mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-04 04:04:19 +00:00
bb54668837
Add an implementation of ChaCha20 using the Zvkb extension. The assembly code is derived from OpenSSL code (openssl/openssl#21923) that was dual-licensed so that it could be reused in the kernel. Nevertheless, the assembly has been significantly reworked for integration with the kernel, for example by using a regular .S file instead of the so-called perlasm, using the assembler instead of bare '.inst', and reducing code duplication. Signed-off-by: Jerry Shih <jerry.shih@sifive.com> Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20240122002024.27477-6-ebiggers@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
295 lines
8.0 KiB
ArmAsm
295 lines
8.0 KiB
ArmAsm
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
|
|
//
|
|
// This file is dual-licensed, meaning that you can use it under your
|
|
// choice of either of the following two licenses:
|
|
//
|
|
// Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License 2.0 (the "License"). You can obtain
|
|
// a copy in the file LICENSE in the source distribution or at
|
|
// https://www.openssl.org/source/license.html
|
|
//
|
|
// or
|
|
//
|
|
// Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
|
|
// Copyright 2024 Google LLC
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// 1. Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// The generated code of this file depends on the following RISC-V extensions:
|
|
// - RV64I
|
|
// - RISC-V Vector ('V') with VLEN >= 128
|
|
// - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
.text
|
|
.option arch, +zvkb
|
|
|
|
#define KEYP a0
|
|
#define INP a1
|
|
#define OUTP a2
|
|
#define LEN a3
|
|
#define IVP a4
|
|
|
|
#define CONSTS0 a5
|
|
#define CONSTS1 a6
|
|
#define CONSTS2 a7
|
|
#define CONSTS3 t0
|
|
#define TMP t1
|
|
#define VL t2
|
|
#define STRIDE t3
|
|
#define NROUNDS t4
|
|
#define KEY0 s0
|
|
#define KEY1 s1
|
|
#define KEY2 s2
|
|
#define KEY3 s3
|
|
#define KEY4 s4
|
|
#define KEY5 s5
|
|
#define KEY6 s6
|
|
#define KEY7 s7
|
|
#define COUNTER s8
|
|
#define NONCE0 s9
|
|
#define NONCE1 s10
|
|
#define NONCE2 s11
|
|
|
|
.macro chacha_round a0, b0, c0, d0, a1, b1, c1, d1, \
|
|
a2, b2, c2, d2, a3, b3, c3, d3
|
|
// a += b; d ^= a; d = rol(d, 16);
|
|
vadd.vv \a0, \a0, \b0
|
|
vadd.vv \a1, \a1, \b1
|
|
vadd.vv \a2, \a2, \b2
|
|
vadd.vv \a3, \a3, \b3
|
|
vxor.vv \d0, \d0, \a0
|
|
vxor.vv \d1, \d1, \a1
|
|
vxor.vv \d2, \d2, \a2
|
|
vxor.vv \d3, \d3, \a3
|
|
vror.vi \d0, \d0, 32 - 16
|
|
vror.vi \d1, \d1, 32 - 16
|
|
vror.vi \d2, \d2, 32 - 16
|
|
vror.vi \d3, \d3, 32 - 16
|
|
|
|
// c += d; b ^= c; b = rol(b, 12);
|
|
vadd.vv \c0, \c0, \d0
|
|
vadd.vv \c1, \c1, \d1
|
|
vadd.vv \c2, \c2, \d2
|
|
vadd.vv \c3, \c3, \d3
|
|
vxor.vv \b0, \b0, \c0
|
|
vxor.vv \b1, \b1, \c1
|
|
vxor.vv \b2, \b2, \c2
|
|
vxor.vv \b3, \b3, \c3
|
|
vror.vi \b0, \b0, 32 - 12
|
|
vror.vi \b1, \b1, 32 - 12
|
|
vror.vi \b2, \b2, 32 - 12
|
|
vror.vi \b3, \b3, 32 - 12
|
|
|
|
// a += b; d ^= a; d = rol(d, 8);
|
|
vadd.vv \a0, \a0, \b0
|
|
vadd.vv \a1, \a1, \b1
|
|
vadd.vv \a2, \a2, \b2
|
|
vadd.vv \a3, \a3, \b3
|
|
vxor.vv \d0, \d0, \a0
|
|
vxor.vv \d1, \d1, \a1
|
|
vxor.vv \d2, \d2, \a2
|
|
vxor.vv \d3, \d3, \a3
|
|
vror.vi \d0, \d0, 32 - 8
|
|
vror.vi \d1, \d1, 32 - 8
|
|
vror.vi \d2, \d2, 32 - 8
|
|
vror.vi \d3, \d3, 32 - 8
|
|
|
|
// c += d; b ^= c; b = rol(b, 7);
|
|
vadd.vv \c0, \c0, \d0
|
|
vadd.vv \c1, \c1, \d1
|
|
vadd.vv \c2, \c2, \d2
|
|
vadd.vv \c3, \c3, \d3
|
|
vxor.vv \b0, \b0, \c0
|
|
vxor.vv \b1, \b1, \c1
|
|
vxor.vv \b2, \b2, \c2
|
|
vxor.vv \b3, \b3, \c3
|
|
vror.vi \b0, \b0, 32 - 7
|
|
vror.vi \b1, \b1, 32 - 7
|
|
vror.vi \b2, \b2, 32 - 7
|
|
vror.vi \b3, \b3, 32 - 7
|
|
.endm
|
|
|
|
// void chacha20_zvkb(const u32 key[8], const u8 *in, u8 *out, size_t len,
|
|
// const u32 iv[4]);
|
|
//
|
|
// |len| must be nonzero and a multiple of 64 (CHACHA_BLOCK_SIZE).
|
|
// The counter is treated as 32-bit, following the RFC7539 convention.
|
|
SYM_FUNC_START(chacha20_zvkb)
|
|
srli LEN, LEN, 6 // Bytes to blocks
|
|
|
|
addi sp, sp, -96
|
|
sd s0, 0(sp)
|
|
sd s1, 8(sp)
|
|
sd s2, 16(sp)
|
|
sd s3, 24(sp)
|
|
sd s4, 32(sp)
|
|
sd s5, 40(sp)
|
|
sd s6, 48(sp)
|
|
sd s7, 56(sp)
|
|
sd s8, 64(sp)
|
|
sd s9, 72(sp)
|
|
sd s10, 80(sp)
|
|
sd s11, 88(sp)
|
|
|
|
li STRIDE, 64
|
|
|
|
// Set up the initial state matrix in scalar registers.
|
|
li CONSTS0, 0x61707865 // "expa" little endian
|
|
li CONSTS1, 0x3320646e // "nd 3" little endian
|
|
li CONSTS2, 0x79622d32 // "2-by" little endian
|
|
li CONSTS3, 0x6b206574 // "te k" little endian
|
|
lw KEY0, 0(KEYP)
|
|
lw KEY1, 4(KEYP)
|
|
lw KEY2, 8(KEYP)
|
|
lw KEY3, 12(KEYP)
|
|
lw KEY4, 16(KEYP)
|
|
lw KEY5, 20(KEYP)
|
|
lw KEY6, 24(KEYP)
|
|
lw KEY7, 28(KEYP)
|
|
lw COUNTER, 0(IVP)
|
|
lw NONCE0, 4(IVP)
|
|
lw NONCE1, 8(IVP)
|
|
lw NONCE2, 12(IVP)
|
|
|
|
.Lblock_loop:
|
|
// Set vl to the number of blocks to process in this iteration.
|
|
vsetvli VL, LEN, e32, m1, ta, ma
|
|
|
|
// Set up the initial state matrix for the next VL blocks in v0-v15.
|
|
// v{i} holds the i'th 32-bit word of the state matrix for all blocks.
|
|
// Note that only the counter word, at index 12, differs across blocks.
|
|
vmv.v.x v0, CONSTS0
|
|
vmv.v.x v1, CONSTS1
|
|
vmv.v.x v2, CONSTS2
|
|
vmv.v.x v3, CONSTS3
|
|
vmv.v.x v4, KEY0
|
|
vmv.v.x v5, KEY1
|
|
vmv.v.x v6, KEY2
|
|
vmv.v.x v7, KEY3
|
|
vmv.v.x v8, KEY4
|
|
vmv.v.x v9, KEY5
|
|
vmv.v.x v10, KEY6
|
|
vmv.v.x v11, KEY7
|
|
vid.v v12
|
|
vadd.vx v12, v12, COUNTER
|
|
vmv.v.x v13, NONCE0
|
|
vmv.v.x v14, NONCE1
|
|
vmv.v.x v15, NONCE2
|
|
|
|
// Load the first half of the input data for each block into v16-v23.
|
|
// v{16+i} holds the i'th 32-bit word for all blocks.
|
|
vlsseg8e32.v v16, (INP), STRIDE
|
|
|
|
li NROUNDS, 20
|
|
.Lnext_doubleround:
|
|
addi NROUNDS, NROUNDS, -2
|
|
// column round
|
|
chacha_round v0, v4, v8, v12, v1, v5, v9, v13, \
|
|
v2, v6, v10, v14, v3, v7, v11, v15
|
|
// diagonal round
|
|
chacha_round v0, v5, v10, v15, v1, v6, v11, v12, \
|
|
v2, v7, v8, v13, v3, v4, v9, v14
|
|
bnez NROUNDS, .Lnext_doubleround
|
|
|
|
// Load the second half of the input data for each block into v24-v31.
|
|
// v{24+i} holds the {8+i}'th 32-bit word for all blocks.
|
|
addi TMP, INP, 32
|
|
vlsseg8e32.v v24, (TMP), STRIDE
|
|
|
|
// Finalize the first half of the keystream for each block.
|
|
vadd.vx v0, v0, CONSTS0
|
|
vadd.vx v1, v1, CONSTS1
|
|
vadd.vx v2, v2, CONSTS2
|
|
vadd.vx v3, v3, CONSTS3
|
|
vadd.vx v4, v4, KEY0
|
|
vadd.vx v5, v5, KEY1
|
|
vadd.vx v6, v6, KEY2
|
|
vadd.vx v7, v7, KEY3
|
|
|
|
// Encrypt/decrypt the first half of the data for each block.
|
|
vxor.vv v16, v16, v0
|
|
vxor.vv v17, v17, v1
|
|
vxor.vv v18, v18, v2
|
|
vxor.vv v19, v19, v3
|
|
vxor.vv v20, v20, v4
|
|
vxor.vv v21, v21, v5
|
|
vxor.vv v22, v22, v6
|
|
vxor.vv v23, v23, v7
|
|
|
|
// Store the first half of the output data for each block.
|
|
vssseg8e32.v v16, (OUTP), STRIDE
|
|
|
|
// Finalize the second half of the keystream for each block.
|
|
vadd.vx v8, v8, KEY4
|
|
vadd.vx v9, v9, KEY5
|
|
vadd.vx v10, v10, KEY6
|
|
vadd.vx v11, v11, KEY7
|
|
vid.v v0
|
|
vadd.vx v12, v12, COUNTER
|
|
vadd.vx v13, v13, NONCE0
|
|
vadd.vx v14, v14, NONCE1
|
|
vadd.vx v15, v15, NONCE2
|
|
vadd.vv v12, v12, v0
|
|
|
|
// Encrypt/decrypt the second half of the data for each block.
|
|
vxor.vv v24, v24, v8
|
|
vxor.vv v25, v25, v9
|
|
vxor.vv v26, v26, v10
|
|
vxor.vv v27, v27, v11
|
|
vxor.vv v29, v29, v13
|
|
vxor.vv v28, v28, v12
|
|
vxor.vv v30, v30, v14
|
|
vxor.vv v31, v31, v15
|
|
|
|
// Store the second half of the output data for each block.
|
|
addi TMP, OUTP, 32
|
|
vssseg8e32.v v24, (TMP), STRIDE
|
|
|
|
// Update the counter, the remaining number of blocks, and the input and
|
|
// output pointers according to the number of blocks processed (VL).
|
|
add COUNTER, COUNTER, VL
|
|
sub LEN, LEN, VL
|
|
slli TMP, VL, 6
|
|
add OUTP, OUTP, TMP
|
|
add INP, INP, TMP
|
|
bnez LEN, .Lblock_loop
|
|
|
|
ld s0, 0(sp)
|
|
ld s1, 8(sp)
|
|
ld s2, 16(sp)
|
|
ld s3, 24(sp)
|
|
ld s4, 32(sp)
|
|
ld s5, 40(sp)
|
|
ld s6, 48(sp)
|
|
ld s7, 56(sp)
|
|
ld s8, 64(sp)
|
|
ld s9, 72(sp)
|
|
ld s10, 80(sp)
|
|
ld s11, 88(sp)
|
|
addi sp, sp, 96
|
|
ret
|
|
SYM_FUNC_END(chacha20_zvkb)
|