linux/drivers/block/swim3.c
Jörn Engel 6ab3d5624e Remove obsolete #include <linux/config.h>
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-30 19:25:36 +02:00

1163 lines
29 KiB
C

/*
* Driver for the SWIM3 (Super Woz Integrated Machine 3)
* floppy controller found on Power Macintoshes.
*
* Copyright (C) 1996 Paul Mackerras.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* TODO:
* handle 2 drives
* handle GCR disks
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/fd.h>
#include <linux/ioctl.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/dbdma.h>
#include <asm/prom.h>
#include <asm/uaccess.h>
#include <asm/mediabay.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
static struct request_queue *swim3_queue;
static struct gendisk *disks[2];
static struct request *fd_req;
#define MAX_FLOPPIES 2
enum swim_state {
idle,
locating,
seeking,
settling,
do_transfer,
jogging,
available,
revalidating,
ejecting
};
#define REG(x) unsigned char x; char x ## _pad[15];
/*
* The names for these registers mostly represent speculation on my part.
* It will be interesting to see how close they are to the names Apple uses.
*/
struct swim3 {
REG(data);
REG(timer); /* counts down at 1MHz */
REG(error);
REG(mode);
REG(select); /* controls CA0, CA1, CA2 and LSTRB signals */
REG(setup);
REG(control); /* writing bits clears them */
REG(status); /* writing bits sets them in control */
REG(intr);
REG(nseek); /* # tracks to seek */
REG(ctrack); /* current track number */
REG(csect); /* current sector number */
REG(gap3); /* size of gap 3 in track format */
REG(sector); /* sector # to read or write */
REG(nsect); /* # sectors to read or write */
REG(intr_enable);
};
#define control_bic control
#define control_bis status
/* Bits in select register */
#define CA_MASK 7
#define LSTRB 8
/* Bits in control register */
#define DO_SEEK 0x80
#define FORMAT 0x40
#define SELECT 0x20
#define WRITE_SECTORS 0x10
#define DO_ACTION 0x08
#define DRIVE2_ENABLE 0x04
#define DRIVE_ENABLE 0x02
#define INTR_ENABLE 0x01
/* Bits in status register */
#define FIFO_1BYTE 0x80
#define FIFO_2BYTE 0x40
#define ERROR 0x20
#define DATA 0x08
#define RDDATA 0x04
#define INTR_PENDING 0x02
#define MARK_BYTE 0x01
/* Bits in intr and intr_enable registers */
#define ERROR_INTR 0x20
#define DATA_CHANGED 0x10
#define TRANSFER_DONE 0x08
#define SEEN_SECTOR 0x04
#define SEEK_DONE 0x02
#define TIMER_DONE 0x01
/* Bits in error register */
#define ERR_DATA_CRC 0x80
#define ERR_ADDR_CRC 0x40
#define ERR_OVERRUN 0x04
#define ERR_UNDERRUN 0x01
/* Bits in setup register */
#define S_SW_RESET 0x80
#define S_GCR_WRITE 0x40
#define S_IBM_DRIVE 0x20
#define S_TEST_MODE 0x10
#define S_FCLK_DIV2 0x08
#define S_GCR 0x04
#define S_COPY_PROT 0x02
#define S_INV_WDATA 0x01
/* Select values for swim3_action */
#define SEEK_POSITIVE 0
#define SEEK_NEGATIVE 4
#define STEP 1
#define MOTOR_ON 2
#define MOTOR_OFF 6
#define INDEX 3
#define EJECT 7
#define SETMFM 9
#define SETGCR 13
/* Select values for swim3_select and swim3_readbit */
#define STEP_DIR 0
#define STEPPING 1
#define MOTOR_ON 2
#define RELAX 3 /* also eject in progress */
#define READ_DATA_0 4
#define TWOMEG_DRIVE 5
#define SINGLE_SIDED 6 /* drive or diskette is 4MB type? */
#define DRIVE_PRESENT 7
#define DISK_IN 8
#define WRITE_PROT 9
#define TRACK_ZERO 10
#define TACHO 11
#define READ_DATA_1 12
#define MFM_MODE 13
#define SEEK_COMPLETE 14
#define ONEMEG_MEDIA 15
/* Definitions of values used in writing and formatting */
#define DATA_ESCAPE 0x99
#define GCR_SYNC_EXC 0x3f
#define GCR_SYNC_CONV 0x80
#define GCR_FIRST_MARK 0xd5
#define GCR_SECOND_MARK 0xaa
#define GCR_ADDR_MARK "\xd5\xaa\x00"
#define GCR_DATA_MARK "\xd5\xaa\x0b"
#define GCR_SLIP_BYTE "\x27\xaa"
#define GCR_SELF_SYNC "\x3f\xbf\x1e\x34\x3c\x3f"
#define DATA_99 "\x99\x99"
#define MFM_ADDR_MARK "\x99\xa1\x99\xa1\x99\xa1\x99\xfe"
#define MFM_INDEX_MARK "\x99\xc2\x99\xc2\x99\xc2\x99\xfc"
#define MFM_GAP_LEN 12
struct floppy_state {
enum swim_state state;
spinlock_t lock;
struct swim3 __iomem *swim3; /* hardware registers */
struct dbdma_regs __iomem *dma; /* DMA controller registers */
int swim3_intr; /* interrupt number for SWIM3 */
int dma_intr; /* interrupt number for DMA channel */
int cur_cyl; /* cylinder head is on, or -1 */
int cur_sector; /* last sector we saw go past */
int req_cyl; /* the cylinder for the current r/w request */
int head; /* head number ditto */
int req_sector; /* sector number ditto */
int scount; /* # sectors we're transferring at present */
int retries;
int settle_time;
int secpercyl; /* disk geometry information */
int secpertrack;
int total_secs;
int write_prot; /* 1 if write-protected, 0 if not, -1 dunno */
struct dbdma_cmd *dma_cmd;
int ref_count;
int expect_cyl;
struct timer_list timeout;
int timeout_pending;
int ejected;
wait_queue_head_t wait;
int wanted;
struct device_node* media_bay; /* NULL when not in bay */
char dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)];
};
static struct floppy_state floppy_states[MAX_FLOPPIES];
static int floppy_count = 0;
static DEFINE_SPINLOCK(swim3_lock);
static unsigned short write_preamble[] = {
0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, /* gap field */
0, 0, 0, 0, 0, 0, /* sync field */
0x99a1, 0x99a1, 0x99a1, 0x99fb, /* data address mark */
0x990f /* no escape for 512 bytes */
};
static unsigned short write_postamble[] = {
0x9904, /* insert CRC */
0x4e4e, 0x4e4e,
0x9908, /* stop writing */
0, 0, 0, 0, 0, 0
};
static void swim3_select(struct floppy_state *fs, int sel);
static void swim3_action(struct floppy_state *fs, int action);
static int swim3_readbit(struct floppy_state *fs, int bit);
static void do_fd_request(request_queue_t * q);
static void start_request(struct floppy_state *fs);
static void set_timeout(struct floppy_state *fs, int nticks,
void (*proc)(unsigned long));
static void scan_track(struct floppy_state *fs);
static void seek_track(struct floppy_state *fs, int n);
static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count);
static void setup_transfer(struct floppy_state *fs);
static void act(struct floppy_state *fs);
static void scan_timeout(unsigned long data);
static void seek_timeout(unsigned long data);
static void settle_timeout(unsigned long data);
static void xfer_timeout(unsigned long data);
static irqreturn_t swim3_interrupt(int irq, void *dev_id, struct pt_regs *regs);
/*static void fd_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs);*/
static int grab_drive(struct floppy_state *fs, enum swim_state state,
int interruptible);
static void release_drive(struct floppy_state *fs);
static int fd_eject(struct floppy_state *fs);
static int floppy_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long param);
static int floppy_open(struct inode *inode, struct file *filp);
static int floppy_release(struct inode *inode, struct file *filp);
static int floppy_check_change(struct gendisk *disk);
static int floppy_revalidate(struct gendisk *disk);
static int swim3_add_device(struct device_node *swims);
int swim3_init(void);
#ifndef CONFIG_PMAC_MEDIABAY
#define check_media_bay(which, what) 1
#endif
static void swim3_select(struct floppy_state *fs, int sel)
{
struct swim3 __iomem *sw = fs->swim3;
out_8(&sw->select, RELAX);
if (sel & 8)
out_8(&sw->control_bis, SELECT);
else
out_8(&sw->control_bic, SELECT);
out_8(&sw->select, sel & CA_MASK);
}
static void swim3_action(struct floppy_state *fs, int action)
{
struct swim3 __iomem *sw = fs->swim3;
swim3_select(fs, action);
udelay(1);
out_8(&sw->select, sw->select | LSTRB);
udelay(2);
out_8(&sw->select, sw->select & ~LSTRB);
udelay(1);
}
static int swim3_readbit(struct floppy_state *fs, int bit)
{
struct swim3 __iomem *sw = fs->swim3;
int stat;
swim3_select(fs, bit);
udelay(1);
stat = in_8(&sw->status);
return (stat & DATA) == 0;
}
static void do_fd_request(request_queue_t * q)
{
int i;
for(i=0;i<floppy_count;i++)
{
#ifdef CONFIG_PMAC_MEDIABAY
if (floppy_states[i].media_bay &&
check_media_bay(floppy_states[i].media_bay, MB_FD))
continue;
#endif /* CONFIG_PMAC_MEDIABAY */
start_request(&floppy_states[i]);
}
}
static void start_request(struct floppy_state *fs)
{
struct request *req;
unsigned long x;
if (fs->state == idle && fs->wanted) {
fs->state = available;
wake_up(&fs->wait);
return;
}
while (fs->state == idle && (req = elv_next_request(swim3_queue))) {
#if 0
printk("do_fd_req: dev=%s cmd=%d sec=%ld nr_sec=%ld buf=%p\n",
req->rq_disk->disk_name, req->cmd,
(long)req->sector, req->nr_sectors, req->buffer);
printk(" rq_status=%d errors=%d current_nr_sectors=%ld\n",
req->rq_status, req->errors, req->current_nr_sectors);
#endif
if (req->sector < 0 || req->sector >= fs->total_secs) {
end_request(req, 0);
continue;
}
if (req->current_nr_sectors == 0) {
end_request(req, 1);
continue;
}
if (fs->ejected) {
end_request(req, 0);
continue;
}
if (rq_data_dir(req) == WRITE) {
if (fs->write_prot < 0)
fs->write_prot = swim3_readbit(fs, WRITE_PROT);
if (fs->write_prot) {
end_request(req, 0);
continue;
}
}
/* Do not remove the cast. req->sector is now a sector_t and
* can be 64 bits, but it will never go past 32 bits for this
* driver anyway, so we can safely cast it down and not have
* to do a 64/32 division
*/
fs->req_cyl = ((long)req->sector) / fs->secpercyl;
x = ((long)req->sector) % fs->secpercyl;
fs->head = x / fs->secpertrack;
fs->req_sector = x % fs->secpertrack + 1;
fd_req = req;
fs->state = do_transfer;
fs->retries = 0;
act(fs);
}
}
static void set_timeout(struct floppy_state *fs, int nticks,
void (*proc)(unsigned long))
{
unsigned long flags;
spin_lock_irqsave(&fs->lock, flags);
if (fs->timeout_pending)
del_timer(&fs->timeout);
fs->timeout.expires = jiffies + nticks;
fs->timeout.function = proc;
fs->timeout.data = (unsigned long) fs;
add_timer(&fs->timeout);
fs->timeout_pending = 1;
spin_unlock_irqrestore(&fs->lock, flags);
}
static inline void scan_track(struct floppy_state *fs)
{
struct swim3 __iomem *sw = fs->swim3;
swim3_select(fs, READ_DATA_0);
in_8(&sw->intr); /* clear SEEN_SECTOR bit */
in_8(&sw->error);
out_8(&sw->intr_enable, SEEN_SECTOR);
out_8(&sw->control_bis, DO_ACTION);
/* enable intr when track found */
set_timeout(fs, HZ, scan_timeout); /* enable timeout */
}
static inline void seek_track(struct floppy_state *fs, int n)
{
struct swim3 __iomem *sw = fs->swim3;
if (n >= 0) {
swim3_action(fs, SEEK_POSITIVE);
sw->nseek = n;
} else {
swim3_action(fs, SEEK_NEGATIVE);
sw->nseek = -n;
}
fs->expect_cyl = (fs->cur_cyl >= 0)? fs->cur_cyl + n: -1;
swim3_select(fs, STEP);
in_8(&sw->error);
/* enable intr when seek finished */
out_8(&sw->intr_enable, SEEK_DONE);
out_8(&sw->control_bis, DO_SEEK);
set_timeout(fs, 3*HZ, seek_timeout); /* enable timeout */
fs->settle_time = 0;
}
static inline void init_dma(struct dbdma_cmd *cp, int cmd,
void *buf, int count)
{
st_le16(&cp->req_count, count);
st_le16(&cp->command, cmd);
st_le32(&cp->phy_addr, virt_to_bus(buf));
cp->xfer_status = 0;
}
static inline void setup_transfer(struct floppy_state *fs)
{
int n;
struct swim3 __iomem *sw = fs->swim3;
struct dbdma_cmd *cp = fs->dma_cmd;
struct dbdma_regs __iomem *dr = fs->dma;
if (fd_req->current_nr_sectors <= 0) {
printk(KERN_ERR "swim3: transfer 0 sectors?\n");
return;
}
if (rq_data_dir(fd_req) == WRITE)
n = 1;
else {
n = fs->secpertrack - fs->req_sector + 1;
if (n > fd_req->current_nr_sectors)
n = fd_req->current_nr_sectors;
}
fs->scount = n;
swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0);
out_8(&sw->sector, fs->req_sector);
out_8(&sw->nsect, n);
out_8(&sw->gap3, 0);
out_le32(&dr->cmdptr, virt_to_bus(cp));
if (rq_data_dir(fd_req) == WRITE) {
/* Set up 3 dma commands: write preamble, data, postamble */
init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble));
++cp;
init_dma(cp, OUTPUT_MORE, fd_req->buffer, 512);
++cp;
init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble));
} else {
init_dma(cp, INPUT_LAST, fd_req->buffer, n * 512);
}
++cp;
out_le16(&cp->command, DBDMA_STOP);
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
in_8(&sw->error);
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
if (rq_data_dir(fd_req) == WRITE)
out_8(&sw->control_bis, WRITE_SECTORS);
in_8(&sw->intr);
out_le32(&dr->control, (RUN << 16) | RUN);
/* enable intr when transfer complete */
out_8(&sw->intr_enable, TRANSFER_DONE);
out_8(&sw->control_bis, DO_ACTION);
set_timeout(fs, 2*HZ, xfer_timeout); /* enable timeout */
}
static void act(struct floppy_state *fs)
{
for (;;) {
switch (fs->state) {
case idle:
return; /* XXX shouldn't get here */
case locating:
if (swim3_readbit(fs, TRACK_ZERO)) {
fs->cur_cyl = 0;
if (fs->req_cyl == 0)
fs->state = do_transfer;
else
fs->state = seeking;
break;
}
scan_track(fs);
return;
case seeking:
if (fs->cur_cyl < 0) {
fs->expect_cyl = -1;
fs->state = locating;
break;
}
if (fs->req_cyl == fs->cur_cyl) {
printk("whoops, seeking 0\n");
fs->state = do_transfer;
break;
}
seek_track(fs, fs->req_cyl - fs->cur_cyl);
return;
case settling:
/* check for SEEK_COMPLETE after 30ms */
fs->settle_time = (HZ + 32) / 33;
set_timeout(fs, fs->settle_time, settle_timeout);
return;
case do_transfer:
if (fs->cur_cyl != fs->req_cyl) {
if (fs->retries > 5) {
end_request(fd_req, 0);
fs->state = idle;
return;
}
fs->state = seeking;
break;
}
setup_transfer(fs);
return;
case jogging:
seek_track(fs, -5);
return;
default:
printk(KERN_ERR"swim3: unknown state %d\n", fs->state);
return;
}
}
}
static void scan_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
fs->timeout_pending = 0;
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
fs->cur_cyl = -1;
if (fs->retries > 5) {
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
} else {
fs->state = jogging;
act(fs);
}
}
static void seek_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
fs->timeout_pending = 0;
out_8(&sw->control_bic, DO_SEEK);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
printk(KERN_ERR "swim3: seek timeout\n");
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
}
static void settle_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
fs->timeout_pending = 0;
if (swim3_readbit(fs, SEEK_COMPLETE)) {
out_8(&sw->select, RELAX);
fs->state = locating;
act(fs);
return;
}
out_8(&sw->select, RELAX);
if (fs->settle_time < 2*HZ) {
++fs->settle_time;
set_timeout(fs, 1, settle_timeout);
return;
}
printk(KERN_ERR "swim3: seek settle timeout\n");
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
}
static void xfer_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
struct dbdma_regs __iomem *dr = fs->dma;
struct dbdma_cmd *cp = fs->dma_cmd;
unsigned long s;
int n;
fs->timeout_pending = 0;
out_le32(&dr->control, RUN << 16);
/* We must wait a bit for dbdma to stop */
for (n = 0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++)
udelay(1);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
out_8(&sw->select, RELAX);
if (rq_data_dir(fd_req) == WRITE)
++cp;
if (ld_le16(&cp->xfer_status) != 0)
s = fs->scount - ((ld_le16(&cp->res_count) + 511) >> 9);
else
s = 0;
fd_req->sector += s;
fd_req->current_nr_sectors -= s;
printk(KERN_ERR "swim3: timeout %sing sector %ld\n",
(rq_data_dir(fd_req)==WRITE? "writ": "read"), (long)fd_req->sector);
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
}
static irqreturn_t swim3_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct floppy_state *fs = (struct floppy_state *) dev_id;
struct swim3 __iomem *sw = fs->swim3;
int intr, err, n;
int stat, resid;
struct dbdma_regs __iomem *dr;
struct dbdma_cmd *cp;
intr = in_8(&sw->intr);
err = (intr & ERROR_INTR)? in_8(&sw->error): 0;
if ((intr & ERROR_INTR) && fs->state != do_transfer)
printk(KERN_ERR "swim3_interrupt, state=%d, dir=%lx, intr=%x, err=%x\n",
fs->state, rq_data_dir(fd_req), intr, err);
switch (fs->state) {
case locating:
if (intr & SEEN_SECTOR) {
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
if (sw->ctrack == 0xff) {
printk(KERN_ERR "swim3: seen sector but cyl=ff?\n");
fs->cur_cyl = -1;
if (fs->retries > 5) {
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
} else {
fs->state = jogging;
act(fs);
}
break;
}
fs->cur_cyl = sw->ctrack;
fs->cur_sector = sw->csect;
if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl)
printk(KERN_ERR "swim3: expected cyl %d, got %d\n",
fs->expect_cyl, fs->cur_cyl);
fs->state = do_transfer;
act(fs);
}
break;
case seeking:
case jogging:
if (sw->nseek == 0) {
out_8(&sw->control_bic, DO_SEEK);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
if (fs->state == seeking)
++fs->retries;
fs->state = settling;
act(fs);
}
break;
case settling:
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
act(fs);
break;
case do_transfer:
if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0)
break;
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
out_8(&sw->select, RELAX);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
dr = fs->dma;
cp = fs->dma_cmd;
if (rq_data_dir(fd_req) == WRITE)
++cp;
/*
* Check that the main data transfer has finished.
* On writing, the swim3 sometimes doesn't use
* up all the bytes of the postamble, so we can still
* see DMA active here. That doesn't matter as long
* as all the sector data has been transferred.
*/
if ((intr & ERROR_INTR) == 0 && cp->xfer_status == 0) {
/* wait a little while for DMA to complete */
for (n = 0; n < 100; ++n) {
if (cp->xfer_status != 0)
break;
udelay(1);
barrier();
}
}
/* turn off DMA */
out_le32(&dr->control, (RUN | PAUSE) << 16);
stat = ld_le16(&cp->xfer_status);
resid = ld_le16(&cp->res_count);
if (intr & ERROR_INTR) {
n = fs->scount - 1 - resid / 512;
if (n > 0) {
fd_req->sector += n;
fd_req->current_nr_sectors -= n;
fd_req->buffer += n * 512;
fs->req_sector += n;
}
if (fs->retries < 5) {
++fs->retries;
act(fs);
} else {
printk("swim3: error %sing block %ld (err=%x)\n",
rq_data_dir(fd_req) == WRITE? "writ": "read",
(long)fd_req->sector, err);
end_request(fd_req, 0);
fs->state = idle;
}
} else {
if ((stat & ACTIVE) == 0 || resid != 0) {
/* musta been an error */
printk(KERN_ERR "swim3: fd dma: stat=%x resid=%d\n", stat, resid);
printk(KERN_ERR " state=%d, dir=%lx, intr=%x, err=%x\n",
fs->state, rq_data_dir(fd_req), intr, err);
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
break;
}
fd_req->sector += fs->scount;
fd_req->current_nr_sectors -= fs->scount;
fd_req->buffer += fs->scount * 512;
if (fd_req->current_nr_sectors <= 0) {
end_request(fd_req, 1);
fs->state = idle;
} else {
fs->req_sector += fs->scount;
if (fs->req_sector > fs->secpertrack) {
fs->req_sector -= fs->secpertrack;
if (++fs->head > 1) {
fs->head = 0;
++fs->req_cyl;
}
}
act(fs);
}
}
if (fs->state == idle)
start_request(fs);
break;
default:
printk(KERN_ERR "swim3: don't know what to do in state %d\n", fs->state);
}
return IRQ_HANDLED;
}
/*
static void fd_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
}
*/
static int grab_drive(struct floppy_state *fs, enum swim_state state,
int interruptible)
{
unsigned long flags;
spin_lock_irqsave(&fs->lock, flags);
if (fs->state != idle) {
++fs->wanted;
while (fs->state != available) {
if (interruptible && signal_pending(current)) {
--fs->wanted;
spin_unlock_irqrestore(&fs->lock, flags);
return -EINTR;
}
interruptible_sleep_on(&fs->wait);
}
--fs->wanted;
}
fs->state = state;
spin_unlock_irqrestore(&fs->lock, flags);
return 0;
}
static void release_drive(struct floppy_state *fs)
{
unsigned long flags;
spin_lock_irqsave(&fs->lock, flags);
fs->state = idle;
start_request(fs);
spin_unlock_irqrestore(&fs->lock, flags);
}
static int fd_eject(struct floppy_state *fs)
{
int err, n;
err = grab_drive(fs, ejecting, 1);
if (err)
return err;
swim3_action(fs, EJECT);
for (n = 20; n > 0; --n) {
if (signal_pending(current)) {
err = -EINTR;
break;
}
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
if (swim3_readbit(fs, DISK_IN) == 0)
break;
}
swim3_select(fs, RELAX);
udelay(150);
fs->ejected = 1;
release_drive(fs);
return err;
}
static struct floppy_struct floppy_type =
{ 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL }; /* 7 1.44MB 3.5" */
static int floppy_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long param)
{
struct floppy_state *fs = inode->i_bdev->bd_disk->private_data;
int err;
if ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))
return -EPERM;
#ifdef CONFIG_PMAC_MEDIABAY
if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
return -ENXIO;
#endif
switch (cmd) {
case FDEJECT:
if (fs->ref_count != 1)
return -EBUSY;
err = fd_eject(fs);
return err;
case FDGETPRM:
if (copy_to_user((void __user *) param, &floppy_type,
sizeof(struct floppy_struct)))
return -EFAULT;
return 0;
}
return -ENOTTY;
}
static int floppy_open(struct inode *inode, struct file *filp)
{
struct floppy_state *fs = inode->i_bdev->bd_disk->private_data;
struct swim3 __iomem *sw = fs->swim3;
int n, err = 0;
if (fs->ref_count == 0) {
#ifdef CONFIG_PMAC_MEDIABAY
if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
return -ENXIO;
#endif
out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2);
out_8(&sw->control_bic, 0xff);
out_8(&sw->mode, 0x95);
udelay(10);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE);
swim3_action(fs, MOTOR_ON);
fs->write_prot = -1;
fs->cur_cyl = -1;
for (n = 0; n < 2 * HZ; ++n) {
if (n >= HZ/30 && swim3_readbit(fs, SEEK_COMPLETE))
break;
if (signal_pending(current)) {
err = -EINTR;
break;
}
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
}
if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0
|| swim3_readbit(fs, DISK_IN) == 0))
err = -ENXIO;
swim3_action(fs, SETMFM);
swim3_select(fs, RELAX);
} else if (fs->ref_count == -1 || filp->f_flags & O_EXCL)
return -EBUSY;
if (err == 0 && (filp->f_flags & O_NDELAY) == 0
&& (filp->f_mode & 3)) {
check_disk_change(inode->i_bdev);
if (fs->ejected)
err = -ENXIO;
}
if (err == 0 && (filp->f_mode & 2)) {
if (fs->write_prot < 0)
fs->write_prot = swim3_readbit(fs, WRITE_PROT);
if (fs->write_prot)
err = -EROFS;
}
if (err) {
if (fs->ref_count == 0) {
swim3_action(fs, MOTOR_OFF);
out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE);
swim3_select(fs, RELAX);
}
return err;
}
if (filp->f_flags & O_EXCL)
fs->ref_count = -1;
else
++fs->ref_count;
return 0;
}
static int floppy_release(struct inode *inode, struct file *filp)
{
struct floppy_state *fs = inode->i_bdev->bd_disk->private_data;
struct swim3 __iomem *sw = fs->swim3;
if (fs->ref_count > 0 && --fs->ref_count == 0) {
swim3_action(fs, MOTOR_OFF);
out_8(&sw->control_bic, 0xff);
swim3_select(fs, RELAX);
}
return 0;
}
static int floppy_check_change(struct gendisk *disk)
{
struct floppy_state *fs = disk->private_data;
return fs->ejected;
}
static int floppy_revalidate(struct gendisk *disk)
{
struct floppy_state *fs = disk->private_data;
struct swim3 __iomem *sw;
int ret, n;
#ifdef CONFIG_PMAC_MEDIABAY
if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
return -ENXIO;
#endif
sw = fs->swim3;
grab_drive(fs, revalidating, 0);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bis, DRIVE_ENABLE);
swim3_action(fs, MOTOR_ON); /* necessary? */
fs->write_prot = -1;
fs->cur_cyl = -1;
mdelay(1);
for (n = HZ; n > 0; --n) {
if (swim3_readbit(fs, SEEK_COMPLETE))
break;
if (signal_pending(current))
break;
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
}
ret = swim3_readbit(fs, SEEK_COMPLETE) == 0
|| swim3_readbit(fs, DISK_IN) == 0;
if (ret)
swim3_action(fs, MOTOR_OFF);
else {
fs->ejected = 0;
swim3_action(fs, SETMFM);
}
swim3_select(fs, RELAX);
release_drive(fs);
return ret;
}
static struct block_device_operations floppy_fops = {
.open = floppy_open,
.release = floppy_release,
.ioctl = floppy_ioctl,
.media_changed = floppy_check_change,
.revalidate_disk= floppy_revalidate,
};
int swim3_init(void)
{
struct device_node *swim;
int err = -ENOMEM;
int i;
swim = find_devices("floppy");
while (swim && (floppy_count < MAX_FLOPPIES))
{
swim3_add_device(swim);
swim = swim->next;
}
swim = find_devices("swim3");
while (swim && (floppy_count < MAX_FLOPPIES))
{
swim3_add_device(swim);
swim = swim->next;
}
if (!floppy_count)
return -ENODEV;
for (i = 0; i < floppy_count; i++) {
disks[i] = alloc_disk(1);
if (!disks[i])
goto out;
}
if (register_blkdev(FLOPPY_MAJOR, "fd")) {
err = -EBUSY;
goto out;
}
swim3_queue = blk_init_queue(do_fd_request, &swim3_lock);
if (!swim3_queue) {
err = -ENOMEM;
goto out_queue;
}
for (i = 0; i < floppy_count; i++) {
struct gendisk *disk = disks[i];
disk->major = FLOPPY_MAJOR;
disk->first_minor = i;
disk->fops = &floppy_fops;
disk->private_data = &floppy_states[i];
disk->queue = swim3_queue;
disk->flags |= GENHD_FL_REMOVABLE;
sprintf(disk->disk_name, "fd%d", i);
set_capacity(disk, 2880);
add_disk(disk);
}
return 0;
out_queue:
unregister_blkdev(FLOPPY_MAJOR, "fd");
out:
while (i--)
put_disk(disks[i]);
/* shouldn't we do something with results of swim_add_device()? */
return err;
}
static int swim3_add_device(struct device_node *swim)
{
struct device_node *mediabay;
struct floppy_state *fs = &floppy_states[floppy_count];
struct resource res_reg, res_dma;
if (of_address_to_resource(swim, 0, &res_reg) ||
of_address_to_resource(swim, 1, &res_dma)) {
printk(KERN_ERR "swim3: Can't get addresses\n");
return -EINVAL;
}
if (request_mem_region(res_reg.start, res_reg.end - res_reg.start + 1,
" (reg)") == NULL) {
printk(KERN_ERR "swim3: Can't request register space\n");
return -EINVAL;
}
if (request_mem_region(res_dma.start, res_dma.end - res_dma.start + 1,
" (dma)") == NULL) {
release_mem_region(res_reg.start,
res_reg.end - res_reg.start + 1);
printk(KERN_ERR "swim3: Can't request DMA space\n");
return -EINVAL;
}
if (swim->n_intrs < 2) {
printk(KERN_INFO "swim3: expecting 2 intrs (n_intrs:%d)\n",
swim->n_intrs);
release_mem_region(res_reg.start,
res_reg.end - res_reg.start + 1);
release_mem_region(res_dma.start,
res_dma.end - res_dma.start + 1);
return -EINVAL;
}
mediabay = (strcasecmp(swim->parent->type, "media-bay") == 0) ? swim->parent : NULL;
if (mediabay == NULL)
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1);
memset(fs, 0, sizeof(*fs));
spin_lock_init(&fs->lock);
fs->state = idle;
fs->swim3 = (struct swim3 __iomem *)ioremap(res_reg.start, 0x200);
fs->dma = (struct dbdma_regs __iomem *)ioremap(res_dma.start, 0x200);
fs->swim3_intr = swim->intrs[0].line;
fs->dma_intr = swim->intrs[1].line;
fs->cur_cyl = -1;
fs->cur_sector = -1;
fs->secpercyl = 36;
fs->secpertrack = 18;
fs->total_secs = 2880;
fs->media_bay = mediabay;
init_waitqueue_head(&fs->wait);
fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space);
memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd));
st_le16(&fs->dma_cmd[1].command, DBDMA_STOP);
if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) {
printk(KERN_ERR "Couldn't get irq %d for SWIM3\n", fs->swim3_intr);
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
return -EBUSY;
}
/*
if (request_irq(fs->dma_intr, fd_dma_interrupt, 0, "SWIM3-dma", fs)) {
printk(KERN_ERR "Couldn't get irq %d for SWIM3 DMA",
fs->dma_intr);
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
return -EBUSY;
}
*/
init_timer(&fs->timeout);
printk(KERN_INFO "fd%d: SWIM3 floppy controller %s\n", floppy_count,
mediabay ? "in media bay" : "");
floppy_count++;
return 0;
}
module_init(swim3_init)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul Mackerras");
MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);