mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-09 23:00:21 +00:00
562bef4259
No functional difference, it just makes a little more sense to update the tag map where we actually allocate the tag. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com> Tested-by: Sagi Grimberg <sagi@grimberg.me>
501 lines
12 KiB
C
501 lines
12 KiB
C
/*
|
|
* blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2016 Jens Axboe
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/blk-mq.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-mq-tag.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_mq_sched_free_hctx_data(struct request_queue *q,
|
|
void (*exit)(struct blk_mq_hw_ctx *))
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (exit && hctx->sched_data)
|
|
exit(hctx);
|
|
kfree(hctx->sched_data);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
|
|
|
|
int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
|
|
int (*init)(struct blk_mq_hw_ctx *),
|
|
void (*exit)(struct blk_mq_hw_ctx *))
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int ret;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
|
|
if (!hctx->sched_data) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
if (init) {
|
|
ret = init(hctx);
|
|
if (ret) {
|
|
/*
|
|
* We don't want to give exit() a partially
|
|
* initialized sched_data. init() must clean up
|
|
* if it fails.
|
|
*/
|
|
kfree(hctx->sched_data);
|
|
hctx->sched_data = NULL;
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
blk_mq_sched_free_hctx_data(q, exit);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
|
|
|
|
static void __blk_mq_sched_assign_ioc(struct request_queue *q,
|
|
struct request *rq,
|
|
struct bio *bio,
|
|
struct io_context *ioc)
|
|
{
|
|
struct io_cq *icq;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
icq = ioc_lookup_icq(ioc, q);
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
if (!icq) {
|
|
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
|
|
if (!icq)
|
|
return;
|
|
}
|
|
|
|
rq->elv.icq = icq;
|
|
if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
|
|
rq->rq_flags |= RQF_ELVPRIV;
|
|
get_io_context(icq->ioc);
|
|
return;
|
|
}
|
|
|
|
rq->elv.icq = NULL;
|
|
}
|
|
|
|
static void blk_mq_sched_assign_ioc(struct request_queue *q,
|
|
struct request *rq, struct bio *bio)
|
|
{
|
|
struct io_context *ioc;
|
|
|
|
ioc = rq_ioc(bio);
|
|
if (ioc)
|
|
__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
|
|
}
|
|
|
|
struct request *blk_mq_sched_get_request(struct request_queue *q,
|
|
struct bio *bio,
|
|
unsigned int op,
|
|
struct blk_mq_alloc_data *data)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
struct request *rq;
|
|
|
|
blk_queue_enter_live(q);
|
|
data->q = q;
|
|
if (likely(!data->ctx))
|
|
data->ctx = blk_mq_get_ctx(q);
|
|
if (likely(!data->hctx))
|
|
data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
|
|
|
|
if (e) {
|
|
data->flags |= BLK_MQ_REQ_INTERNAL;
|
|
|
|
/*
|
|
* Flush requests are special and go directly to the
|
|
* dispatch list.
|
|
*/
|
|
if (!op_is_flush(op) && e->type->ops.mq.get_request) {
|
|
rq = e->type->ops.mq.get_request(q, op, data);
|
|
if (rq)
|
|
rq->rq_flags |= RQF_QUEUED;
|
|
} else
|
|
rq = __blk_mq_alloc_request(data, op);
|
|
} else {
|
|
rq = __blk_mq_alloc_request(data, op);
|
|
}
|
|
|
|
if (rq) {
|
|
if (!op_is_flush(op)) {
|
|
rq->elv.icq = NULL;
|
|
if (e && e->type->icq_cache)
|
|
blk_mq_sched_assign_ioc(q, rq, bio);
|
|
}
|
|
data->hctx->queued++;
|
|
return rq;
|
|
}
|
|
|
|
blk_queue_exit(q);
|
|
return NULL;
|
|
}
|
|
|
|
void blk_mq_sched_put_request(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
if (rq->rq_flags & RQF_ELVPRIV) {
|
|
blk_mq_sched_put_rq_priv(rq->q, rq);
|
|
if (rq->elv.icq) {
|
|
put_io_context(rq->elv.icq->ioc);
|
|
rq->elv.icq = NULL;
|
|
}
|
|
}
|
|
|
|
if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
|
|
e->type->ops.mq.put_request(rq);
|
|
else
|
|
blk_mq_finish_request(rq);
|
|
}
|
|
|
|
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct elevator_queue *e = hctx->queue->elevator;
|
|
const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
|
|
bool did_work = false;
|
|
LIST_HEAD(rq_list);
|
|
|
|
if (unlikely(blk_mq_hctx_stopped(hctx)))
|
|
return;
|
|
|
|
hctx->run++;
|
|
|
|
/*
|
|
* If we have previous entries on our dispatch list, grab them first for
|
|
* more fair dispatch.
|
|
*/
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
spin_lock(&hctx->lock);
|
|
if (!list_empty(&hctx->dispatch))
|
|
list_splice_init(&hctx->dispatch, &rq_list);
|
|
spin_unlock(&hctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Only ask the scheduler for requests, if we didn't have residual
|
|
* requests from the dispatch list. This is to avoid the case where
|
|
* we only ever dispatch a fraction of the requests available because
|
|
* of low device queue depth. Once we pull requests out of the IO
|
|
* scheduler, we can no longer merge or sort them. So it's best to
|
|
* leave them there for as long as we can. Mark the hw queue as
|
|
* needing a restart in that case.
|
|
*/
|
|
if (!list_empty(&rq_list)) {
|
|
blk_mq_sched_mark_restart_hctx(hctx);
|
|
did_work = blk_mq_dispatch_rq_list(hctx, &rq_list);
|
|
} else if (!has_sched_dispatch) {
|
|
blk_mq_flush_busy_ctxs(hctx, &rq_list);
|
|
blk_mq_dispatch_rq_list(hctx, &rq_list);
|
|
}
|
|
|
|
/*
|
|
* We want to dispatch from the scheduler if we had no work left
|
|
* on the dispatch list, OR if we did have work but weren't able
|
|
* to make progress.
|
|
*/
|
|
if (!did_work && has_sched_dispatch) {
|
|
do {
|
|
struct request *rq;
|
|
|
|
rq = e->type->ops.mq.dispatch_request(hctx);
|
|
if (!rq)
|
|
break;
|
|
list_add(&rq->queuelist, &rq_list);
|
|
} while (blk_mq_dispatch_rq_list(hctx, &rq_list));
|
|
}
|
|
}
|
|
|
|
void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
|
|
struct list_head *rq_list,
|
|
struct request *(*get_rq)(struct blk_mq_hw_ctx *))
|
|
{
|
|
do {
|
|
struct request *rq;
|
|
|
|
rq = get_rq(hctx);
|
|
if (!rq)
|
|
break;
|
|
|
|
list_add_tail(&rq->queuelist, rq_list);
|
|
} while (1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
|
|
|
|
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
|
|
struct request **merged_request)
|
|
{
|
|
struct request *rq;
|
|
|
|
switch (elv_merge(q, &rq, bio)) {
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (!bio_attempt_back_merge(q, rq, bio))
|
|
return false;
|
|
*merged_request = attempt_back_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
|
|
return true;
|
|
case ELEVATOR_FRONT_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (!bio_attempt_front_merge(q, rq, bio))
|
|
return false;
|
|
*merged_request = attempt_front_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
|
|
|
|
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
if (e->type->ops.mq.bio_merge) {
|
|
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
blk_mq_put_ctx(ctx);
|
|
return e->type->ops.mq.bio_merge(hctx, bio);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
|
|
{
|
|
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
|
|
|
|
void blk_mq_sched_request_inserted(struct request *rq)
|
|
{
|
|
trace_block_rq_insert(rq->q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
|
|
|
|
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
|
|
struct request *rq)
|
|
{
|
|
if (rq->tag == -1) {
|
|
rq->rq_flags |= RQF_SORTED;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If we already have a real request tag, send directly to
|
|
* the dispatch list.
|
|
*/
|
|
spin_lock(&hctx->lock);
|
|
list_add(&rq->queuelist, &hctx->dispatch);
|
|
spin_unlock(&hctx->lock);
|
|
return true;
|
|
}
|
|
|
|
static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
|
|
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
if (blk_mq_hctx_has_pending(hctx))
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
}
|
|
|
|
void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
unsigned int i;
|
|
|
|
if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
|
|
if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
blk_mq_sched_restart_hctx(hctx);
|
|
}
|
|
} else {
|
|
blk_mq_sched_restart_hctx(hctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add flush/fua to the queue. If we fail getting a driver tag, then
|
|
* punt to the requeue list. Requeue will re-invoke us from a context
|
|
* that's safe to block from.
|
|
*/
|
|
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
|
|
struct request *rq, bool can_block)
|
|
{
|
|
if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
|
|
blk_insert_flush(rq);
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
} else
|
|
blk_mq_add_to_requeue_list(rq, false, true);
|
|
}
|
|
|
|
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
|
|
bool run_queue, bool async, bool can_block)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
|
|
blk_mq_sched_insert_flush(hctx, rq, can_block);
|
|
return;
|
|
}
|
|
|
|
if (e && blk_mq_sched_bypass_insert(hctx, rq))
|
|
goto run;
|
|
|
|
if (e && e->type->ops.mq.insert_requests) {
|
|
LIST_HEAD(list);
|
|
|
|
list_add(&rq->queuelist, &list);
|
|
e->type->ops.mq.insert_requests(hctx, &list, at_head);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
__blk_mq_insert_request(hctx, rq, at_head);
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
run:
|
|
if (run_queue)
|
|
blk_mq_run_hw_queue(hctx, async);
|
|
}
|
|
|
|
void blk_mq_sched_insert_requests(struct request_queue *q,
|
|
struct blk_mq_ctx *ctx,
|
|
struct list_head *list, bool run_queue_async)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
struct elevator_queue *e = hctx->queue->elevator;
|
|
|
|
if (e) {
|
|
struct request *rq, *next;
|
|
|
|
/*
|
|
* We bypass requests that already have a driver tag assigned,
|
|
* which should only be flushes. Flushes are only ever inserted
|
|
* as single requests, so we shouldn't ever hit the
|
|
* WARN_ON_ONCE() below (but let's handle it just in case).
|
|
*/
|
|
list_for_each_entry_safe(rq, next, list, queuelist) {
|
|
if (WARN_ON_ONCE(rq->tag != -1)) {
|
|
list_del_init(&rq->queuelist);
|
|
blk_mq_sched_bypass_insert(hctx, rq);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (e && e->type->ops.mq.insert_requests)
|
|
e->type->ops.mq.insert_requests(hctx, list, false);
|
|
else
|
|
blk_mq_insert_requests(hctx, ctx, list);
|
|
|
|
blk_mq_run_hw_queue(hctx, run_queue_async);
|
|
}
|
|
|
|
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
if (hctx->sched_tags) {
|
|
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
|
|
blk_mq_free_rq_map(hctx->sched_tags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
}
|
|
|
|
int blk_mq_sched_setup(struct request_queue *q)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int ret, i;
|
|
|
|
/*
|
|
* Default to 256, since we don't split into sync/async like the
|
|
* old code did. Additionally, this is a per-hw queue depth.
|
|
*/
|
|
q->nr_requests = 2 * BLKDEV_MAX_RQ;
|
|
|
|
/*
|
|
* We're switching to using an IO scheduler, so setup the hctx
|
|
* scheduler tags and switch the request map from the regular
|
|
* tags to scheduler tags. First allocate what we need, so we
|
|
* can safely fail and fallback, if needed.
|
|
*/
|
|
ret = 0;
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
hctx->sched_tags = blk_mq_alloc_rq_map(set, i,
|
|
q->nr_requests, set->reserved_tags);
|
|
if (!hctx->sched_tags) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we failed, free what we did allocate
|
|
*/
|
|
if (ret) {
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (!hctx->sched_tags)
|
|
continue;
|
|
blk_mq_sched_free_tags(set, hctx, i);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void blk_mq_sched_teardown(struct request_queue *q)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
blk_mq_sched_free_tags(set, hctx, i);
|
|
}
|
|
|
|
int blk_mq_sched_init(struct request_queue *q)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&q->sysfs_lock);
|
|
ret = elevator_init(q, NULL);
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
return ret;
|
|
}
|