec = cpu_to_be32(lits->t_sec);
lts->t_nsec = cpu_to_be32(lits->t_nsec);
return ts;
}
static inline bool xfs_log_dinode_has_large_extent_counts(
const struct xfs_log_dinode *ld)
{
return ld->di_version >= 3 &&
(ld->di_flags2 & XFS_DIFLAG2_NREXT64);
}
static inline void
xfs_log_dinode_to_disk_iext_counters(
struct xfs_log_dinode *from,
struct xfs_dinode *to)
{
if (xfs_log_dinode_has_large_extent_counts(from)) {
to->di_big_nextents = cpu_to_be64(from->di_big_nextents);
to->di_big_anextents = cpu_to_be32(from->di_big_anextents);
to->di_nrext64_pad = cpu_to_be16(from->di_nrext64_pad);
} else {
to->di_nextents = cpu_to_be32(from->di_nextents);
to->di_anextents = cpu_to_be16(from->di_anextents);
}
}
STATIC void
xfs_log_dinode_to_disk(
struct xfs_log_dinode *from,
struct xfs_dinode *to,
xfs_lsn_t lsn)
{
to->di_magic = cpu_to_be16(from->di_magic);
to->di_mode = cpu_to_be16(from->di_mode);
to->di_version = from->di_version;
to->di_format = from->di_format;
to->di_onlink = 0;
to->di_uid = cpu_to_be32(from->di_uid);
to->di_gid = cpu_to_be32(from->di_gid);
to->di_nlink = cpu_to_be32(from->di_nlink);
to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
to->di_atime = xfs_log_dinode_to_disk_ts(from, from->di_atime);
to->di_mtime = xfs_log_dinode_to_disk_ts(from, from->di_mtime);
to->di_ctime = xfs_log_dinode_to_disk_ts(from, from->di_ctime);
to->di_size = cpu_to_be64(from->di_size);
to->di_nblocks = cpu_to_be64(from->di_nblocks);
to->di_extsize = cpu_to_be32(from->di_extsize);
to->di_forkoff = from->di_forkoff;
to->di_aformat = from->di_aformat;
to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
to->di_dmstate = cpu_to_be16(from->di_dmstate);
to->di_flags = cpu_to_be16(from->di_flags);
to->di_gen = cpu_to_be32(from->di_gen);
if (from->di_version == 3) {
to->di_changecount = cpu_to_be64(from->di_changecount);
to->di_crtime = xfs_log_dinode_to_disk_ts(from,
from->di_crtime);
to->di_flags2 = cpu_to_be64(from->di_flags2);
to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
to->di_ino = cpu_to_be64(from->di_ino);
to->di_lsn = cpu_to_be64(lsn);
memset(to->di_pad2, 0, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &from->di_uuid);
to->di_v3_pad = 0;
} else {
to->di_flushiter = cpu_to_be16(from->di_flushiter);
memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
}
xfs_log_dinode_to_disk_iext_counters(from, to);
}
STATIC int
xlog_dinode_verify_extent_counts(
struct xfs_mount *mp,
struct xfs_log_dinode *ldip)
{
xfs_extnum_t nextents;
xfs_aextnum_t anextents;
if (xfs_log_dinode_has_large_extent_counts(ldip)) {
if (!xfs_has_large_extent_counts(mp) ||
(ldip->di_nrext64_pad != 0)) {
XFS_CORRUPTION_ERROR(
"Bad log dinode large extent count format",
XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx, large extent counts %d, padding 0x%x",
ldip->di_ino, xfs_has_large_extent_counts(mp),
ldip->di_nrext64_pad);
return -EFSCORRUPTED;
}
nextents = ldip->di_big_nextents;
anextents = ldip->di_big_anextents;
} else {
if (ldip->di_version == 3 && ldip->di_v3_pad != 0) {
XFS_CORRUPTION_ERROR(
"Bad log dinode di_v3_pad",
XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx, di_v3_pad 0x%llx",
ldip->di_ino, ldip->di_v3_pad);
return -EFSCORRUPTED;
}
nextents = ldip->di_nextents;
anextents = ldip->di_anextents;
}
if (unlikely(nextents + anextents > ldip->di_nblocks)) {
XFS_CORRUPTION_ERROR("Bad log dinode extent counts",
XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx, large extent counts %d, nextents 0x%llx, anextents 0x%x, nblocks 0x%llx",
ldip->di_ino, xfs_has_large_extent_counts(mp), nextents,
anextents, ldip->di_nblocks);
return -EFSCORRUPTED;
}
return 0;
}
STATIC int
xlog_recover_inode_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t current_lsn)
{
struct xfs_inode_log_format *in_f;
struct xfs_mount *mp = log->l_mp;
struct xfs_buf *bp;
struct xfs_dinode *dip;
int len;
char *src;
char *dest;
int error;
int attr_index;
uint fields;
struct xfs_log_dinode *ldip;
uint isize;
int need_free = 0;
xfs_failaddr_t fa;
if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
in_f = item->ri_buf[0].i_addr;
} else {
in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
need_free = 1;
error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
if (error)
goto error;
}
/*
* Inode buffers can be freed, look out for it,
* and do not replay the inode.
*/
if (xlog_is_buffer_cancelled(log, in_f->ilf_blkno, in_f->ilf_len)) {
error = 0;
trace_xfs_log_recover_inode_cancel(log, in_f);
goto error;
}
trace_xfs_log_recover_inode_recover(log, in_f);
error = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0, &bp, &xfs_inode_buf_ops);
if (error)
goto error;
ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
dip = xfs_buf_offset(bp, in_f->ilf_boffset);
/*
* Make sure the place we're flushing out to really looks
* like an inode!
*/
if (XFS_IS_CORRUPT(mp, !xfs_verify_magic16(bp, dip->di_magic))) {
xfs_alert(mp,
"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %lld",
__func__, dip, bp, in_f->ilf_ino);
error = -EFSCORRUPTED;
goto out_release;
}
ldip = item->ri_buf[1].i_addr;
if (XFS_IS_CORRUPT(mp, ldip->di_magic != XFS_DINODE_MAGIC)) {
xfs_alert(mp,
"%s: Bad inode log record, rec ptr "PTR_FMT", ino %lld",
__func__, item, in_f->ilf_ino);
error = -EFSCORRUPTED;
goto out_release;
}
/*
* If the inode has an LSN in it, recover the inode only if the on-disk
* inode's LSN is older than the lsn of the transaction we are
* replaying. We can have multiple checkpoints with the same start LSN,
* so the current LSN being equal to the on-disk LSN doesn't necessarily
* mean that the on-disk inode is more recent than the change being
* replayed.
*
* We must check the current_lsn against the on-disk inode
* here because the we can't trust the log dinode to contain a valid LSN
* (see comment below before replaying the log dinode for details).
*
* Note: we still need to replay an owner change even though the inode
* is more recent than the transaction as there is no guarantee that all
* the btree blocks are more recent than this transaction, too.
*/
if (dip->di_version >= 3) {
xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) > 0) {
trace_xfs_log_recover_inode_skip(log, in_f);
error = 0;
goto out_owner_change;
}
}
/*
* di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
* are transactional and if ordering is necessary we can determine that
* more accurately by the LSN field in the V3 inode core. Don't trust
* the inode versions we might be changing them here - use the
* superblock flag to determine whether we need to look at di_flushiter
* to skip replay when the on disk inode is newer than the log one
*/
if (!xfs_has_v3inodes(mp)) {
if (ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
/*
* Deal with the wrap case, DI_MAX_FLUSH is less
* than smaller numbers
*/
if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
/* do nothing */
} else {
trace_xfs_log_recover_inode_skip(log, in_f);
error = 0;
goto out_release;
}
}
/* Take the opportunity to reset the flush iteration count */
ldip->di_flushiter = 0;
}
if (unlikely(S_ISREG(ldip->di_mode))) {
if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
(ldip->di_format != XFS_DINODE_FMT_BTREE)) {
XFS_CORRUPTION_ERROR(
"Bad log dinode data fork format for regular file",
XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx, data fork format 0x%x",
in_f->ilf_ino, ldip->di_format);
error = -EFSCORRUPTED;
goto out_release;
}
} else if (unlikely(S_ISDIR(ldip->di_mode))) {
if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
(ldip->di_format != XFS_DINODE_FMT_BTREE) &&
(ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
XFS_CORRUPTION_ERROR(
"Bad log dinode data fork format for directory",
XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx, data fork format 0x%x",
in_f->ilf_ino, ldip->di_format);
error = -EFSCORRUPTED;
goto out_release;
}
}
error = xlog_dinode_verify_extent_counts(mp, ldip);
if (error)
goto out_release;
if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
XFS_CORRUPTION_ERROR("Bad log dinode fork offset",
XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx, di_forkoff 0x%x",
in_f->ilf_ino, ldip->di_forkoff);
error = -EFSCORRUPTED;
goto out_release;
}
isize = xfs_log_dinode_size(mp);
if (unlikely(item->ri_buf[1].i_len > isize)) {
XFS_CORRUPTION_ERROR("Bad log dinode size", XFS_ERRLEVEL_LOW,
mp, ldip, sizeof(*ldip));
xfs_alert(mp,
"Bad inode 0x%llx log dinode size 0x%x",
in_f->ilf_ino, item->ri_buf[1].i_len);
error = -EFSCORRUPTED;
goto out_release;
}
/*
* Recover the log dinode inode into the on disk inode.
*
* The LSN in the log dinode is garbage - it can be zero or reflect
* stale in-memory runtime state that isn't coherent with the changes
* logged in this transaction or the changes written to the on-disk
* inode. Hence we write the current lSN into the inode because that
* matches what xfs_iflush() would write inode the inode when flushing
* the changes in this transaction.
*/
xfs_log_dinode_to_disk(ldip, dip, current_lsn);
fields = in_f->ilf_fields;
if (fields & XFS_ILOG_DEV)
xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
if (in_f->ilf_size == 2)
goto out_owner_change;
len = item->ri_buf[2].i_len;
src = item->ri_buf[2].i_addr;
ASSERT(in_f->ilf_size <= 4);
ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
ASSERT(!(fields & XFS_ILOG_DFORK) ||
(len == xlog_calc_iovec_len(in_f->ilf_dsize)));
switch (fields & XFS_ILOG_DFORK) {
case XFS_ILOG_DDATA:
case XFS_ILOG_DEXT:
memcpy(XFS_DFORK_DPTR(dip), src, len);
break;
case XFS_ILOG_DBROOT:
xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
(struct xfs_bmdr_block *)XFS_DFORK_DPTR(dip),
XFS_DFORK_DSIZE(dip, mp));
break;
default:
/*
* There are no data fork flags set.
*/
ASSERT((fields & XFS_ILOG_DFORK) == 0);
break;
}
/*
* If we logged any attribute data, recover it. There may or
* may not have been any other non-core data logged in this
* transaction.
*/
if (in_f->ilf_fields & XFS_ILOG_AFORK) {
if (in_f->ilf_fields & XFS_ILOG_DFORK) {
attr_index = 3;
} else {
attr_index = 2;
}
len = item->ri_buf[attr_index].i_len;
src = item->ri_buf[attr_index].i_addr;
ASSERT(len == xlog_calc_iovec_len(in_f->ilf_asize));
switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
case XFS_ILOG_ADATA:
case XFS_ILOG_AEXT:
dest = XFS_DFORK_APTR(dip);
ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
memcpy(dest, src, len);
break;
case XFS_ILOG_ABROOT:
dest = XFS_DFORK_APTR(dip);
xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
len, (struct xfs_bmdr_block *)dest,
XFS_DFORK_ASIZE(dip, mp));
break;
default:
xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
ASSERT(0);
error = -EFSCORRUPTED;
goto out_release;
}
}
out_owner_change:
/* Recover the swapext owner change unless inode has been deleted */
if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
(dip->di_mode != 0))
error = xfs_recover_inode_owner_change(mp, dip, in_f,
buffer_list);
/* re-generate the checksum and validate the recovered inode. */
xfs_dinode_calc_crc(log->l_mp, dip);
fa = xfs_dinode_verify(log->l_mp, in_f->ilf_ino, dip);
if (fa) {
XFS_CORRUPTION_ERROR(
"Bad dinode after recovery",
XFS_ERRLEVEL_LOW, mp, dip, sizeof(*dip));
xfs_alert(mp,
"Metadata corruption detected at %pS, inode 0x%llx",
fa, in_f->ilf_ino);
error = -EFSCORRUPTED;
goto out_release;
}
ASSERT(bp->b_mount == mp);
bp->b_flags |= _XBF_LOGRECOVERY;
xfs_buf_delwri_queue(bp, buffer_list);
out_release:
xfs_buf_relse(bp);
error:
if (need_free)
kmem_free(in_f);
return error;
}
const struct xlog_recover_item_ops xlog_inode_item_ops = {
.item_type = XFS_LI_INODE,
.ra_pass2 = xlog_recover_inode_ra_pass2,
.commit_pass2 = xlog_recover_inode_commit_pass2,
};