mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-13 00:29:50 +00:00
8d0c21b506
objtool throws the following unannotated intra-function call warnings: arch/powerpc/kernel/entry_64.o: warning: objtool: .text+0x4: unannotated intra-function call arch/powerpc/kvm/book3s_hv_rmhandlers.o: warning: objtool: .text+0xe64: unannotated intra-function call arch/powerpc/kvm/book3s_hv_rmhandlers.o: warning: objtool: .text+0xee4: unannotated intra-function call Fix these warnings by annotating intra-function calls, using ANNOTATE_INTRA_FUNCTION_CALL macro, to indicate that the branch targets are valid. Tested-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Sathvika Vasireddy <sv@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20221114175754.1131267-5-sv@linux.ibm.com
332 lines
8.6 KiB
ArmAsm
332 lines
8.6 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
* Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP
|
|
* Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
|
|
* Adapted for Power Macintosh by Paul Mackerras.
|
|
* Low-level exception handlers and MMU support
|
|
* rewritten by Paul Mackerras.
|
|
* Copyright (C) 1996 Paul Mackerras.
|
|
* MPC8xx modifications Copyright (C) 1997 Dan Malek (dmalek@jlc.net).
|
|
*
|
|
* This file contains the system call entry code, context switch
|
|
* code, and exception/interrupt return code for PowerPC.
|
|
*/
|
|
|
|
#include <linux/objtool.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/code-patching-asm.h>
|
|
#include <asm/ppc_asm.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/context_tracking.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/barrier.h>
|
|
#include <asm/export.h>
|
|
#include <asm/asm-compat.h>
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
#include <asm/exception-64s.h>
|
|
#else
|
|
#include <asm/exception-64e.h>
|
|
#endif
|
|
#include <asm/feature-fixups.h>
|
|
#include <asm/kup.h>
|
|
|
|
/*
|
|
* System calls.
|
|
*/
|
|
.section ".text"
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
|
|
#define FLUSH_COUNT_CACHE \
|
|
1: nop; \
|
|
patch_site 1b, patch__call_flush_branch_caches1; \
|
|
1: nop; \
|
|
patch_site 1b, patch__call_flush_branch_caches2; \
|
|
1: nop; \
|
|
patch_site 1b, patch__call_flush_branch_caches3
|
|
|
|
.macro nops number
|
|
.rept \number
|
|
nop
|
|
.endr
|
|
.endm
|
|
|
|
.balign 32
|
|
.global flush_branch_caches
|
|
flush_branch_caches:
|
|
/* Save LR into r9 */
|
|
mflr r9
|
|
|
|
// Flush the link stack
|
|
.rept 64
|
|
ANNOTATE_INTRA_FUNCTION_CALL
|
|
bl .+4
|
|
.endr
|
|
b 1f
|
|
nops 6
|
|
|
|
.balign 32
|
|
/* Restore LR */
|
|
1: mtlr r9
|
|
|
|
// If we're just flushing the link stack, return here
|
|
3: nop
|
|
patch_site 3b patch__flush_link_stack_return
|
|
|
|
li r9,0x7fff
|
|
mtctr r9
|
|
|
|
PPC_BCCTR_FLUSH
|
|
|
|
2: nop
|
|
patch_site 2b patch__flush_count_cache_return
|
|
|
|
nops 3
|
|
|
|
.rept 278
|
|
.balign 32
|
|
PPC_BCCTR_FLUSH
|
|
nops 7
|
|
.endr
|
|
|
|
blr
|
|
#else
|
|
#define FLUSH_COUNT_CACHE
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
/*
|
|
* This routine switches between two different tasks. The process
|
|
* state of one is saved on its kernel stack. Then the state
|
|
* of the other is restored from its kernel stack. The memory
|
|
* management hardware is updated to the second process's state.
|
|
* Finally, we can return to the second process, via interrupt_return.
|
|
* On entry, r3 points to the THREAD for the current task, r4
|
|
* points to the THREAD for the new task.
|
|
*
|
|
* Note: there are two ways to get to the "going out" portion
|
|
* of this code; either by coming in via the entry (_switch)
|
|
* or via "fork" which must set up an environment equivalent
|
|
* to the "_switch" path. If you change this you'll have to change
|
|
* the fork code also.
|
|
*
|
|
* The code which creates the new task context is in 'copy_thread'
|
|
* in arch/powerpc/kernel/process.c
|
|
*/
|
|
.align 7
|
|
_GLOBAL(_switch)
|
|
mflr r0
|
|
std r0,16(r1)
|
|
stdu r1,-SWITCH_FRAME_SIZE(r1)
|
|
/* r3-r13 are caller saved -- Cort */
|
|
SAVE_NVGPRS(r1)
|
|
std r0,_NIP(r1) /* Return to switch caller */
|
|
mfcr r23
|
|
std r23,_CCR(r1)
|
|
std r1,KSP(r3) /* Set old stack pointer */
|
|
|
|
kuap_check_amr r9, r10
|
|
|
|
FLUSH_COUNT_CACHE /* Clobbers r9, ctr */
|
|
|
|
/*
|
|
* On SMP kernels, care must be taken because a task may be
|
|
* scheduled off CPUx and on to CPUy. Memory ordering must be
|
|
* considered.
|
|
*
|
|
* Cacheable stores on CPUx will be visible when the task is
|
|
* scheduled on CPUy by virtue of the core scheduler barriers
|
|
* (see "Notes on Program-Order guarantees on SMP systems." in
|
|
* kernel/sched/core.c).
|
|
*
|
|
* Uncacheable stores in the case of involuntary preemption must
|
|
* be taken care of. The smp_mb__after_spinlock() in __schedule()
|
|
* is implemented as hwsync on powerpc, which orders MMIO too. So
|
|
* long as there is an hwsync in the context switch path, it will
|
|
* be executed on the source CPU after the task has performed
|
|
* all MMIO ops on that CPU, and on the destination CPU before the
|
|
* task performs any MMIO ops there.
|
|
*/
|
|
|
|
/*
|
|
* The kernel context switch path must contain a spin_lock,
|
|
* which contains larx/stcx, which will clear any reservation
|
|
* of the task being switched.
|
|
*/
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
/* Cancel all explict user streams as they will have no use after context
|
|
* switch and will stop the HW from creating streams itself
|
|
*/
|
|
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r6)
|
|
#endif
|
|
|
|
addi r6,r4,-THREAD /* Convert THREAD to 'current' */
|
|
std r6,PACACURRENT(r13) /* Set new 'current' */
|
|
#if defined(CONFIG_STACKPROTECTOR)
|
|
ld r6, TASK_CANARY(r6)
|
|
std r6, PACA_CANARY(r13)
|
|
#endif
|
|
|
|
ld r8,KSP(r4) /* new stack pointer */
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
BEGIN_MMU_FTR_SECTION
|
|
b 2f
|
|
END_MMU_FTR_SECTION_IFSET(MMU_FTR_TYPE_RADIX)
|
|
BEGIN_FTR_SECTION
|
|
clrrdi r6,r8,28 /* get its ESID */
|
|
clrrdi r9,r1,28 /* get current sp ESID */
|
|
FTR_SECTION_ELSE
|
|
clrrdi r6,r8,40 /* get its 1T ESID */
|
|
clrrdi r9,r1,40 /* get current sp 1T ESID */
|
|
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_1T_SEGMENT)
|
|
clrldi. r0,r6,2 /* is new ESID c00000000? */
|
|
cmpd cr1,r6,r9 /* or is new ESID the same as current ESID? */
|
|
cror eq,4*cr1+eq,eq
|
|
beq 2f /* if yes, don't slbie it */
|
|
|
|
/* Bolt in the new stack SLB entry */
|
|
ld r7,KSP_VSID(r4) /* Get new stack's VSID */
|
|
oris r0,r6,(SLB_ESID_V)@h
|
|
ori r0,r0,(SLB_NUM_BOLTED-1)@l
|
|
BEGIN_FTR_SECTION
|
|
li r9,MMU_SEGSIZE_1T /* insert B field */
|
|
oris r6,r6,(MMU_SEGSIZE_1T << SLBIE_SSIZE_SHIFT)@h
|
|
rldimi r7,r9,SLB_VSID_SSIZE_SHIFT,0
|
|
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
|
|
|
|
/* Update the last bolted SLB. No write barriers are needed
|
|
* here, provided we only update the current CPU's SLB shadow
|
|
* buffer.
|
|
*/
|
|
ld r9,PACA_SLBSHADOWPTR(r13)
|
|
li r12,0
|
|
std r12,SLBSHADOW_STACKESID(r9) /* Clear ESID */
|
|
li r12,SLBSHADOW_STACKVSID
|
|
STDX_BE r7,r12,r9 /* Save VSID */
|
|
li r12,SLBSHADOW_STACKESID
|
|
STDX_BE r0,r12,r9 /* Save ESID */
|
|
|
|
/* No need to check for MMU_FTR_NO_SLBIE_B here, since when
|
|
* we have 1TB segments, the only CPUs known to have the errata
|
|
* only support less than 1TB of system memory and we'll never
|
|
* actually hit this code path.
|
|
*/
|
|
|
|
isync
|
|
slbie r6
|
|
BEGIN_FTR_SECTION
|
|
slbie r6 /* Workaround POWER5 < DD2.1 issue */
|
|
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
|
|
slbmte r7,r0
|
|
isync
|
|
2:
|
|
#endif /* CONFIG_PPC_64S_HASH_MMU */
|
|
|
|
clrrdi r7, r8, THREAD_SHIFT /* base of new stack */
|
|
/* Note: this uses SWITCH_FRAME_SIZE rather than INT_FRAME_SIZE
|
|
because we don't need to leave the 288-byte ABI gap at the
|
|
top of the kernel stack. */
|
|
addi r7,r7,THREAD_SIZE-SWITCH_FRAME_SIZE
|
|
|
|
/*
|
|
* PMU interrupts in radix may come in here. They will use r1, not
|
|
* PACAKSAVE, so this stack switch will not cause a problem. They
|
|
* will store to the process stack, which may then be migrated to
|
|
* another CPU. However the rq lock release on this CPU paired with
|
|
* the rq lock acquire on the new CPU before the stack becomes
|
|
* active on the new CPU, will order those stores.
|
|
*/
|
|
mr r1,r8 /* start using new stack pointer */
|
|
std r7,PACAKSAVE(r13)
|
|
|
|
ld r6,_CCR(r1)
|
|
mtcrf 0xFF,r6
|
|
|
|
/* r3-r13 are destroyed -- Cort */
|
|
REST_NVGPRS(r1)
|
|
|
|
/* convert old thread to its task_struct for return value */
|
|
addi r3,r3,-THREAD
|
|
ld r7,_NIP(r1) /* Return to _switch caller in new task */
|
|
mtlr r7
|
|
addi r1,r1,SWITCH_FRAME_SIZE
|
|
blr
|
|
|
|
_GLOBAL(enter_prom)
|
|
mflr r0
|
|
std r0,16(r1)
|
|
stdu r1,-SWITCH_FRAME_SIZE(r1) /* Save SP and create stack space */
|
|
|
|
/* Because PROM is running in 32b mode, it clobbers the high order half
|
|
* of all registers that it saves. We therefore save those registers
|
|
* PROM might touch to the stack. (r0, r3-r13 are caller saved)
|
|
*/
|
|
SAVE_GPR(2, r1)
|
|
SAVE_GPR(13, r1)
|
|
SAVE_NVGPRS(r1)
|
|
mfcr r10
|
|
mfmsr r11
|
|
std r10,_CCR(r1)
|
|
std r11,_MSR(r1)
|
|
|
|
/* Put PROM address in SRR0 */
|
|
mtsrr0 r4
|
|
|
|
/* Setup our trampoline return addr in LR */
|
|
bcl 20,31,$+4
|
|
0: mflr r4
|
|
addi r4,r4,(1f - 0b)
|
|
mtlr r4
|
|
|
|
/* Prepare a 32-bit mode big endian MSR
|
|
*/
|
|
#ifdef CONFIG_PPC_BOOK3E_64
|
|
rlwinm r11,r11,0,1,31
|
|
mtsrr1 r11
|
|
rfi
|
|
#else /* CONFIG_PPC_BOOK3E_64 */
|
|
LOAD_REG_IMMEDIATE(r12, MSR_SF | MSR_LE)
|
|
andc r11,r11,r12
|
|
mtsrr1 r11
|
|
RFI_TO_KERNEL
|
|
#endif /* CONFIG_PPC_BOOK3E_64 */
|
|
|
|
1: /* Return from OF */
|
|
FIXUP_ENDIAN
|
|
|
|
/* Just make sure that r1 top 32 bits didn't get
|
|
* corrupt by OF
|
|
*/
|
|
rldicl r1,r1,0,32
|
|
|
|
/* Restore the MSR (back to 64 bits) */
|
|
ld r0,_MSR(r1)
|
|
MTMSRD(r0)
|
|
isync
|
|
|
|
/* Restore other registers */
|
|
REST_GPR(2, r1)
|
|
REST_GPR(13, r1)
|
|
REST_NVGPRS(r1)
|
|
ld r4,_CCR(r1)
|
|
mtcr r4
|
|
|
|
addi r1,r1,SWITCH_FRAME_SIZE
|
|
ld r0,16(r1)
|
|
mtlr r0
|
|
blr
|