linux/drivers/gpu/drm/panthor/panthor_fw.c
Boris Brezillon 5d01b56f05 drm/panthor: Fix firmware initialization on systems with a page size > 4k
The system and GPU MMU page size might differ, which becomes a
problem for FW sections that need to be mapped at explicit addresses
since our PAGE_SIZE alignment might cover a VA range that's
expected to be used for another section.

Make sure we never map more than we need.

Changes in v3:
- Add R-bs

Changes in v2:
- Plan for per-VM page sizes so the MCU VM and user VM can
  have different pages sizes

Fixes: 2718d91816ee ("drm/panthor: Add the FW logical block")
Signed-off-by: Boris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Liviu Dudau <liviu.dudau@arm.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20241030150231.768949-1-boris.brezillon@collabora.com
2024-10-30 16:30:21 +01:00

1371 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0 or MIT
/* Copyright 2023 Collabora ltd. */
#ifdef CONFIG_ARM_ARCH_TIMER
#include <asm/arch_timer.h>
#endif
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/iopoll.h>
#include <linux/iosys-map.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <drm/drm_drv.h>
#include <drm/drm_managed.h>
#include "panthor_device.h"
#include "panthor_fw.h"
#include "panthor_gem.h"
#include "panthor_gpu.h"
#include "panthor_mmu.h"
#include "panthor_regs.h"
#include "panthor_sched.h"
#define CSF_FW_NAME "mali_csffw.bin"
#define PING_INTERVAL_MS 12000
#define PROGRESS_TIMEOUT_CYCLES (5ull * 500 * 1024 * 1024)
#define PROGRESS_TIMEOUT_SCALE_SHIFT 10
#define IDLE_HYSTERESIS_US 800
#define PWROFF_HYSTERESIS_US 10000
/**
* struct panthor_fw_binary_hdr - Firmware binary header.
*/
struct panthor_fw_binary_hdr {
/** @magic: Magic value to check binary validity. */
u32 magic;
#define CSF_FW_BINARY_HEADER_MAGIC 0xc3f13a6e
/** @minor: Minor FW version. */
u8 minor;
/** @major: Major FW version. */
u8 major;
#define CSF_FW_BINARY_HEADER_MAJOR_MAX 0
/** @padding1: MBZ. */
u16 padding1;
/** @version_hash: FW version hash. */
u32 version_hash;
/** @padding2: MBZ. */
u32 padding2;
/** @size: FW binary size. */
u32 size;
};
/**
* enum panthor_fw_binary_entry_type - Firmware binary entry type
*/
enum panthor_fw_binary_entry_type {
/** @CSF_FW_BINARY_ENTRY_TYPE_IFACE: Host <-> FW interface. */
CSF_FW_BINARY_ENTRY_TYPE_IFACE = 0,
/** @CSF_FW_BINARY_ENTRY_TYPE_CONFIG: FW config. */
CSF_FW_BINARY_ENTRY_TYPE_CONFIG = 1,
/** @CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST: Unit-tests. */
CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST = 2,
/** @CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER: Trace buffer interface. */
CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER = 3,
/** @CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA: Timeline metadata interface. */
CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA = 4,
};
#define CSF_FW_BINARY_ENTRY_TYPE(ehdr) ((ehdr) & 0xff)
#define CSF_FW_BINARY_ENTRY_SIZE(ehdr) (((ehdr) >> 8) & 0xff)
#define CSF_FW_BINARY_ENTRY_UPDATE BIT(30)
#define CSF_FW_BINARY_ENTRY_OPTIONAL BIT(31)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_RD BIT(0)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_WR BIT(1)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_EX BIT(2)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_NONE (0 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED (1 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_UNCACHED_COHERENT (2 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED_COHERENT (3 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK GENMASK(4, 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_PROT BIT(5)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED BIT(30)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO BIT(31)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_SUPPORTED_FLAGS \
(CSF_FW_BINARY_IFACE_ENTRY_RD_RD | \
CSF_FW_BINARY_IFACE_ENTRY_RD_WR | \
CSF_FW_BINARY_IFACE_ENTRY_RD_EX | \
CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK | \
CSF_FW_BINARY_IFACE_ENTRY_RD_PROT | \
CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED | \
CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO)
/**
* struct panthor_fw_binary_section_entry_hdr - Describes a section of FW binary
*/
struct panthor_fw_binary_section_entry_hdr {
/** @flags: Section flags. */
u32 flags;
/** @va: MCU virtual range to map this binary section to. */
struct {
/** @start: Start address. */
u32 start;
/** @end: End address. */
u32 end;
} va;
/** @data: Data to initialize the FW section with. */
struct {
/** @start: Start offset in the FW binary. */
u32 start;
/** @end: End offset in the FW binary. */
u32 end;
} data;
};
/**
* struct panthor_fw_binary_iter - Firmware binary iterator
*
* Used to parse a firmware binary.
*/
struct panthor_fw_binary_iter {
/** @data: FW binary data. */
const void *data;
/** @size: FW binary size. */
size_t size;
/** @offset: Iterator offset. */
size_t offset;
};
/**
* struct panthor_fw_section - FW section
*/
struct panthor_fw_section {
/** @node: Used to keep track of FW sections. */
struct list_head node;
/** @flags: Section flags, as encoded in the FW binary. */
u32 flags;
/** @mem: Section memory. */
struct panthor_kernel_bo *mem;
/**
* @name: Name of the section, as specified in the binary.
*
* Can be NULL.
*/
const char *name;
/**
* @data: Initial data copied to the FW memory.
*
* We keep data around so we can reload sections after a reset.
*/
struct {
/** @buf: Buffed used to store init data. */
const void *buf;
/** @size: Size of @buf in bytes. */
size_t size;
} data;
};
#define CSF_MCU_SHARED_REGION_START 0x04000000ULL
#define CSF_MCU_SHARED_REGION_SIZE 0x04000000ULL
#define MIN_CS_PER_CSG 8
#define MIN_CSGS 3
#define MAX_CSG_PRIO 0xf
#define CSF_IFACE_VERSION(major, minor, patch) \
(((major) << 24) | ((minor) << 16) | (patch))
#define CSF_IFACE_VERSION_MAJOR(v) ((v) >> 24)
#define CSF_IFACE_VERSION_MINOR(v) (((v) >> 16) & 0xff)
#define CSF_IFACE_VERSION_PATCH(v) ((v) & 0xffff)
#define CSF_GROUP_CONTROL_OFFSET 0x1000
#define CSF_STREAM_CONTROL_OFFSET 0x40
#define CSF_UNPRESERVED_REG_COUNT 4
/**
* struct panthor_fw_iface - FW interfaces
*/
struct panthor_fw_iface {
/** @global: Global interface. */
struct panthor_fw_global_iface global;
/** @groups: Group slot interfaces. */
struct panthor_fw_csg_iface groups[MAX_CSGS];
/** @streams: Command stream slot interfaces. */
struct panthor_fw_cs_iface streams[MAX_CSGS][MAX_CS_PER_CSG];
};
/**
* struct panthor_fw - Firmware management
*/
struct panthor_fw {
/** @vm: MCU VM. */
struct panthor_vm *vm;
/** @sections: List of FW sections. */
struct list_head sections;
/** @shared_section: The section containing the FW interfaces. */
struct panthor_fw_section *shared_section;
/** @iface: FW interfaces. */
struct panthor_fw_iface iface;
/** @watchdog: Collection of fields relating to the FW watchdog. */
struct {
/** @ping_work: Delayed work used to ping the FW. */
struct delayed_work ping_work;
} watchdog;
/**
* @req_waitqueue: FW request waitqueue.
*
* Everytime a request is sent to a command stream group or the global
* interface, the caller will first busy wait for the request to be
* acknowledged, and then fallback to a sleeping wait.
*
* This wait queue is here to support the sleeping wait flavor.
*/
wait_queue_head_t req_waitqueue;
/** @booted: True is the FW is booted */
bool booted;
/**
* @fast_reset: True if the post_reset logic can proceed with a fast reset.
*
* A fast reset is just a reset where the driver doesn't reload the FW sections.
*
* Any time the firmware is properly suspended, a fast reset can take place.
* On the other hand, if the halt operation failed, the driver will reload
* all sections to make sure we start from a fresh state.
*/
bool fast_reset;
/** @irq: Job irq data. */
struct panthor_irq irq;
};
struct panthor_vm *panthor_fw_vm(struct panthor_device *ptdev)
{
return ptdev->fw->vm;
}
/**
* panthor_fw_get_glb_iface() - Get the global interface
* @ptdev: Device.
*
* Return: The global interface.
*/
struct panthor_fw_global_iface *
panthor_fw_get_glb_iface(struct panthor_device *ptdev)
{
return &ptdev->fw->iface.global;
}
/**
* panthor_fw_get_csg_iface() - Get a command stream group slot interface
* @ptdev: Device.
* @csg_slot: Index of the command stream group slot.
*
* Return: The command stream group slot interface.
*/
struct panthor_fw_csg_iface *
panthor_fw_get_csg_iface(struct panthor_device *ptdev, u32 csg_slot)
{
if (drm_WARN_ON(&ptdev->base, csg_slot >= MAX_CSGS))
return NULL;
return &ptdev->fw->iface.groups[csg_slot];
}
/**
* panthor_fw_get_cs_iface() - Get a command stream slot interface
* @ptdev: Device.
* @csg_slot: Index of the command stream group slot.
* @cs_slot: Index of the command stream slot.
*
* Return: The command stream slot interface.
*/
struct panthor_fw_cs_iface *
panthor_fw_get_cs_iface(struct panthor_device *ptdev, u32 csg_slot, u32 cs_slot)
{
if (drm_WARN_ON(&ptdev->base, csg_slot >= MAX_CSGS || cs_slot >= MAX_CS_PER_CSG))
return NULL;
return &ptdev->fw->iface.streams[csg_slot][cs_slot];
}
/**
* panthor_fw_conv_timeout() - Convert a timeout into a cycle-count
* @ptdev: Device.
* @timeout_us: Timeout expressed in micro-seconds.
*
* The FW has two timer sources: the GPU counter or arch-timer. We need
* to express timeouts in term of number of cycles and specify which
* timer source should be used.
*
* Return: A value suitable for timeout fields in the global interface.
*/
static u32 panthor_fw_conv_timeout(struct panthor_device *ptdev, u32 timeout_us)
{
bool use_cycle_counter = false;
u32 timer_rate = 0;
u64 mod_cycles;
#ifdef CONFIG_ARM_ARCH_TIMER
timer_rate = arch_timer_get_cntfrq();
#endif
if (!timer_rate) {
use_cycle_counter = true;
timer_rate = clk_get_rate(ptdev->clks.core);
}
if (drm_WARN_ON(&ptdev->base, !timer_rate)) {
/* We couldn't get a valid clock rate, let's just pick the
* maximum value so the FW still handles the core
* power on/off requests.
*/
return GLB_TIMER_VAL(~0) |
GLB_TIMER_SOURCE_GPU_COUNTER;
}
mod_cycles = DIV_ROUND_UP_ULL((u64)timeout_us * timer_rate,
1000000ull << 10);
if (drm_WARN_ON(&ptdev->base, mod_cycles > GLB_TIMER_VAL(~0)))
mod_cycles = GLB_TIMER_VAL(~0);
return GLB_TIMER_VAL(mod_cycles) |
(use_cycle_counter ? GLB_TIMER_SOURCE_GPU_COUNTER : 0);
}
static int panthor_fw_binary_iter_read(struct panthor_device *ptdev,
struct panthor_fw_binary_iter *iter,
void *out, size_t size)
{
size_t new_offset = iter->offset + size;
if (new_offset > iter->size || new_offset < iter->offset) {
drm_err(&ptdev->base, "Firmware too small\n");
return -EINVAL;
}
memcpy(out, iter->data + iter->offset, size);
iter->offset = new_offset;
return 0;
}
static int panthor_fw_binary_sub_iter_init(struct panthor_device *ptdev,
struct panthor_fw_binary_iter *iter,
struct panthor_fw_binary_iter *sub_iter,
size_t size)
{
size_t new_offset = iter->offset + size;
if (new_offset > iter->size || new_offset < iter->offset) {
drm_err(&ptdev->base, "Firmware entry too long\n");
return -EINVAL;
}
sub_iter->offset = 0;
sub_iter->data = iter->data + iter->offset;
sub_iter->size = size;
iter->offset = new_offset;
return 0;
}
static void panthor_fw_init_section_mem(struct panthor_device *ptdev,
struct panthor_fw_section *section)
{
bool was_mapped = !!section->mem->kmap;
int ret;
if (!section->data.size &&
!(section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO))
return;
ret = panthor_kernel_bo_vmap(section->mem);
if (drm_WARN_ON(&ptdev->base, ret))
return;
memcpy(section->mem->kmap, section->data.buf, section->data.size);
if (section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO) {
memset(section->mem->kmap + section->data.size, 0,
panthor_kernel_bo_size(section->mem) - section->data.size);
}
if (!was_mapped)
panthor_kernel_bo_vunmap(section->mem);
}
/**
* panthor_fw_alloc_queue_iface_mem() - Allocate a ring-buffer interfaces.
* @ptdev: Device.
* @input: Pointer holding the input interface on success.
* Should be ignored on failure.
* @output: Pointer holding the output interface on success.
* Should be ignored on failure.
* @input_fw_va: Pointer holding the input interface FW VA on success.
* Should be ignored on failure.
* @output_fw_va: Pointer holding the output interface FW VA on success.
* Should be ignored on failure.
*
* Allocates panthor_fw_ringbuf_{input,out}_iface interfaces. The input
* interface is at offset 0, and the output interface at offset 4096.
*
* Return: A valid pointer in case of success, an ERR_PTR() otherwise.
*/
struct panthor_kernel_bo *
panthor_fw_alloc_queue_iface_mem(struct panthor_device *ptdev,
struct panthor_fw_ringbuf_input_iface **input,
const struct panthor_fw_ringbuf_output_iface **output,
u32 *input_fw_va, u32 *output_fw_va)
{
struct panthor_kernel_bo *mem;
int ret;
mem = panthor_kernel_bo_create(ptdev, ptdev->fw->vm, SZ_8K,
DRM_PANTHOR_BO_NO_MMAP,
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
PANTHOR_VM_KERNEL_AUTO_VA);
if (IS_ERR(mem))
return mem;
ret = panthor_kernel_bo_vmap(mem);
if (ret) {
panthor_kernel_bo_destroy(mem);
return ERR_PTR(ret);
}
memset(mem->kmap, 0, panthor_kernel_bo_size(mem));
*input = mem->kmap;
*output = mem->kmap + SZ_4K;
*input_fw_va = panthor_kernel_bo_gpuva(mem);
*output_fw_va = *input_fw_va + SZ_4K;
return mem;
}
/**
* panthor_fw_alloc_suspend_buf_mem() - Allocate a suspend buffer for a command stream group.
* @ptdev: Device.
* @size: Size of the suspend buffer.
*
* Return: A valid pointer in case of success, an ERR_PTR() otherwise.
*/
struct panthor_kernel_bo *
panthor_fw_alloc_suspend_buf_mem(struct panthor_device *ptdev, size_t size)
{
return panthor_kernel_bo_create(ptdev, panthor_fw_vm(ptdev), size,
DRM_PANTHOR_BO_NO_MMAP,
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC,
PANTHOR_VM_KERNEL_AUTO_VA);
}
static int panthor_fw_load_section_entry(struct panthor_device *ptdev,
const struct firmware *fw,
struct panthor_fw_binary_iter *iter,
u32 ehdr)
{
ssize_t vm_pgsz = panthor_vm_page_size(ptdev->fw->vm);
struct panthor_fw_binary_section_entry_hdr hdr;
struct panthor_fw_section *section;
u32 section_size;
u32 name_len;
int ret;
ret = panthor_fw_binary_iter_read(ptdev, iter, &hdr, sizeof(hdr));
if (ret)
return ret;
if (hdr.data.end < hdr.data.start) {
drm_err(&ptdev->base, "Firmware corrupted, data.end < data.start (0x%x < 0x%x)\n",
hdr.data.end, hdr.data.start);
return -EINVAL;
}
if (hdr.va.end < hdr.va.start) {
drm_err(&ptdev->base, "Firmware corrupted, hdr.va.end < hdr.va.start (0x%x < 0x%x)\n",
hdr.va.end, hdr.va.start);
return -EINVAL;
}
if (hdr.data.end > fw->size) {
drm_err(&ptdev->base, "Firmware corrupted, file truncated? data_end=0x%x > fw size=0x%zx\n",
hdr.data.end, fw->size);
return -EINVAL;
}
if (!IS_ALIGNED(hdr.va.start, vm_pgsz) || !IS_ALIGNED(hdr.va.end, vm_pgsz)) {
drm_err(&ptdev->base, "Firmware corrupted, virtual addresses not page aligned: 0x%x-0x%x\n",
hdr.va.start, hdr.va.end);
return -EINVAL;
}
if (hdr.flags & ~CSF_FW_BINARY_IFACE_ENTRY_RD_SUPPORTED_FLAGS) {
drm_err(&ptdev->base, "Firmware contains interface with unsupported flags (0x%x)\n",
hdr.flags);
return -EINVAL;
}
if (hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_PROT) {
drm_warn(&ptdev->base,
"Firmware protected mode entry not be supported, ignoring");
return 0;
}
if (hdr.va.start == CSF_MCU_SHARED_REGION_START &&
!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED)) {
drm_err(&ptdev->base,
"Interface at 0x%llx must be shared", CSF_MCU_SHARED_REGION_START);
return -EINVAL;
}
name_len = iter->size - iter->offset;
section = drmm_kzalloc(&ptdev->base, sizeof(*section), GFP_KERNEL);
if (!section)
return -ENOMEM;
list_add_tail(&section->node, &ptdev->fw->sections);
section->flags = hdr.flags;
section->data.size = hdr.data.end - hdr.data.start;
if (section->data.size > 0) {
void *data = drmm_kmalloc(&ptdev->base, section->data.size, GFP_KERNEL);
if (!data)
return -ENOMEM;
memcpy(data, fw->data + hdr.data.start, section->data.size);
section->data.buf = data;
}
if (name_len > 0) {
char *name = drmm_kmalloc(&ptdev->base, name_len + 1, GFP_KERNEL);
if (!name)
return -ENOMEM;
memcpy(name, iter->data + iter->offset, name_len);
name[name_len] = '\0';
section->name = name;
}
section_size = hdr.va.end - hdr.va.start;
if (section_size) {
u32 cache_mode = hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK;
struct panthor_gem_object *bo;
u32 vm_map_flags = 0;
struct sg_table *sgt;
u64 va = hdr.va.start;
if (!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_WR))
vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_READONLY;
if (!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_EX))
vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC;
/* TODO: CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_*_COHERENT are mapped to
* non-cacheable for now. We might want to introduce a new
* IOMMU_xxx flag (or abuse IOMMU_MMIO, which maps to device
* memory and is currently not used by our driver) for
* AS_MEMATTR_AARCH64_SHARED memory, so we can take benefit
* of IO-coherent systems.
*/
if (cache_mode != CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED)
vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED;
section->mem = panthor_kernel_bo_create(ptdev, panthor_fw_vm(ptdev),
section_size,
DRM_PANTHOR_BO_NO_MMAP,
vm_map_flags, va);
if (IS_ERR(section->mem))
return PTR_ERR(section->mem);
if (drm_WARN_ON(&ptdev->base, section->mem->va_node.start != hdr.va.start))
return -EINVAL;
if (section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED) {
ret = panthor_kernel_bo_vmap(section->mem);
if (ret)
return ret;
}
panthor_fw_init_section_mem(ptdev, section);
bo = to_panthor_bo(section->mem->obj);
sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
if (IS_ERR(sgt))
return PTR_ERR(sgt);
dma_sync_sgtable_for_device(ptdev->base.dev, sgt, DMA_TO_DEVICE);
}
if (hdr.va.start == CSF_MCU_SHARED_REGION_START)
ptdev->fw->shared_section = section;
return 0;
}
static void
panthor_reload_fw_sections(struct panthor_device *ptdev, bool full_reload)
{
struct panthor_fw_section *section;
list_for_each_entry(section, &ptdev->fw->sections, node) {
struct sg_table *sgt;
if (!full_reload && !(section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_WR))
continue;
panthor_fw_init_section_mem(ptdev, section);
sgt = drm_gem_shmem_get_pages_sgt(&to_panthor_bo(section->mem->obj)->base);
if (!drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(sgt)))
dma_sync_sgtable_for_device(ptdev->base.dev, sgt, DMA_TO_DEVICE);
}
}
static int panthor_fw_load_entry(struct panthor_device *ptdev,
const struct firmware *fw,
struct panthor_fw_binary_iter *iter)
{
struct panthor_fw_binary_iter eiter;
u32 ehdr;
int ret;
ret = panthor_fw_binary_iter_read(ptdev, iter, &ehdr, sizeof(ehdr));
if (ret)
return ret;
if ((iter->offset % sizeof(u32)) ||
(CSF_FW_BINARY_ENTRY_SIZE(ehdr) % sizeof(u32))) {
drm_err(&ptdev->base, "Firmware entry isn't 32 bit aligned, offset=0x%x size=0x%x\n",
(u32)(iter->offset - sizeof(u32)), CSF_FW_BINARY_ENTRY_SIZE(ehdr));
return -EINVAL;
}
if (panthor_fw_binary_sub_iter_init(ptdev, iter, &eiter,
CSF_FW_BINARY_ENTRY_SIZE(ehdr) - sizeof(ehdr)))
return -EINVAL;
switch (CSF_FW_BINARY_ENTRY_TYPE(ehdr)) {
case CSF_FW_BINARY_ENTRY_TYPE_IFACE:
return panthor_fw_load_section_entry(ptdev, fw, &eiter, ehdr);
/* FIXME: handle those entry types? */
case CSF_FW_BINARY_ENTRY_TYPE_CONFIG:
case CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST:
case CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER:
case CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA:
return 0;
default:
break;
}
if (ehdr & CSF_FW_BINARY_ENTRY_OPTIONAL)
return 0;
drm_err(&ptdev->base,
"Unsupported non-optional entry type %u in firmware\n",
CSF_FW_BINARY_ENTRY_TYPE(ehdr));
return -EINVAL;
}
static int panthor_fw_load(struct panthor_device *ptdev)
{
const struct firmware *fw = NULL;
struct panthor_fw_binary_iter iter = {};
struct panthor_fw_binary_hdr hdr;
char fw_path[128];
int ret;
snprintf(fw_path, sizeof(fw_path), "arm/mali/arch%d.%d/%s",
(u32)GPU_ARCH_MAJOR(ptdev->gpu_info.gpu_id),
(u32)GPU_ARCH_MINOR(ptdev->gpu_info.gpu_id),
CSF_FW_NAME);
ret = request_firmware(&fw, fw_path, ptdev->base.dev);
if (ret) {
drm_err(&ptdev->base, "Failed to load firmware image '%s'\n",
CSF_FW_NAME);
return ret;
}
iter.data = fw->data;
iter.size = fw->size;
ret = panthor_fw_binary_iter_read(ptdev, &iter, &hdr, sizeof(hdr));
if (ret)
goto out;
if (hdr.magic != CSF_FW_BINARY_HEADER_MAGIC) {
ret = -EINVAL;
drm_err(&ptdev->base, "Invalid firmware magic\n");
goto out;
}
if (hdr.major != CSF_FW_BINARY_HEADER_MAJOR_MAX) {
ret = -EINVAL;
drm_err(&ptdev->base, "Unsupported firmware binary header version %d.%d (expected %d.x)\n",
hdr.major, hdr.minor, CSF_FW_BINARY_HEADER_MAJOR_MAX);
goto out;
}
if (hdr.size > iter.size) {
drm_err(&ptdev->base, "Firmware image is truncated\n");
goto out;
}
iter.size = hdr.size;
while (iter.offset < hdr.size) {
ret = panthor_fw_load_entry(ptdev, fw, &iter);
if (ret)
goto out;
}
if (!ptdev->fw->shared_section) {
drm_err(&ptdev->base, "Shared interface region not found\n");
ret = -EINVAL;
goto out;
}
out:
release_firmware(fw);
return ret;
}
/**
* iface_fw_to_cpu_addr() - Turn an MCU address into a CPU address
* @ptdev: Device.
* @mcu_va: MCU address.
*
* Return: NULL if the address is not part of the shared section, non-NULL otherwise.
*/
static void *iface_fw_to_cpu_addr(struct panthor_device *ptdev, u32 mcu_va)
{
u64 shared_mem_start = panthor_kernel_bo_gpuva(ptdev->fw->shared_section->mem);
u64 shared_mem_end = shared_mem_start +
panthor_kernel_bo_size(ptdev->fw->shared_section->mem);
if (mcu_va < shared_mem_start || mcu_va >= shared_mem_end)
return NULL;
return ptdev->fw->shared_section->mem->kmap + (mcu_va - shared_mem_start);
}
static int panthor_init_cs_iface(struct panthor_device *ptdev,
unsigned int csg_idx, unsigned int cs_idx)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, csg_idx);
struct panthor_fw_cs_iface *cs_iface = &ptdev->fw->iface.streams[csg_idx][cs_idx];
u64 shared_section_sz = panthor_kernel_bo_size(ptdev->fw->shared_section->mem);
u32 iface_offset = CSF_GROUP_CONTROL_OFFSET +
(csg_idx * glb_iface->control->group_stride) +
CSF_STREAM_CONTROL_OFFSET +
(cs_idx * csg_iface->control->stream_stride);
struct panthor_fw_cs_iface *first_cs_iface =
panthor_fw_get_cs_iface(ptdev, 0, 0);
if (iface_offset + sizeof(*cs_iface) >= shared_section_sz)
return -EINVAL;
spin_lock_init(&cs_iface->lock);
cs_iface->control = ptdev->fw->shared_section->mem->kmap + iface_offset;
cs_iface->input = iface_fw_to_cpu_addr(ptdev, cs_iface->control->input_va);
cs_iface->output = iface_fw_to_cpu_addr(ptdev, cs_iface->control->output_va);
if (!cs_iface->input || !cs_iface->output) {
drm_err(&ptdev->base, "Invalid stream control interface input/output VA");
return -EINVAL;
}
if (cs_iface != first_cs_iface) {
if (cs_iface->control->features != first_cs_iface->control->features) {
drm_err(&ptdev->base, "Expecting identical CS slots");
return -EINVAL;
}
} else {
u32 reg_count = CS_FEATURES_WORK_REGS(cs_iface->control->features);
ptdev->csif_info.cs_reg_count = reg_count;
ptdev->csif_info.unpreserved_cs_reg_count = CSF_UNPRESERVED_REG_COUNT;
}
return 0;
}
static bool compare_csg(const struct panthor_fw_csg_control_iface *a,
const struct panthor_fw_csg_control_iface *b)
{
if (a->features != b->features)
return false;
if (a->suspend_size != b->suspend_size)
return false;
if (a->protm_suspend_size != b->protm_suspend_size)
return false;
if (a->stream_num != b->stream_num)
return false;
return true;
}
static int panthor_init_csg_iface(struct panthor_device *ptdev,
unsigned int csg_idx)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
struct panthor_fw_csg_iface *csg_iface = &ptdev->fw->iface.groups[csg_idx];
u64 shared_section_sz = panthor_kernel_bo_size(ptdev->fw->shared_section->mem);
u32 iface_offset = CSF_GROUP_CONTROL_OFFSET + (csg_idx * glb_iface->control->group_stride);
unsigned int i;
if (iface_offset + sizeof(*csg_iface) >= shared_section_sz)
return -EINVAL;
spin_lock_init(&csg_iface->lock);
csg_iface->control = ptdev->fw->shared_section->mem->kmap + iface_offset;
csg_iface->input = iface_fw_to_cpu_addr(ptdev, csg_iface->control->input_va);
csg_iface->output = iface_fw_to_cpu_addr(ptdev, csg_iface->control->output_va);
if (csg_iface->control->stream_num < MIN_CS_PER_CSG ||
csg_iface->control->stream_num > MAX_CS_PER_CSG)
return -EINVAL;
if (!csg_iface->input || !csg_iface->output) {
drm_err(&ptdev->base, "Invalid group control interface input/output VA");
return -EINVAL;
}
if (csg_idx > 0) {
struct panthor_fw_csg_iface *first_csg_iface =
panthor_fw_get_csg_iface(ptdev, 0);
if (!compare_csg(first_csg_iface->control, csg_iface->control)) {
drm_err(&ptdev->base, "Expecting identical CSG slots");
return -EINVAL;
}
}
for (i = 0; i < csg_iface->control->stream_num; i++) {
int ret = panthor_init_cs_iface(ptdev, csg_idx, i);
if (ret)
return ret;
}
return 0;
}
static u32 panthor_get_instr_features(struct panthor_device *ptdev)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
if (glb_iface->control->version < CSF_IFACE_VERSION(1, 1, 0))
return 0;
return glb_iface->control->instr_features;
}
static int panthor_fw_init_ifaces(struct panthor_device *ptdev)
{
struct panthor_fw_global_iface *glb_iface = &ptdev->fw->iface.global;
unsigned int i;
if (!ptdev->fw->shared_section->mem->kmap)
return -EINVAL;
spin_lock_init(&glb_iface->lock);
glb_iface->control = ptdev->fw->shared_section->mem->kmap;
if (!glb_iface->control->version) {
drm_err(&ptdev->base, "Firmware version is 0. Firmware may have failed to boot");
return -EINVAL;
}
glb_iface->input = iface_fw_to_cpu_addr(ptdev, glb_iface->control->input_va);
glb_iface->output = iface_fw_to_cpu_addr(ptdev, glb_iface->control->output_va);
if (!glb_iface->input || !glb_iface->output) {
drm_err(&ptdev->base, "Invalid global control interface input/output VA");
return -EINVAL;
}
if (glb_iface->control->group_num > MAX_CSGS ||
glb_iface->control->group_num < MIN_CSGS) {
drm_err(&ptdev->base, "Invalid number of control groups");
return -EINVAL;
}
for (i = 0; i < glb_iface->control->group_num; i++) {
int ret = panthor_init_csg_iface(ptdev, i);
if (ret)
return ret;
}
drm_info(&ptdev->base, "CSF FW v%d.%d.%d, Features %#x Instrumentation features %#x",
CSF_IFACE_VERSION_MAJOR(glb_iface->control->version),
CSF_IFACE_VERSION_MINOR(glb_iface->control->version),
CSF_IFACE_VERSION_PATCH(glb_iface->control->version),
glb_iface->control->features,
panthor_get_instr_features(ptdev));
return 0;
}
static void panthor_fw_init_global_iface(struct panthor_device *ptdev)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
/* Enable all cores. */
glb_iface->input->core_en_mask = ptdev->gpu_info.shader_present;
/* Setup timers. */
glb_iface->input->poweroff_timer = panthor_fw_conv_timeout(ptdev, PWROFF_HYSTERESIS_US);
glb_iface->input->progress_timer = PROGRESS_TIMEOUT_CYCLES >> PROGRESS_TIMEOUT_SCALE_SHIFT;
glb_iface->input->idle_timer = panthor_fw_conv_timeout(ptdev, IDLE_HYSTERESIS_US);
/* Enable interrupts we care about. */
glb_iface->input->ack_irq_mask = GLB_CFG_ALLOC_EN |
GLB_PING |
GLB_CFG_PROGRESS_TIMER |
GLB_CFG_POWEROFF_TIMER |
GLB_IDLE_EN |
GLB_IDLE;
panthor_fw_update_reqs(glb_iface, req, GLB_IDLE_EN, GLB_IDLE_EN);
panthor_fw_toggle_reqs(glb_iface, req, ack,
GLB_CFG_ALLOC_EN |
GLB_CFG_POWEROFF_TIMER |
GLB_CFG_PROGRESS_TIMER);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
/* Kick the watchdog. */
mod_delayed_work(ptdev->reset.wq, &ptdev->fw->watchdog.ping_work,
msecs_to_jiffies(PING_INTERVAL_MS));
}
static void panthor_job_irq_handler(struct panthor_device *ptdev, u32 status)
{
if (!ptdev->fw->booted && (status & JOB_INT_GLOBAL_IF))
ptdev->fw->booted = true;
wake_up_all(&ptdev->fw->req_waitqueue);
/* If the FW is not booted, don't process IRQs, just flag the FW as booted. */
if (!ptdev->fw->booted)
return;
panthor_sched_report_fw_events(ptdev, status);
}
PANTHOR_IRQ_HANDLER(job, JOB, panthor_job_irq_handler);
static int panthor_fw_start(struct panthor_device *ptdev)
{
bool timedout = false;
ptdev->fw->booted = false;
panthor_job_irq_resume(&ptdev->fw->irq, ~0);
gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_AUTO);
if (!wait_event_timeout(ptdev->fw->req_waitqueue,
ptdev->fw->booted,
msecs_to_jiffies(1000))) {
if (!ptdev->fw->booted &&
!(gpu_read(ptdev, JOB_INT_STAT) & JOB_INT_GLOBAL_IF))
timedout = true;
}
if (timedout) {
static const char * const status_str[] = {
[MCU_STATUS_DISABLED] = "disabled",
[MCU_STATUS_ENABLED] = "enabled",
[MCU_STATUS_HALT] = "halt",
[MCU_STATUS_FATAL] = "fatal",
};
u32 status = gpu_read(ptdev, MCU_STATUS);
drm_err(&ptdev->base, "Failed to boot MCU (status=%s)",
status < ARRAY_SIZE(status_str) ? status_str[status] : "unknown");
return -ETIMEDOUT;
}
return 0;
}
static void panthor_fw_stop(struct panthor_device *ptdev)
{
u32 status;
gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_DISABLE);
if (readl_poll_timeout(ptdev->iomem + MCU_STATUS, status,
status == MCU_STATUS_DISABLED, 10, 100000))
drm_err(&ptdev->base, "Failed to stop MCU");
}
/**
* panthor_fw_pre_reset() - Call before a reset.
* @ptdev: Device.
* @on_hang: true if the reset was triggered on a GPU hang.
*
* If the reset is not triggered on a hang, we try to gracefully halt the
* MCU, so we can do a fast-reset when panthor_fw_post_reset() is called.
*/
void panthor_fw_pre_reset(struct panthor_device *ptdev, bool on_hang)
{
/* Make sure we won't be woken up by a ping. */
cancel_delayed_work_sync(&ptdev->fw->watchdog.ping_work);
ptdev->fw->fast_reset = false;
if (!on_hang) {
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
u32 status;
panthor_fw_update_reqs(glb_iface, req, GLB_HALT, GLB_HALT);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
if (!readl_poll_timeout(ptdev->iomem + MCU_STATUS, status,
status == MCU_STATUS_HALT, 10, 100000) &&
glb_iface->output->halt_status == PANTHOR_FW_HALT_OK) {
ptdev->fw->fast_reset = true;
} else {
drm_warn(&ptdev->base, "Failed to cleanly suspend MCU");
}
/* The FW detects 0 -> 1 transitions. Make sure we reset
* the HALT bit before the FW is rebooted.
*/
panthor_fw_update_reqs(glb_iface, req, 0, GLB_HALT);
}
panthor_job_irq_suspend(&ptdev->fw->irq);
}
/**
* panthor_fw_post_reset() - Call after a reset.
* @ptdev: Device.
*
* Start the FW. If this is not a fast reset, all FW sections are reloaded to
* make sure we can recover from a memory corruption.
*/
int panthor_fw_post_reset(struct panthor_device *ptdev)
{
int ret;
/* Make the MCU VM active. */
ret = panthor_vm_active(ptdev->fw->vm);
if (ret)
return ret;
/* If this is a fast reset, try to start the MCU without reloading
* the FW sections. If it fails, go for a full reset.
*/
if (ptdev->fw->fast_reset) {
ret = panthor_fw_start(ptdev);
if (!ret)
goto out;
/* Forcibly reset the MCU and force a slow reset, so we get a
* fresh boot on the next panthor_fw_start() call.
*/
panthor_fw_stop(ptdev);
ptdev->fw->fast_reset = false;
drm_err(&ptdev->base, "FW fast reset failed, trying a slow reset");
ret = panthor_vm_flush_all(ptdev->fw->vm);
if (ret) {
drm_err(&ptdev->base, "FW slow reset failed (couldn't flush FW's AS l2cache)");
return ret;
}
}
/* Reload all sections, including RO ones. We're not supposed
* to end up here anyway, let's just assume the overhead of
* reloading everything is acceptable.
*/
panthor_reload_fw_sections(ptdev, true);
ret = panthor_fw_start(ptdev);
if (ret) {
drm_err(&ptdev->base, "FW slow reset failed (couldn't start the FW )");
return ret;
}
out:
/* We must re-initialize the global interface even on fast-reset. */
panthor_fw_init_global_iface(ptdev);
return 0;
}
/**
* panthor_fw_unplug() - Called when the device is unplugged.
* @ptdev: Device.
*
* This function must make sure all pending operations are flushed before
* will release device resources, thus preventing any interaction with
* the HW.
*
* If there is still FW-related work running after this function returns,
* they must use drm_dev_{enter,exit}() and skip any HW access when
* drm_dev_enter() returns false.
*/
void panthor_fw_unplug(struct panthor_device *ptdev)
{
struct panthor_fw_section *section;
cancel_delayed_work_sync(&ptdev->fw->watchdog.ping_work);
/* Make sure the IRQ handler can be called after that point. */
if (ptdev->fw->irq.irq)
panthor_job_irq_suspend(&ptdev->fw->irq);
panthor_fw_stop(ptdev);
list_for_each_entry(section, &ptdev->fw->sections, node)
panthor_kernel_bo_destroy(section->mem);
/* We intentionally don't call panthor_vm_idle() and let
* panthor_mmu_unplug() release the AS we acquired with
* panthor_vm_active() so we don't have to track the VM active/idle
* state to keep the active_refcnt balanced.
*/
panthor_vm_put(ptdev->fw->vm);
ptdev->fw->vm = NULL;
panthor_gpu_power_off(ptdev, L2, ptdev->gpu_info.l2_present, 20000);
}
/**
* panthor_fw_wait_acks() - Wait for requests to be acknowledged by the FW.
* @req_ptr: Pointer to the req register.
* @ack_ptr: Pointer to the ack register.
* @wq: Wait queue to use for the sleeping wait.
* @req_mask: Mask of requests to wait for.
* @acked: Pointer to field that's updated with the acked requests.
* If the function returns 0, *acked == req_mask.
* @timeout_ms: Timeout expressed in milliseconds.
*
* Return: 0 on success, -ETIMEDOUT otherwise.
*/
static int panthor_fw_wait_acks(const u32 *req_ptr, const u32 *ack_ptr,
wait_queue_head_t *wq,
u32 req_mask, u32 *acked,
u32 timeout_ms)
{
u32 ack, req = READ_ONCE(*req_ptr) & req_mask;
int ret;
/* Busy wait for a few µsecs before falling back to a sleeping wait. */
*acked = req_mask;
ret = read_poll_timeout_atomic(READ_ONCE, ack,
(ack & req_mask) == req,
0, 10, 0,
*ack_ptr);
if (!ret)
return 0;
if (wait_event_timeout(*wq, (READ_ONCE(*ack_ptr) & req_mask) == req,
msecs_to_jiffies(timeout_ms)))
return 0;
/* Check one last time, in case we were not woken up for some reason. */
ack = READ_ONCE(*ack_ptr);
if ((ack & req_mask) == req)
return 0;
*acked = ~(req ^ ack) & req_mask;
return -ETIMEDOUT;
}
/**
* panthor_fw_glb_wait_acks() - Wait for global requests to be acknowledged.
* @ptdev: Device.
* @req_mask: Mask of requests to wait for.
* @acked: Pointer to field that's updated with the acked requests.
* If the function returns 0, *acked == req_mask.
* @timeout_ms: Timeout expressed in milliseconds.
*
* Return: 0 on success, -ETIMEDOUT otherwise.
*/
int panthor_fw_glb_wait_acks(struct panthor_device *ptdev,
u32 req_mask, u32 *acked,
u32 timeout_ms)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
/* GLB_HALT doesn't get acked through the FW interface. */
if (drm_WARN_ON(&ptdev->base, req_mask & (~GLB_REQ_MASK | GLB_HALT)))
return -EINVAL;
return panthor_fw_wait_acks(&glb_iface->input->req,
&glb_iface->output->ack,
&ptdev->fw->req_waitqueue,
req_mask, acked, timeout_ms);
}
/**
* panthor_fw_csg_wait_acks() - Wait for command stream group requests to be acknowledged.
* @ptdev: Device.
* @csg_slot: CSG slot ID.
* @req_mask: Mask of requests to wait for.
* @acked: Pointer to field that's updated with the acked requests.
* If the function returns 0, *acked == req_mask.
* @timeout_ms: Timeout expressed in milliseconds.
*
* Return: 0 on success, -ETIMEDOUT otherwise.
*/
int panthor_fw_csg_wait_acks(struct panthor_device *ptdev, u32 csg_slot,
u32 req_mask, u32 *acked, u32 timeout_ms)
{
struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, csg_slot);
int ret;
if (drm_WARN_ON(&ptdev->base, req_mask & ~CSG_REQ_MASK))
return -EINVAL;
ret = panthor_fw_wait_acks(&csg_iface->input->req,
&csg_iface->output->ack,
&ptdev->fw->req_waitqueue,
req_mask, acked, timeout_ms);
/*
* Check that all bits in the state field were updated, if any mismatch
* then clear all bits in the state field. This allows code to do
* (acked & CSG_STATE_MASK) and get the right value.
*/
if ((*acked & CSG_STATE_MASK) != CSG_STATE_MASK)
*acked &= ~CSG_STATE_MASK;
return ret;
}
/**
* panthor_fw_ring_csg_doorbells() - Ring command stream group doorbells.
* @ptdev: Device.
* @csg_mask: Bitmask encoding the command stream group doorbells to ring.
*
* This function is toggling bits in the doorbell_req and ringing the
* global doorbell. It doesn't require a user doorbell to be attached to
* the group.
*/
void panthor_fw_ring_csg_doorbells(struct panthor_device *ptdev, u32 csg_mask)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
panthor_fw_toggle_reqs(glb_iface, doorbell_req, doorbell_ack, csg_mask);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
}
static void panthor_fw_ping_work(struct work_struct *work)
{
struct panthor_fw *fw = container_of(work, struct panthor_fw, watchdog.ping_work.work);
struct panthor_device *ptdev = fw->irq.ptdev;
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
u32 acked;
int ret;
if (panthor_device_reset_is_pending(ptdev))
return;
panthor_fw_toggle_reqs(glb_iface, req, ack, GLB_PING);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
ret = panthor_fw_glb_wait_acks(ptdev, GLB_PING, &acked, 100);
if (ret) {
panthor_device_schedule_reset(ptdev);
drm_err(&ptdev->base, "FW ping timeout, scheduling a reset");
} else {
mod_delayed_work(ptdev->reset.wq, &fw->watchdog.ping_work,
msecs_to_jiffies(PING_INTERVAL_MS));
}
}
/**
* panthor_fw_init() - Initialize FW related data.
* @ptdev: Device.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_fw_init(struct panthor_device *ptdev)
{
struct panthor_fw *fw;
int ret, irq;
fw = drmm_kzalloc(&ptdev->base, sizeof(*fw), GFP_KERNEL);
if (!fw)
return -ENOMEM;
ptdev->fw = fw;
init_waitqueue_head(&fw->req_waitqueue);
INIT_LIST_HEAD(&fw->sections);
INIT_DELAYED_WORK(&fw->watchdog.ping_work, panthor_fw_ping_work);
irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "job");
if (irq <= 0)
return -ENODEV;
ret = panthor_request_job_irq(ptdev, &fw->irq, irq, 0);
if (ret) {
drm_err(&ptdev->base, "failed to request job irq");
return ret;
}
ret = panthor_gpu_l2_power_on(ptdev);
if (ret)
return ret;
fw->vm = panthor_vm_create(ptdev, true,
0, SZ_4G,
CSF_MCU_SHARED_REGION_START,
CSF_MCU_SHARED_REGION_SIZE);
if (IS_ERR(fw->vm)) {
ret = PTR_ERR(fw->vm);
fw->vm = NULL;
goto err_unplug_fw;
}
ret = panthor_fw_load(ptdev);
if (ret)
goto err_unplug_fw;
ret = panthor_vm_active(fw->vm);
if (ret)
goto err_unplug_fw;
ret = panthor_fw_start(ptdev);
if (ret)
goto err_unplug_fw;
ret = panthor_fw_init_ifaces(ptdev);
if (ret)
goto err_unplug_fw;
panthor_fw_init_global_iface(ptdev);
return 0;
err_unplug_fw:
panthor_fw_unplug(ptdev);
return ret;
}
MODULE_FIRMWARE("arm/mali/arch10.8/mali_csffw.bin");