mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 18:36:00 +00:00
fbf979a013
Within a realm guest it's not possible for a device emulated by the VMM to access arbitrary guest memory. So force the use of bounce buffers to ensure that the memory the emulated devices are accessing is in memory which is explicitly shared with the host. This adds a call to swiotlb_update_mem_attributes() which calls set_memory_decrypted() to ensure the bounce buffer memory is shared with the host. For non-realm guests or hosts this is a no-op. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Co-developed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-8-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
588 lines
17 KiB
C
588 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/mm/init.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/math.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/acpi_iort.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/execmem.h>
|
|
|
|
#include <asm/boot.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/kasan.h>
|
|
#include <asm/kernel-pgtable.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/rsi.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <linux/sizes.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/xen/swiotlb-xen.h>
|
|
|
|
/*
|
|
* We need to be able to catch inadvertent references to memstart_addr
|
|
* that occur (potentially in generic code) before arm64_memblock_init()
|
|
* executes, which assigns it its actual value. So use a default value
|
|
* that cannot be mistaken for a real physical address.
|
|
*/
|
|
s64 memstart_addr __ro_after_init = -1;
|
|
EXPORT_SYMBOL(memstart_addr);
|
|
|
|
/*
|
|
* If the corresponding config options are enabled, we create both ZONE_DMA
|
|
* and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
|
|
* unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
|
|
* In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
|
|
* otherwise it is empty.
|
|
*/
|
|
phys_addr_t __ro_after_init arm64_dma_phys_limit;
|
|
|
|
/*
|
|
* To make optimal use of block mappings when laying out the linear
|
|
* mapping, round down the base of physical memory to a size that can
|
|
* be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
|
|
* (64k granule), or a multiple that can be mapped using contiguous bits
|
|
* in the page tables: 32 * PMD_SIZE (16k granule)
|
|
*/
|
|
#if defined(CONFIG_ARM64_4K_PAGES)
|
|
#define ARM64_MEMSTART_SHIFT PUD_SHIFT
|
|
#elif defined(CONFIG_ARM64_16K_PAGES)
|
|
#define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT
|
|
#else
|
|
#define ARM64_MEMSTART_SHIFT PMD_SHIFT
|
|
#endif
|
|
|
|
/*
|
|
* sparsemem vmemmap imposes an additional requirement on the alignment of
|
|
* memstart_addr, due to the fact that the base of the vmemmap region
|
|
* has a direct correspondence, and needs to appear sufficiently aligned
|
|
* in the virtual address space.
|
|
*/
|
|
#if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
|
|
#define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS)
|
|
#else
|
|
#define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT)
|
|
#endif
|
|
|
|
static void __init arch_reserve_crashkernel(void)
|
|
{
|
|
unsigned long long low_size = 0;
|
|
unsigned long long crash_base, crash_size;
|
|
char *cmdline = boot_command_line;
|
|
bool high = false;
|
|
int ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
|
|
return;
|
|
|
|
ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
|
|
&crash_size, &crash_base,
|
|
&low_size, &high);
|
|
if (ret)
|
|
return;
|
|
|
|
reserve_crashkernel_generic(cmdline, crash_size, crash_base,
|
|
low_size, high);
|
|
}
|
|
|
|
static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
|
|
{
|
|
/**
|
|
* Information we get from firmware (e.g. DT dma-ranges) describe DMA
|
|
* bus constraints. Devices using DMA might have their own limitations.
|
|
* Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
|
|
* DMA zone on platforms that have RAM there.
|
|
*/
|
|
if (memblock_start_of_DRAM() < U32_MAX)
|
|
zone_limit = min(zone_limit, U32_MAX);
|
|
|
|
return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
|
|
}
|
|
|
|
static void __init zone_sizes_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
|
|
phys_addr_t __maybe_unused acpi_zone_dma_limit;
|
|
phys_addr_t __maybe_unused dt_zone_dma_limit;
|
|
phys_addr_t __maybe_unused dma32_phys_limit =
|
|
max_zone_phys(DMA_BIT_MASK(32));
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
|
|
dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
|
|
zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
|
|
arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
|
|
max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
|
|
if (!arm64_dma_phys_limit)
|
|
arm64_dma_phys_limit = dma32_phys_limit;
|
|
#endif
|
|
if (!arm64_dma_phys_limit)
|
|
arm64_dma_phys_limit = PHYS_MASK + 1;
|
|
max_zone_pfns[ZONE_NORMAL] = max_pfn;
|
|
|
|
free_area_init(max_zone_pfns);
|
|
}
|
|
|
|
int pfn_is_map_memory(unsigned long pfn)
|
|
{
|
|
phys_addr_t addr = PFN_PHYS(pfn);
|
|
|
|
/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
|
|
if (PHYS_PFN(addr) != pfn)
|
|
return 0;
|
|
|
|
return memblock_is_map_memory(addr);
|
|
}
|
|
EXPORT_SYMBOL(pfn_is_map_memory);
|
|
|
|
static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
|
|
|
|
/*
|
|
* Limit the memory size that was specified via FDT.
|
|
*/
|
|
static int __init early_mem(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
memory_limit = memparse(p, &p) & PAGE_MASK;
|
|
pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_mem);
|
|
|
|
void __init arm64_memblock_init(void)
|
|
{
|
|
s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
|
|
|
|
/*
|
|
* Corner case: 52-bit VA capable systems running KVM in nVHE mode may
|
|
* be limited in their ability to support a linear map that exceeds 51
|
|
* bits of VA space, depending on the placement of the ID map. Given
|
|
* that the placement of the ID map may be randomized, let's simply
|
|
* limit the kernel's linear map to 51 bits as well if we detect this
|
|
* configuration.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
|
|
is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
|
|
pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
|
|
linear_region_size = min_t(u64, linear_region_size, BIT(51));
|
|
}
|
|
|
|
/* Remove memory above our supported physical address size */
|
|
memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
|
|
|
|
/*
|
|
* Select a suitable value for the base of physical memory.
|
|
*/
|
|
memstart_addr = round_down(memblock_start_of_DRAM(),
|
|
ARM64_MEMSTART_ALIGN);
|
|
|
|
if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
|
|
pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
|
|
|
|
/*
|
|
* Remove the memory that we will not be able to cover with the
|
|
* linear mapping. Take care not to clip the kernel which may be
|
|
* high in memory.
|
|
*/
|
|
memblock_remove(max_t(u64, memstart_addr + linear_region_size,
|
|
__pa_symbol(_end)), ULLONG_MAX);
|
|
if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
|
|
/* ensure that memstart_addr remains sufficiently aligned */
|
|
memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
|
|
ARM64_MEMSTART_ALIGN);
|
|
memblock_remove(0, memstart_addr);
|
|
}
|
|
|
|
/*
|
|
* If we are running with a 52-bit kernel VA config on a system that
|
|
* does not support it, we have to place the available physical
|
|
* memory in the 48-bit addressable part of the linear region, i.e.,
|
|
* we have to move it upward. Since memstart_addr represents the
|
|
* physical address of PAGE_OFFSET, we have to *subtract* from it.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
|
|
memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
|
|
|
|
/*
|
|
* Apply the memory limit if it was set. Since the kernel may be loaded
|
|
* high up in memory, add back the kernel region that must be accessible
|
|
* via the linear mapping.
|
|
*/
|
|
if (memory_limit != PHYS_ADDR_MAX) {
|
|
memblock_mem_limit_remove_map(memory_limit);
|
|
memblock_add(__pa_symbol(_text), (u64)(_end - _text));
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
|
|
/*
|
|
* Add back the memory we just removed if it results in the
|
|
* initrd to become inaccessible via the linear mapping.
|
|
* Otherwise, this is a no-op
|
|
*/
|
|
u64 base = phys_initrd_start & PAGE_MASK;
|
|
u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
|
|
|
|
/*
|
|
* We can only add back the initrd memory if we don't end up
|
|
* with more memory than we can address via the linear mapping.
|
|
* It is up to the bootloader to position the kernel and the
|
|
* initrd reasonably close to each other (i.e., within 32 GB of
|
|
* each other) so that all granule/#levels combinations can
|
|
* always access both.
|
|
*/
|
|
if (WARN(base < memblock_start_of_DRAM() ||
|
|
base + size > memblock_start_of_DRAM() +
|
|
linear_region_size,
|
|
"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
|
|
phys_initrd_size = 0;
|
|
} else {
|
|
memblock_add(base, size);
|
|
memblock_clear_nomap(base, size);
|
|
memblock_reserve(base, size);
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
extern u16 memstart_offset_seed;
|
|
u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
|
|
int parange = cpuid_feature_extract_unsigned_field(
|
|
mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
|
|
s64 range = linear_region_size -
|
|
BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
|
|
|
|
/*
|
|
* If the size of the linear region exceeds, by a sufficient
|
|
* margin, the size of the region that the physical memory can
|
|
* span, randomize the linear region as well.
|
|
*/
|
|
if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
|
|
range /= ARM64_MEMSTART_ALIGN;
|
|
memstart_addr -= ARM64_MEMSTART_ALIGN *
|
|
((range * memstart_offset_seed) >> 16);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register the kernel text, kernel data, initrd, and initial
|
|
* pagetables with memblock.
|
|
*/
|
|
memblock_reserve(__pa_symbol(_stext), _end - _stext);
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
|
|
/* the generic initrd code expects virtual addresses */
|
|
initrd_start = __phys_to_virt(phys_initrd_start);
|
|
initrd_end = initrd_start + phys_initrd_size;
|
|
}
|
|
|
|
early_init_fdt_scan_reserved_mem();
|
|
|
|
high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
|
|
}
|
|
|
|
void __init bootmem_init(void)
|
|
{
|
|
unsigned long min, max;
|
|
|
|
min = PFN_UP(memblock_start_of_DRAM());
|
|
max = PFN_DOWN(memblock_end_of_DRAM());
|
|
|
|
early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
|
|
|
|
max_pfn = max_low_pfn = max;
|
|
min_low_pfn = min;
|
|
|
|
arch_numa_init();
|
|
|
|
/*
|
|
* must be done after arch_numa_init() which calls numa_init() to
|
|
* initialize node_online_map that gets used in hugetlb_cma_reserve()
|
|
* while allocating required CMA size across online nodes.
|
|
*/
|
|
#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
|
|
arm64_hugetlb_cma_reserve();
|
|
#endif
|
|
|
|
kvm_hyp_reserve();
|
|
|
|
/*
|
|
* sparse_init() tries to allocate memory from memblock, so must be
|
|
* done after the fixed reservations
|
|
*/
|
|
sparse_init();
|
|
zone_sizes_init();
|
|
|
|
/*
|
|
* Reserve the CMA area after arm64_dma_phys_limit was initialised.
|
|
*/
|
|
dma_contiguous_reserve(arm64_dma_phys_limit);
|
|
|
|
/*
|
|
* request_standard_resources() depends on crashkernel's memory being
|
|
* reserved, so do it here.
|
|
*/
|
|
arch_reserve_crashkernel();
|
|
|
|
memblock_dump_all();
|
|
}
|
|
|
|
/*
|
|
* mem_init() marks the free areas in the mem_map and tells us how much memory
|
|
* is free. This is done after various parts of the system have claimed their
|
|
* memory after the kernel image.
|
|
*/
|
|
void __init mem_init(void)
|
|
{
|
|
unsigned int flags = SWIOTLB_VERBOSE;
|
|
bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
|
|
|
|
if (is_realm_world()) {
|
|
swiotlb = true;
|
|
flags |= SWIOTLB_FORCE;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
|
|
/*
|
|
* If no bouncing needed for ZONE_DMA, reduce the swiotlb
|
|
* buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
|
|
*/
|
|
unsigned long size =
|
|
DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
|
|
swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
|
|
swiotlb = true;
|
|
}
|
|
|
|
swiotlb_init(swiotlb, flags);
|
|
swiotlb_update_mem_attributes();
|
|
|
|
/* this will put all unused low memory onto the freelists */
|
|
memblock_free_all();
|
|
|
|
/*
|
|
* Check boundaries twice: Some fundamental inconsistencies can be
|
|
* detected at build time already.
|
|
*/
|
|
#ifdef CONFIG_COMPAT
|
|
BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
|
|
#endif
|
|
|
|
/*
|
|
* Selected page table levels should match when derived from
|
|
* scratch using the virtual address range and page size.
|
|
*/
|
|
BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
|
|
CONFIG_PGTABLE_LEVELS);
|
|
|
|
if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
|
|
extern int sysctl_overcommit_memory;
|
|
/*
|
|
* On a machine this small we won't get anywhere without
|
|
* overcommit, so turn it on by default.
|
|
*/
|
|
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
|
|
}
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
void *lm_init_begin = lm_alias(__init_begin);
|
|
void *lm_init_end = lm_alias(__init_end);
|
|
|
|
WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
|
|
WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
|
|
|
|
/* Delete __init region from memblock.reserved. */
|
|
memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
|
|
|
|
free_reserved_area(lm_init_begin, lm_init_end,
|
|
POISON_FREE_INITMEM, "unused kernel");
|
|
/*
|
|
* Unmap the __init region but leave the VM area in place. This
|
|
* prevents the region from being reused for kernel modules, which
|
|
* is not supported by kallsyms.
|
|
*/
|
|
vunmap_range((u64)__init_begin, (u64)__init_end);
|
|
}
|
|
|
|
void dump_mem_limit(void)
|
|
{
|
|
if (memory_limit != PHYS_ADDR_MAX) {
|
|
pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
|
|
} else {
|
|
pr_emerg("Memory Limit: none\n");
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_EXECMEM
|
|
static u64 module_direct_base __ro_after_init = 0;
|
|
static u64 module_plt_base __ro_after_init = 0;
|
|
|
|
/*
|
|
* Choose a random page-aligned base address for a window of 'size' bytes which
|
|
* entirely contains the interval [start, end - 1].
|
|
*/
|
|
static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
|
|
{
|
|
u64 max_pgoff, pgoff;
|
|
|
|
if ((end - start) >= size)
|
|
return 0;
|
|
|
|
max_pgoff = (size - (end - start)) / PAGE_SIZE;
|
|
pgoff = get_random_u32_inclusive(0, max_pgoff);
|
|
|
|
return start - pgoff * PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Modules may directly reference data and text anywhere within the kernel
|
|
* image and other modules. References using PREL32 relocations have a +/-2G
|
|
* range, and so we need to ensure that the entire kernel image and all modules
|
|
* fall within a 2G window such that these are always within range.
|
|
*
|
|
* Modules may directly branch to functions and code within the kernel text,
|
|
* and to functions and code within other modules. These branches will use
|
|
* CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
|
|
* that the entire kernel text and all module text falls within a 128M window
|
|
* such that these are always within range. With PLTs, we can expand this to a
|
|
* 2G window.
|
|
*
|
|
* We chose the 128M region to surround the entire kernel image (rather than
|
|
* just the text) as using the same bounds for the 128M and 2G regions ensures
|
|
* by construction that we never select a 128M region that is not a subset of
|
|
* the 2G region. For very large and unusual kernel configurations this means
|
|
* we may fall back to PLTs where they could have been avoided, but this keeps
|
|
* the logic significantly simpler.
|
|
*/
|
|
static int __init module_init_limits(void)
|
|
{
|
|
u64 kernel_end = (u64)_end;
|
|
u64 kernel_start = (u64)_text;
|
|
u64 kernel_size = kernel_end - kernel_start;
|
|
|
|
/*
|
|
* The default modules region is placed immediately below the kernel
|
|
* image, and is large enough to use the full 2G relocation range.
|
|
*/
|
|
BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
|
|
BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
|
|
|
|
if (!kaslr_enabled()) {
|
|
if (kernel_size < SZ_128M)
|
|
module_direct_base = kernel_end - SZ_128M;
|
|
if (kernel_size < SZ_2G)
|
|
module_plt_base = kernel_end - SZ_2G;
|
|
} else {
|
|
u64 min = kernel_start;
|
|
u64 max = kernel_end;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
|
|
pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
|
|
} else {
|
|
module_direct_base = random_bounding_box(SZ_128M, min, max);
|
|
if (module_direct_base) {
|
|
min = module_direct_base;
|
|
max = module_direct_base + SZ_128M;
|
|
}
|
|
}
|
|
|
|
module_plt_base = random_bounding_box(SZ_2G, min, max);
|
|
}
|
|
|
|
pr_info("%llu pages in range for non-PLT usage",
|
|
module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
|
|
pr_info("%llu pages in range for PLT usage",
|
|
module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct execmem_info execmem_info __ro_after_init;
|
|
|
|
struct execmem_info __init *execmem_arch_setup(void)
|
|
{
|
|
unsigned long fallback_start = 0, fallback_end = 0;
|
|
unsigned long start = 0, end = 0;
|
|
|
|
module_init_limits();
|
|
|
|
/*
|
|
* Where possible, prefer to allocate within direct branch range of the
|
|
* kernel such that no PLTs are necessary.
|
|
*/
|
|
if (module_direct_base) {
|
|
start = module_direct_base;
|
|
end = module_direct_base + SZ_128M;
|
|
|
|
if (module_plt_base) {
|
|
fallback_start = module_plt_base;
|
|
fallback_end = module_plt_base + SZ_2G;
|
|
}
|
|
} else if (module_plt_base) {
|
|
start = module_plt_base;
|
|
end = module_plt_base + SZ_2G;
|
|
}
|
|
|
|
execmem_info = (struct execmem_info){
|
|
.ranges = {
|
|
[EXECMEM_DEFAULT] = {
|
|
.start = start,
|
|
.end = end,
|
|
.pgprot = PAGE_KERNEL,
|
|
.alignment = 1,
|
|
.fallback_start = fallback_start,
|
|
.fallback_end = fallback_end,
|
|
},
|
|
[EXECMEM_KPROBES] = {
|
|
.start = VMALLOC_START,
|
|
.end = VMALLOC_END,
|
|
.pgprot = PAGE_KERNEL_ROX,
|
|
.alignment = 1,
|
|
},
|
|
[EXECMEM_BPF] = {
|
|
.start = VMALLOC_START,
|
|
.end = VMALLOC_END,
|
|
.pgprot = PAGE_KERNEL,
|
|
.alignment = 1,
|
|
},
|
|
},
|
|
};
|
|
|
|
return &execmem_info;
|
|
}
|
|
#endif /* CONFIG_EXECMEM */
|