mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 17:43:59 +00:00
Kanchana P Sridhar
69bad21551
mm: define obj_cgroup_get() if CONFIG_MEMCG is not defined
Patch series "mm: zswap swap-out of large folios", v10. This patch series enables zswap_store() to accept and store large folios. The most significant contribution in this series is from the earlier RFC submitted by Ryan Roberts [1]. Ryan's original RFC has been migrated to mm-unstable as of 9-30-2024 in patch 6 of this series, and adapted based on code review comments received for the current patch-series. [1]: [RFC PATCH v1] mm: zswap: Store large folios without splitting https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u The first few patches do the prep work for supporting large folios in zswap_store. Patch 6 provides the main functionality to swap-out large folios in zswap. Patch 7 adds sysfs per-order hugepages "zswpout" counters that get incremented upon successful zswap_store of large folios, and also updates the documentation for this: /sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/zswpout This patch series is a prerequisite for zswap compress batching of large folio swap-out and decompress batching of swap-ins based on swapin_readahead(), using Intel IAA hardware acceleration, which we would like to submit in subsequent patch-series, with performance improvement data. Thanks to Ying Huang for pre-posting review feedback and suggestions! Thanks also to Nhat, Yosry, Johannes, Barry, Chengming, Usama, Ying and Matthew for their helpful feedback, code/data reviews and suggestions! Co-development signoff request: =============================== I would like to thank Ryan Roberts for his original RFC [1] and request his co-developer signoff on patch 6 in this series. Thanks Ryan! System setup for testing: ========================= Testing of this patch series was done with mm-unstable as of 9-27-2024, commit de2fbaa6d9c3576ec7133ed02a370ec9376bf000 (without this patch-series) and mm-unstable 9-30-2024 commit c121617e3606be6575cdacfdb63cc8d67b46a568 (with this patch-series). Data was gathered on an Intel Sapphire Rapids server, dual-socket 56 cores per socket, 4 IAA devices per socket, 503 GiB RAM and 525G SSD disk partition swap. Core frequency was fixed at 2500MHz. The vm-scalability "usemem" test was run in a cgroup whose memory.high was fixed at 150G. The is no swap limit set for the cgroup. 30 usemem processes were run, each allocating and writing 10G of memory, and sleeping for 10 sec before exiting: usemem --init-time -w -O -s 10 -n 30 10g Other kernel configuration parameters: zswap compressors : zstd, deflate-iaa zswap allocator : zsmalloc vm.page-cluster : 2 In the experiments where "deflate-iaa" is used as the zswap compressor, IAA "compression verification" is enabled by default (cat /sys/bus/dsa/drivers/crypto/verify_compress). Hence each IAA compression will be decompressed internally by the "iaa_crypto" driver, the crc-s returned by the hardware will be compared and errors reported in case of mismatches. Thus "deflate-iaa" helps ensure better data integrity as compared to the software compressors, and the experimental data listed below is with verify_compress set to "1". Metrics reporting methodology: ============================== Total and average throughput are derived from the individual 30 processes' throughputs reported by usemem. elapsed/sys times are measured with perf. All percentage changes are "new" vs. "old"; hence a positive value denotes an increase in the metric, whether it is throughput or latency, and a negative value denotes a reduction in the metric. Positive throughput change percentages and negative latency change percentages denote improvements. The vm stats and sysfs hugepages stats included with the performance data provide details on the swapout activity to zswap/swap device. Testing labels used in data summaries: ====================================== The data refers to these test configurations and the before/after comparisons that they do: before-case1: ------------- mm-unstable 9-27-2024, CONFIG_THP_SWAP=N (compares zswap 4K vs. zswap 64K) In this scenario, CONFIG_THP_SWAP=N results in 64K/2M folios to be split into 4K folios that get processed by zswap. before-case2: ------------- mm-unstable 9-27-2024, CONFIG_THP_SWAP=Y (compares SSD swap large folios vs. zswap large folios) In this scenario, CONFIG_THP_SWAP=Y results in zswap rejecting large folios, which will then be stored by the SSD swap device. after: ------ v10 of this patch-series, CONFIG_THP_SWAP=Y The "after" is CONFIG_THP_SWAP=Y and v10 of this patch-series, that results in 64K/2M folios to not be split, and to be processed by zswap_store. Regression Testing: =================== I ran vm-scalability usemem without large folios, i.e., only 4K folios with mm-unstable and this patch-series. The main goal was to make sure that there is no functional or performance regression wrt the earlier zswap behavior for 4K folios, now that 4K folios will be processed by the new zswap_store() code. The data indicates there is no significant regression. ------------------------------------------------------------------------------- 4K folios: ========== zswap compressor zstd zstd zstd zstd v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 4,793,363 4,880,978 4,853,074 1% -1% Average throughput (KB/s) 159,778 162,699 161,769 1% -1% elapsed time (sec) 130.14 123.17 126.29 -3% 3% sys time (sec) 3,135.53 2,985.64 3,083.18 -2% 3% memcg_high 446,826 444,626 452,930 memcg_swap_fail 0 0 0 zswpout 48,932,107 48,931,971 48,931,820 zswpin 383 386 397 pswpout 0 0 0 pswpin 0 0 0 thp_swpout 0 0 0 thp_swpout_fallback 0 0 0 64kB-mthp_swpout_fallback 0 0 0 pgmajfault 3,063 3,077 3,479 swap_ra 93 94 96 swap_ra_hit 47 47 50 ZSWPOUT-64kB n/a n/a 0 SWPOUT-64kB 0 0 0 ------------------------------------------------------------------------------- Performance Testing: ==================== We list the data for 64K folios with before/after data per-compressor, followed by the same for 2M pmd-mappable folios. ------------------------------------------------------------------------------- 64K folios: zstd: ================= zswap compressor zstd zstd zstd zstd v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 5,222,213 1,076,611 6,159,776 18% 472% Average throughput (KB/s) 174,073 35,887 205,325 18% 472% elapsed time (sec) 120.50 347.16 108.33 -10% -69% sys time (sec) 2,930.33 248.16 2,549.65 -13% 927% memcg_high 416,773 552,200 465,874 memcg_swap_fail 3,192,906 1,293 1,012 zswpout 48,931,583 20,903 48,931,218 zswpin 384 363 410 pswpout 0 40,778,448 0 pswpin 0 16 0 thp_swpout 0 0 0 thp_swpout_fallback 0 0 0 64kB-mthp_swpout_fallback 3,192,906 1,293 1,012 pgmajfault 3,452 3,072 3,061 swap_ra 90 87 107 swap_ra_hit 42 43 57 ZSWPOUT-64kB n/a n/a 3,057,173 SWPOUT-64kB 0 2,548,653 0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 64K folios: deflate-iaa: ======================== zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 5,652,608 1,089,180 7,189,778 27% 560% Average throughput (KB/s) 188,420 36,306 239,659 27% 560% elapsed time (sec) 102.90 343.35 87.05 -15% -75% sys time (sec) 2,246.86 213.53 1,864.16 -17% 773% memcg_high 576,104 502,907 642,083 memcg_swap_fail 4,016,117 1,407 1,478 zswpout 61,163,423 22,444 57,798,716 zswpin 401 368 454 pswpout 0 40,862,080 0 pswpin 0 20 0 thp_swpout 0 0 0 thp_swpout_fallback 0 0 0 64kB-mthp_swpout_fallback 4,016,117 1,407 1,478 pgmajfault 3,063 3,153 3,122 swap_ra 96 93 156 swap_ra_hit 46 45 83 ZSWPOUT-64kB n/a n/a 3,611,032 SWPOUT-64kB 0 2,553,880 0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 2M folios: zstd: ================ zswap compressor zstd zstd zstd zstd v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 5,895,500 1,109,694 6,484,224 10% 484% Average throughput (KB/s) 196,516 36,989 216,140 10% 484% elapsed time (sec) 108.77 334.28 106.33 -2% -68% sys time (sec) 2,657.14 94.88 2,376.13 -11% 2404% memcg_high 64,200 66,316 56,898 memcg_swap_fail 101,182 70 27 zswpout 48,931,499 36,507 48,890,640 zswpin 380 379 377 pswpout 0 40,166,400 0 pswpin 0 0 0 thp_swpout 0 78,450 0 thp_swpout_fallback 101,182 70 27 2MB-mthp_swpout_fallback 0 0 27 pgmajfault 3,067 3,417 3,311 swap_ra 91 90 854 swap_ra_hit 45 45 810 ZSWPOUT-2MB n/a n/a 95,459 SWPOUT-2MB 0 78,450 0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 2M folios: deflate-iaa: ======================= zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 6,286,587 1,126,785 7,073,464 13% 528% Average throughput (KB/s) 209,552 37,559 235,782 13% 528% elapsed time (sec) 96.19 333.03 85.79 -11% -74% sys time (sec) 2,141.44 99.96 1,826.67 -15% 1727% memcg_high 99,253 64,666 79,718 memcg_swap_fail 129,074 53 165 zswpout 61,312,794 28,321 56,045,120 zswpin 383 406 403 pswpout 0 40,048,128 0 pswpin 0 0 0 thp_swpout 0 78,219 0 thp_swpout_fallback 129,074 53 165 2MB-mthp_swpout_fallback 0 0 165 pgmajfault 3,430 3,077 31,468 swap_ra 91 103 84,373 swap_ra_hit 47 46 84,317 ZSWPOUT-2MB n/a n/a 109,229 SWPOUT-2MB 0 78,219 0 ------------------------------------------------------------------------------- And finally, this is a comparison of deflate-iaa vs. zstd with v10 of this patch-series: --------------------------------------------- zswap_store large folios v10 Impr w/ deflate-iaa vs. zstd 64K folios 2M folios --------------------------------------------- Throughput (KB/s) 17% 9% elapsed time (sec) -20% -19% sys time (sec) -27% -23% --------------------------------------------- Conclusions based on the performance results: ============================================= v10 wrt before-case1: --------------------- We see significant improvements in throughput, elapsed and sys time for zstd and deflate-iaa, when comparing before-case1 (THP_SWAP=N) vs. after (THP_SWAP=Y) with zswap_store large folios. v10 wrt before-case2: --------------------- We see even more significant improvements in throughput and elapsed time for zstd and deflate-iaa, when comparing before-case2 (large-folio-SSD) vs. after (large-folio-zswap). The sys time increases with large-folio-zswap as expected, due to the CPU compression time vs. asynchronous disk write times, as pointed out by Ying and Yosry. In before-case2, when zswap does not store large folios, only allocations and cgroup charging due to 4K folio zswap stores count towards the cgroup memory limit. However, in the after scenario, with the introduction of zswap_store() of large folios, there is an added component of the zswap compressed pool usage from large folio stores from potentially all 30 processes, that gets counted towards the memory limit. As a result, we see higher swapout activity in the "after" data. Summary: ======== The v10 data presented above shows that zswap_store of large folios demonstrates good throughput/performance improvements compared to conventional SSD swap of large folios with a sufficiently large 525G SSD swap device. Hence, it seems reasonable for zswap_store to support large folios, so that further performance improvements can be implemented. In the experimental setup used in this patchset, we have enabled IAA compress verification to ensure additional hardware data integrity CRC checks not currently done by the software compressors. We see good throughput/latency improvements with deflate-iaa vs. zstd with zswap_store of large folios. Some of the ideas for further reducing latency that have shown promise in our experiments, are: 1) IAA compress/decompress batching. 2) Distributing compress jobs across all IAA devices on the socket. The tests run for this patchset are using only 1 IAA device per core, that avails of 2 compress engines on the device. In our experiments with IAA batching, we distribute compress jobs from all cores to the 8 compress engines available per socket. We further compress the pages in each folio in parallel in the accelerator. As a result, we improve compress latency and reclaim throughput. In decompress batching, we use swapin_readahead to generate a prefetch batch of 4K folios that we decompress in parallel in IAA. ------------------------------------------------------------------------------ IAA compress/decompress batching Further improvements wrt v10 zswap_store Sequential subpage store using "deflate-iaa": "deflate-iaa" Batching "deflate-iaa-canned" [2] Batching Additional Impr Additional Impr 64K folios 2M folios 64K folios 2M folios ------------------------------------------------------------------------------ Throughput (KB/s) 19% 43% 26% 55% elapsed time (sec) -5% -14% -10% -21% sys time (sec) 4% -7% -4% -18% ------------------------------------------------------------------------------ With zswap IAA compress/decompress batching, we are able to demonstrate significant performance improvements and memory savings in server scalability experiments in highly contended system scenarios under significant memory pressure; as compared to software compressors. We hope to submit this work in subsequent patch series. The current patch-series is a prequisite for these future submissions. [1] https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u [2] https://patchwork.kernel.org/project/linux-crypto/cover/cover.1710969449.git.andre.glover@linux.intel.com/ This patch (of 6): This resolves an issue with obj_cgroup_get() not being defined if CONFIG_MEMCG is not defined. Before this patch, we would see build errors if obj_cgroup_get() is called from code that is agnostic of CONFIG_MEMCG. The zswap_store() changes for large folios in subsequent commits will require the use of obj_cgroup_get() in zswap code that falls into this category. Link: https://lkml.kernel.org/r/20241001053222.6944-1-kanchana.p.sridhar@intel.com Link: https://lkml.kernel.org/r/20241001053222.6944-2-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: "Zou, Nanhai" <nanhai.zou@intel.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the reStructuredText markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.5%
Assembly
1%
Shell
0.6%
Python
0.3%
Makefile
0.3%