linux/drivers/edac/bluefield_edac.c
David Thompson e419675754 EDAC/bluefield: Use Arm SMC for EMI access on BlueField-2
The BlueField EDAC driver supports the first generation BlueField-1 SoC, but
not the second generation BlueField-2 SoC. The BlueField-2 SoC is different in
that only secure accesses are allowed to the External Memory Interface (EMI)
register block. On BlueField-2, all read/write accesses from Linux to EMI
registers are routed via the Arm Secure Monitor Call (SMC) through Arm Trusted
Firmware (ATF), which runs at EL3 privileged state.

On BlueField-1, EMI registers are mapped and accessed directly. In order to
support BlueField-2, the driver's read and write access methods must be
extended with additional logic to include secure access to the EMI registers
via SMCs.

  [ bp: Move struct member comments above them, simplify. ]

Signed-off-by: David Thompson <davthompson@nvidia.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shravan Kumar Ramani <shravankr@nvidia.com>
Link: https://lore.kernel.org/r/20241021233013.18405-1-davthompson@nvidia.com
2024-10-22 18:36:13 +02:00

485 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Bluefield-specific EDAC driver.
*
* Copyright (c) 2019 Mellanox Technologies.
*/
#include <linux/acpi.h>
#include <linux/arm-smccc.h>
#include <linux/bitfield.h>
#include <linux/edac.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "edac_module.h"
#define DRIVER_NAME "bluefield-edac"
/*
* Mellanox BlueField EMI (External Memory Interface) register definitions.
*/
#define MLXBF_ECC_CNT 0x340
#define MLXBF_ECC_CNT__SERR_CNT GENMASK(15, 0)
#define MLXBF_ECC_CNT__DERR_CNT GENMASK(31, 16)
#define MLXBF_ECC_ERR 0x348
#define MLXBF_ECC_ERR__SECC BIT(0)
#define MLXBF_ECC_ERR__DECC BIT(16)
#define MLXBF_ECC_LATCH_SEL 0x354
#define MLXBF_ECC_LATCH_SEL__START BIT(24)
#define MLXBF_ERR_ADDR_0 0x358
#define MLXBF_ERR_ADDR_1 0x37c
#define MLXBF_SYNDROM 0x35c
#define MLXBF_SYNDROM__DERR BIT(0)
#define MLXBF_SYNDROM__SERR BIT(1)
#define MLXBF_SYNDROM__SYN GENMASK(25, 16)
#define MLXBF_ADD_INFO 0x364
#define MLXBF_ADD_INFO__ERR_PRANK GENMASK(9, 8)
#define MLXBF_EDAC_MAX_DIMM_PER_MC 2
#define MLXBF_EDAC_ERROR_GRAIN 8
#define MLXBF_WRITE_REG_32 (0x82000009)
#define MLXBF_READ_REG_32 (0x8200000A)
#define MLXBF_SIP_SVC_VERSION (0x8200ff03)
#define MLXBF_SMCCC_ACCESS_VIOLATION (-4)
#define MLXBF_SVC_REQ_MAJOR 0
#define MLXBF_SVC_REQ_MINOR 3
/*
* Request MLXBF_SIP_GET_DIMM_INFO
*
* Retrieve information about DIMM on a certain slot.
*
* Call register usage:
* a0: MLXBF_SIP_GET_DIMM_INFO
* a1: (Memory controller index) << 16 | (Dimm index in memory controller)
* a2-7: not used.
*
* Return status:
* a0: MLXBF_DIMM_INFO defined below describing the DIMM.
* a1-3: not used.
*/
#define MLXBF_SIP_GET_DIMM_INFO 0x82000008
/* Format for the SMC response about the memory information */
#define MLXBF_DIMM_INFO__SIZE_GB GENMASK_ULL(15, 0)
#define MLXBF_DIMM_INFO__IS_RDIMM BIT(16)
#define MLXBF_DIMM_INFO__IS_LRDIMM BIT(17)
#define MLXBF_DIMM_INFO__IS_NVDIMM BIT(18)
#define MLXBF_DIMM_INFO__RANKS GENMASK_ULL(23, 21)
#define MLXBF_DIMM_INFO__PACKAGE_X GENMASK_ULL(31, 24)
struct bluefield_edac_priv {
/* pointer to device structure */
struct device *dev;
int dimm_ranks[MLXBF_EDAC_MAX_DIMM_PER_MC];
void __iomem *emi_base;
int dimm_per_mc;
/* access to secure regs supported */
bool svc_sreg_support;
/* SMC table# for secure regs access */
u32 sreg_tbl;
};
static u64 smc_call1(u64 smc_op, u64 smc_arg)
{
struct arm_smccc_res res;
arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
return res.a0;
}
static int secure_readl(void __iomem *addr, u32 *result, u32 sreg_tbl)
{
struct arm_smccc_res res;
int status;
arm_smccc_smc(MLXBF_READ_REG_32, sreg_tbl, (uintptr_t)addr,
0, 0, 0, 0, 0, &res);
status = res.a0;
if (status == SMCCC_RET_NOT_SUPPORTED ||
status == MLXBF_SMCCC_ACCESS_VIOLATION)
return -1;
*result = (u32)res.a1;
return 0;
}
static int secure_writel(void __iomem *addr, u32 data, u32 sreg_tbl)
{
struct arm_smccc_res res;
int status;
arm_smccc_smc(MLXBF_WRITE_REG_32, sreg_tbl, data, (uintptr_t)addr,
0, 0, 0, 0, &res);
status = res.a0;
if (status == SMCCC_RET_NOT_SUPPORTED ||
status == MLXBF_SMCCC_ACCESS_VIOLATION)
return -1;
else
return 0;
}
static int bluefield_edac_readl(struct bluefield_edac_priv *priv, u32 offset, u32 *result)
{
void __iomem *addr;
int err = 0;
addr = priv->emi_base + offset;
if (priv->svc_sreg_support)
err = secure_readl(addr, result, priv->sreg_tbl);
else
*result = readl(addr);
return err;
}
static int bluefield_edac_writel(struct bluefield_edac_priv *priv, u32 offset, u32 data)
{
void __iomem *addr;
int err = 0;
addr = priv->emi_base + offset;
if (priv->svc_sreg_support)
err = secure_writel(addr, data, priv->sreg_tbl);
else
writel(data, addr);
return err;
}
/*
* Gather the ECC information from the External Memory Interface registers
* and report it to the edac handler.
*/
static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
int error_cnt,
int is_single_ecc)
{
struct bluefield_edac_priv *priv = mci->pvt_info;
u32 dram_additional_info, err_prank, edea0, edea1;
u32 ecc_latch_select, dram_syndrom, serr, derr, syndrom;
enum hw_event_mc_err_type ecc_type;
u64 ecc_dimm_addr;
int ecc_dimm, err;
ecc_type = is_single_ecc ? HW_EVENT_ERR_CORRECTED :
HW_EVENT_ERR_UNCORRECTED;
/*
* Tell the External Memory Interface to populate the relevant
* registers with information about the last ECC error occurrence.
*/
ecc_latch_select = MLXBF_ECC_LATCH_SEL__START;
err = bluefield_edac_writel(priv, MLXBF_ECC_LATCH_SEL, ecc_latch_select);
if (err)
dev_err(priv->dev, "ECC latch select write failed.\n");
/*
* Verify that the ECC reported info in the registers is of the
* same type as the one asked to report. If not, just report the
* error without the detailed information.
*/
err = bluefield_edac_readl(priv, MLXBF_SYNDROM, &dram_syndrom);
if (err)
dev_err(priv->dev, "DRAM syndrom read failed.\n");
serr = FIELD_GET(MLXBF_SYNDROM__SERR, dram_syndrom);
derr = FIELD_GET(MLXBF_SYNDROM__DERR, dram_syndrom);
syndrom = FIELD_GET(MLXBF_SYNDROM__SYN, dram_syndrom);
if ((is_single_ecc && !serr) || (!is_single_ecc && !derr)) {
edac_mc_handle_error(ecc_type, mci, error_cnt, 0, 0, 0,
0, 0, -1, mci->ctl_name, "");
return;
}
err = bluefield_edac_readl(priv, MLXBF_ADD_INFO, &dram_additional_info);
if (err)
dev_err(priv->dev, "DRAM additional info read failed.\n");
err_prank = FIELD_GET(MLXBF_ADD_INFO__ERR_PRANK, dram_additional_info);
ecc_dimm = (err_prank >= 2 && priv->dimm_ranks[0] <= 2) ? 1 : 0;
err = bluefield_edac_readl(priv, MLXBF_ERR_ADDR_0, &edea0);
if (err)
dev_err(priv->dev, "Error addr 0 read failed.\n");
err = bluefield_edac_readl(priv, MLXBF_ERR_ADDR_1, &edea1);
if (err)
dev_err(priv->dev, "Error addr 1 read failed.\n");
ecc_dimm_addr = ((u64)edea1 << 32) | edea0;
edac_mc_handle_error(ecc_type, mci, error_cnt,
PFN_DOWN(ecc_dimm_addr),
offset_in_page(ecc_dimm_addr),
syndrom, ecc_dimm, 0, 0, mci->ctl_name, "");
}
static void bluefield_edac_check(struct mem_ctl_info *mci)
{
struct bluefield_edac_priv *priv = mci->pvt_info;
u32 ecc_count, single_error_count, double_error_count, ecc_error = 0;
int err;
/*
* The memory controller might not be initialized by the firmware
* when there isn't memory, which may lead to bad register readings.
*/
if (mci->edac_cap == EDAC_FLAG_NONE)
return;
err = bluefield_edac_readl(priv, MLXBF_ECC_CNT, &ecc_count);
if (err)
dev_err(priv->dev, "ECC count read failed.\n");
single_error_count = FIELD_GET(MLXBF_ECC_CNT__SERR_CNT, ecc_count);
double_error_count = FIELD_GET(MLXBF_ECC_CNT__DERR_CNT, ecc_count);
if (single_error_count) {
ecc_error |= MLXBF_ECC_ERR__SECC;
bluefield_gather_report_ecc(mci, single_error_count, 1);
}
if (double_error_count) {
ecc_error |= MLXBF_ECC_ERR__DECC;
bluefield_gather_report_ecc(mci, double_error_count, 0);
}
/* Write to clear reported errors. */
if (ecc_count) {
err = bluefield_edac_writel(priv, MLXBF_ECC_ERR, ecc_error);
if (err)
dev_err(priv->dev, "ECC Error write failed.\n");
}
}
/* Initialize the DIMMs information for the given memory controller. */
static void bluefield_edac_init_dimms(struct mem_ctl_info *mci)
{
struct bluefield_edac_priv *priv = mci->pvt_info;
u64 mem_ctrl_idx = mci->mc_idx;
struct dimm_info *dimm;
u64 smc_info, smc_arg;
int is_empty = 1, i;
for (i = 0; i < priv->dimm_per_mc; i++) {
dimm = mci->dimms[i];
smc_arg = mem_ctrl_idx << 16 | i;
smc_info = smc_call1(MLXBF_SIP_GET_DIMM_INFO, smc_arg);
if (!FIELD_GET(MLXBF_DIMM_INFO__SIZE_GB, smc_info)) {
dimm->mtype = MEM_EMPTY;
continue;
}
is_empty = 0;
dimm->edac_mode = EDAC_SECDED;
if (FIELD_GET(MLXBF_DIMM_INFO__IS_NVDIMM, smc_info))
dimm->mtype = MEM_NVDIMM;
else if (FIELD_GET(MLXBF_DIMM_INFO__IS_LRDIMM, smc_info))
dimm->mtype = MEM_LRDDR4;
else if (FIELD_GET(MLXBF_DIMM_INFO__IS_RDIMM, smc_info))
dimm->mtype = MEM_RDDR4;
else
dimm->mtype = MEM_DDR4;
dimm->nr_pages =
FIELD_GET(MLXBF_DIMM_INFO__SIZE_GB, smc_info) *
(SZ_1G / PAGE_SIZE);
dimm->grain = MLXBF_EDAC_ERROR_GRAIN;
/* Mem controller for BlueField only supports x4, x8 and x16 */
switch (FIELD_GET(MLXBF_DIMM_INFO__PACKAGE_X, smc_info)) {
case 4:
dimm->dtype = DEV_X4;
break;
case 8:
dimm->dtype = DEV_X8;
break;
case 16:
dimm->dtype = DEV_X16;
break;
default:
dimm->dtype = DEV_UNKNOWN;
}
priv->dimm_ranks[i] =
FIELD_GET(MLXBF_DIMM_INFO__RANKS, smc_info);
}
if (is_empty)
mci->edac_cap = EDAC_FLAG_NONE;
else
mci->edac_cap = EDAC_FLAG_SECDED;
}
static int bluefield_edac_mc_probe(struct platform_device *pdev)
{
struct bluefield_edac_priv *priv;
struct device *dev = &pdev->dev;
struct edac_mc_layer layers[1];
struct arm_smccc_res res;
struct mem_ctl_info *mci;
struct resource *emi_res;
unsigned int mc_idx, dimm_count;
int rc, ret;
/* Read the MSS (Memory SubSystem) index from ACPI table. */
if (device_property_read_u32(dev, "mss_number", &mc_idx)) {
dev_warn(dev, "bf_edac: MSS number unknown\n");
return -EINVAL;
}
/* Read the DIMMs per MC from ACPI table. */
if (device_property_read_u32(dev, "dimm_per_mc", &dimm_count)) {
dev_warn(dev, "bf_edac: DIMMs per MC unknown\n");
return -EINVAL;
}
if (dimm_count > MLXBF_EDAC_MAX_DIMM_PER_MC) {
dev_warn(dev, "bf_edac: DIMMs per MC not valid\n");
return -EINVAL;
}
emi_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!emi_res)
return -EINVAL;
layers[0].type = EDAC_MC_LAYER_SLOT;
layers[0].size = dimm_count;
layers[0].is_virt_csrow = true;
mci = edac_mc_alloc(mc_idx, ARRAY_SIZE(layers), layers, sizeof(*priv));
if (!mci)
return -ENOMEM;
priv = mci->pvt_info;
priv->dev = dev;
/*
* The "sec_reg_block" property in the ACPI table determines the method
* the driver uses to access the EMI registers:
* a) property is not present - directly access registers via readl/writel
* b) property is present - indirectly access registers via SMC calls
* (assuming required Silicon Provider service version found)
*/
if (device_property_read_u32(dev, "sec_reg_block", &priv->sreg_tbl)) {
priv->svc_sreg_support = false;
} else {
/*
* Check for minimum required Arm Silicon Provider (SiP) service
* version, ensuring support of required SMC function IDs.
*/
arm_smccc_smc(MLXBF_SIP_SVC_VERSION, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == MLXBF_SVC_REQ_MAJOR &&
res.a1 >= MLXBF_SVC_REQ_MINOR) {
priv->svc_sreg_support = true;
} else {
dev_err(dev, "Required SMCs are not supported.\n");
ret = -EINVAL;
goto err;
}
}
priv->dimm_per_mc = dimm_count;
if (!priv->svc_sreg_support) {
priv->emi_base = devm_ioremap_resource(dev, emi_res);
if (IS_ERR(priv->emi_base)) {
dev_err(dev, "failed to map EMI IO resource\n");
ret = PTR_ERR(priv->emi_base);
goto err;
}
} else {
priv->emi_base = (void __iomem *)emi_res->start;
}
mci->pdev = dev;
mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_RDDR4 |
MEM_FLAG_LRDDR4 | MEM_FLAG_NVDIMM;
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
mci->mod_name = DRIVER_NAME;
mci->ctl_name = "BlueField_Memory_Controller";
mci->dev_name = dev_name(dev);
mci->edac_check = bluefield_edac_check;
/* Initialize mci with the actual populated DIMM information. */
bluefield_edac_init_dimms(mci);
platform_set_drvdata(pdev, mci);
/* Register with EDAC core */
rc = edac_mc_add_mc(mci);
if (rc) {
dev_err(dev, "failed to register with EDAC core\n");
ret = rc;
goto err;
}
/* Only POLL mode supported so far. */
edac_op_state = EDAC_OPSTATE_POLL;
return 0;
err:
edac_mc_free(mci);
return ret;
}
static void bluefield_edac_mc_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
}
static const struct acpi_device_id bluefield_mc_acpi_ids[] = {
{"MLNXBF08", 0},
{}
};
MODULE_DEVICE_TABLE(acpi, bluefield_mc_acpi_ids);
static struct platform_driver bluefield_edac_mc_driver = {
.driver = {
.name = DRIVER_NAME,
.acpi_match_table = bluefield_mc_acpi_ids,
},
.probe = bluefield_edac_mc_probe,
.remove_new = bluefield_edac_mc_remove,
};
module_platform_driver(bluefield_edac_mc_driver);
MODULE_DESCRIPTION("Mellanox BlueField memory edac driver");
MODULE_AUTHOR("Mellanox Technologies");
MODULE_LICENSE("GPL v2");