Harshit Mogalapalli a23c14b062 iio: temperature: mlx90635: Fix ERR_PTR dereference in mlx90635_probe()
When devm_regmap_init_i2c() fails, regmap_ee could be error pointer,
instead of checking for IS_ERR(regmap_ee), regmap is checked which looks
like a copy paste error.

Fixes: a1d1ba5e1c28 ("iio: temperature: mlx90635 MLX90635 IR Temperature sensor")
Reviewed-by: Crt Mori<cmo@melexis.com>
Signed-off-by: Harshit Mogalapalli <harshit.m.mogalapalli@oracle.com>
Link: https://lore.kernel.org/r/20240513203427.3208696-1-harshit.m.mogalapalli@oracle.com
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2024-05-27 09:49:20 +01:00

1098 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* mlx90635.c - Melexis MLX90635 contactless IR temperature sensor
*
* Copyright (c) 2023 Melexis <cmo@melexis.com>
*
* Driver for the Melexis MLX90635 I2C 16-bit IR thermopile sensor
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/limits.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
/* Memory sections addresses */
#define MLX90635_ADDR_RAM 0x0000 /* Start address of ram */
#define MLX90635_ADDR_EEPROM 0x0018 /* Start address of user eeprom */
/* EEPROM addresses - used at startup */
#define MLX90635_EE_I2C_CFG 0x0018 /* I2C address register initial value */
#define MLX90635_EE_CTRL1 0x001A /* Control register1 initial value */
#define MLX90635_EE_CTRL2 0x001C /* Control register2 initial value */
#define MLX90635_EE_Ha 0x001E /* Ha customer calib value reg 16bit */
#define MLX90635_EE_Hb 0x0020 /* Hb customer calib value reg 16bit */
#define MLX90635_EE_Fa 0x0026 /* Fa calibration register 32bit */
#define MLX90635_EE_FASCALE 0x002A /* Scaling coefficient for Fa register 16bit */
#define MLX90635_EE_Ga 0x002C /* Ga calibration register 16bit */
#define MLX90635_EE_Fb 0x002E /* Fb calibration register 16bit */
#define MLX90635_EE_Ea 0x0030 /* Ea calibration register 32bit */
#define MLX90635_EE_Eb 0x0034 /* Eb calibration register 32bit */
#define MLX90635_EE_P_G 0x0038 /* P_G calibration register 16bit */
#define MLX90635_EE_P_O 0x003A /* P_O calibration register 16bit */
#define MLX90635_EE_Aa 0x003C /* Aa calibration register 16bit */
#define MLX90635_EE_VERSION 0x003E /* Version bits 4:7 and 12:15 */
#define MLX90635_EE_Gb 0x0040 /* Gb calibration register 16bit */
/* Device status register - volatile */
#define MLX90635_REG_STATUS 0x0000
#define MLX90635_STAT_BUSY BIT(6) /* Device busy indicator */
#define MLX90635_STAT_BRST BIT(5) /* Brown out reset indicator */
#define MLX90635_STAT_CYCLE_POS GENMASK(4, 2) /* Data position */
#define MLX90635_STAT_END_CONV BIT(1) /* End of conversion indicator */
#define MLX90635_STAT_DATA_RDY BIT(0) /* Data ready indicator */
/* EEPROM control register address - volatile */
#define MLX90635_REG_EE 0x000C
#define MLX90635_EE_ACTIVE BIT(4) /* Power-on EEPROM */
#define MLX90635_EE_BUSY_MASK BIT(15)
#define MLX90635_REG_CMD 0x0010 /* Command register address */
/* Control register1 address - volatile */
#define MLX90635_REG_CTRL1 0x0014
#define MLX90635_CTRL1_REFRESH_RATE_MASK GENMASK(2, 0)
#define MLX90635_CTRL1_RES_CTRL_MASK GENMASK(4, 3)
#define MLX90635_CTRL1_TABLE_MASK BIT(15) /* Table select */
/* Control register2 address - volatile */
#define MLX90635_REG_CTRL2 0x0016
#define MLX90635_CTRL2_BURST_CNT_MASK GENMASK(10, 6) /* Burst count */
#define MLX90635_CTRL2_MODE_MASK GENMASK(12, 11) /* Power mode */
#define MLX90635_CTRL2_SOB_MASK BIT(15)
/* PowerModes statuses */
#define MLX90635_PWR_STATUS_HALT 0
#define MLX90635_PWR_STATUS_SLEEP_STEP 1
#define MLX90635_PWR_STATUS_STEP 2
#define MLX90635_PWR_STATUS_CONTINUOUS 3
/* Measurement data addresses */
#define MLX90635_RESULT_1 0x0002
#define MLX90635_RESULT_2 0x0004
#define MLX90635_RESULT_3 0x0006
#define MLX90635_RESULT_4 0x0008
#define MLX90635_RESULT_5 0x000A
/* Timings (ms) */
#define MLX90635_TIMING_RST_MIN 200 /* Minimum time after addressed reset command */
#define MLX90635_TIMING_RST_MAX 250 /* Maximum time after addressed reset command */
#define MLX90635_TIMING_POLLING 10000 /* Time between bit polling*/
#define MLX90635_TIMING_EE_ACTIVE_MIN 100 /* Minimum time after activating the EEPROM for read */
#define MLX90635_TIMING_EE_ACTIVE_MAX 150 /* Maximum time after activating the EEPROM for read */
/* Magic constants */
#define MLX90635_ID_DSPv1 0x01 /* EEPROM DSP version */
#define MLX90635_RESET_CMD 0x0006 /* Reset sensor (address or global) */
#define MLX90635_MAX_MEAS_NUM 31 /* Maximum number of measurements in list */
#define MLX90635_PTAT_DIV 12 /* Used to divide the PTAT value in pre-processing */
#define MLX90635_IR_DIV 24 /* Used to divide the IR value in pre-processing */
#define MLX90635_SLEEP_DELAY_MS 6000 /* Autosleep delay */
#define MLX90635_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
#define MLX90635_READ_RETRIES 100 /* Number of read retries before quitting with timeout error */
#define MLX90635_VERSION_MASK (GENMASK(15, 12) | GENMASK(7, 4))
#define MLX90635_DSP_VERSION(reg) (((reg & GENMASK(14, 12)) >> 9) | ((reg & GENMASK(6, 4)) >> 4))
#define MLX90635_DSP_FIXED BIT(15)
/**
* struct mlx90635_data - private data for the MLX90635 device
* @client: I2C client of the device
* @lock: Internal mutex because multiple reads are needed for single triggered
* measurement to ensure data consistency
* @regmap: Regmap of the device registers
* @regmap_ee: Regmap of the device EEPROM which can be cached
* @emissivity: Object emissivity from 0 to 1000 where 1000 = 1
* @regulator: Regulator of the device
* @powerstatus: Current POWER status of the device
* @interaction_ts: Timestamp of the last temperature read that is used
* for power management in jiffies
*/
struct mlx90635_data {
struct i2c_client *client;
struct mutex lock;
struct regmap *regmap;
struct regmap *regmap_ee;
u16 emissivity;
struct regulator *regulator;
int powerstatus;
unsigned long interaction_ts;
};
static const struct regmap_range mlx90635_volatile_reg_range[] = {
regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
};
static const struct regmap_access_table mlx90635_volatile_regs_tbl = {
.yes_ranges = mlx90635_volatile_reg_range,
.n_yes_ranges = ARRAY_SIZE(mlx90635_volatile_reg_range),
};
static const struct regmap_range mlx90635_read_reg_range[] = {
regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
};
static const struct regmap_access_table mlx90635_readable_regs_tbl = {
.yes_ranges = mlx90635_read_reg_range,
.n_yes_ranges = ARRAY_SIZE(mlx90635_read_reg_range),
};
static const struct regmap_range mlx90635_no_write_reg_range[] = {
regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
};
static const struct regmap_access_table mlx90635_writeable_regs_tbl = {
.no_ranges = mlx90635_no_write_reg_range,
.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_reg_range),
};
static const struct regmap_config mlx90635_regmap = {
.name = "mlx90635-registers",
.reg_stride = 1,
.reg_bits = 16,
.val_bits = 16,
.volatile_table = &mlx90635_volatile_regs_tbl,
.rd_table = &mlx90635_readable_regs_tbl,
.wr_table = &mlx90635_writeable_regs_tbl,
.use_single_read = true,
.use_single_write = true,
.can_multi_write = false,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.cache_type = REGCACHE_RBTREE,
};
static const struct regmap_range mlx90635_read_ee_range[] = {
regmap_reg_range(MLX90635_EE_I2C_CFG, MLX90635_EE_CTRL2),
regmap_reg_range(MLX90635_EE_Ha, MLX90635_EE_Gb),
};
static const struct regmap_access_table mlx90635_readable_ees_tbl = {
.yes_ranges = mlx90635_read_ee_range,
.n_yes_ranges = ARRAY_SIZE(mlx90635_read_ee_range),
};
static const struct regmap_range mlx90635_no_write_ee_range[] = {
regmap_reg_range(MLX90635_ADDR_EEPROM, MLX90635_EE_Gb),
};
static const struct regmap_access_table mlx90635_writeable_ees_tbl = {
.no_ranges = mlx90635_no_write_ee_range,
.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_ee_range),
};
static const struct regmap_config mlx90635_regmap_ee = {
.name = "mlx90635-eeprom",
.reg_stride = 1,
.reg_bits = 16,
.val_bits = 16,
.volatile_table = NULL,
.rd_table = &mlx90635_readable_ees_tbl,
.wr_table = &mlx90635_writeable_ees_tbl,
.use_single_read = true,
.use_single_write = true,
.can_multi_write = false,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.cache_type = REGCACHE_RBTREE,
};
/**
* mlx90635_reset_delay() - Give the mlx90635 some time to reset properly
* If this is not done, the following I2C command(s) will not be accepted.
*/
static void mlx90635_reset_delay(void)
{
usleep_range(MLX90635_TIMING_RST_MIN, MLX90635_TIMING_RST_MAX);
}
static int mlx90635_pwr_sleep_step(struct mlx90635_data *data)
{
int ret;
if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
return 0;
ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_SLEEP_STEP));
if (ret < 0)
return ret;
data->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
return 0;
}
static int mlx90635_pwr_continuous(struct mlx90635_data *data)
{
int ret;
if (data->powerstatus == MLX90635_PWR_STATUS_CONTINUOUS)
return 0;
ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_CONTINUOUS));
if (ret < 0)
return ret;
data->powerstatus = MLX90635_PWR_STATUS_CONTINUOUS;
return 0;
}
static int mlx90635_read_ee_register(struct regmap *regmap, u16 reg_lsb,
s32 *reg_value)
{
unsigned int read;
u32 value;
int ret;
ret = regmap_read(regmap, reg_lsb + 2, &read);
if (ret < 0)
return ret;
value = read;
ret = regmap_read(regmap, reg_lsb, &read);
if (ret < 0)
return ret;
*reg_value = (read << 16) | (value & 0xffff);
return 0;
}
static int mlx90635_read_ee_ambient(struct regmap *regmap, s16 *PG, s16 *PO, s16 *Gb)
{
unsigned int read_tmp;
int ret;
ret = regmap_read(regmap, MLX90635_EE_P_O, &read_tmp);
if (ret < 0)
return ret;
*PO = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_P_G, &read_tmp);
if (ret < 0)
return ret;
*PG = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
if (ret < 0)
return ret;
*Gb = (u16)read_tmp;
return 0;
}
static int mlx90635_read_ee_object(struct regmap *regmap, u32 *Ea, u32 *Eb, u32 *Fa, s16 *Fb,
s16 *Ga, s16 *Gb, s16 *Ha, s16 *Hb, u16 *Fa_scale)
{
unsigned int read_tmp;
int ret;
ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Ea, Ea);
if (ret < 0)
return ret;
ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Eb, Eb);
if (ret < 0)
return ret;
ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Fa, Fa);
if (ret < 0)
return ret;
ret = regmap_read(regmap, MLX90635_EE_Ha, &read_tmp);
if (ret < 0)
return ret;
*Ha = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_Hb, &read_tmp);
if (ret < 0)
return ret;
*Hb = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_Ga, &read_tmp);
if (ret < 0)
return ret;
*Ga = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
if (ret < 0)
return ret;
*Gb = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_Fb, &read_tmp);
if (ret < 0)
return ret;
*Fb = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_EE_FASCALE, &read_tmp);
if (ret < 0)
return ret;
*Fa_scale = (u16)read_tmp;
return 0;
}
static int mlx90635_calculate_dataset_ready_time(struct mlx90635_data *data, int *refresh_time)
{
unsigned int reg;
int ret;
ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
if (ret < 0)
return ret;
*refresh_time = 2 * (MLX90635_MEAS_MAX_TIME >> FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg)) + 80;
return 0;
}
static int mlx90635_perform_measurement_burst(struct mlx90635_data *data)
{
unsigned int reg_status;
int refresh_time;
int ret;
ret = regmap_write_bits(data->regmap, MLX90635_REG_STATUS,
MLX90635_STAT_END_CONV, MLX90635_STAT_END_CONV);
if (ret < 0)
return ret;
ret = mlx90635_calculate_dataset_ready_time(data, &refresh_time);
if (ret < 0)
return ret;
ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2,
FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1),
FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1));
if (ret < 0)
return ret;
msleep(refresh_time); /* Wait minimum time for dataset to be ready */
ret = regmap_read_poll_timeout(data->regmap, MLX90635_REG_STATUS, reg_status,
(!(reg_status & MLX90635_STAT_END_CONV)) == 0,
MLX90635_TIMING_POLLING, MLX90635_READ_RETRIES * 10000);
if (ret < 0) {
dev_err(&data->client->dev, "data not ready");
return -ETIMEDOUT;
}
return 0;
}
static int mlx90635_read_ambient_raw(struct regmap *regmap,
s16 *ambient_new_raw, s16 *ambient_old_raw)
{
unsigned int read_tmp;
int ret;
ret = regmap_read(regmap, MLX90635_RESULT_2, &read_tmp);
if (ret < 0)
return ret;
*ambient_new_raw = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_RESULT_3, &read_tmp);
if (ret < 0)
return ret;
*ambient_old_raw = (s16)read_tmp;
return 0;
}
static int mlx90635_read_object_raw(struct regmap *regmap, s16 *object_raw)
{
unsigned int read_tmp;
s16 read;
int ret;
ret = regmap_read(regmap, MLX90635_RESULT_1, &read_tmp);
if (ret < 0)
return ret;
read = (s16)read_tmp;
ret = regmap_read(regmap, MLX90635_RESULT_4, &read_tmp);
if (ret < 0)
return ret;
*object_raw = (read - (s16)read_tmp) / 2;
return 0;
}
static int mlx90635_read_all_channel(struct mlx90635_data *data,
s16 *ambient_new_raw, s16 *ambient_old_raw,
s16 *object_raw)
{
int ret;
mutex_lock(&data->lock);
if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
/* Trigger measurement in Sleep Step mode */
ret = mlx90635_perform_measurement_burst(data);
if (ret < 0)
goto read_unlock;
}
ret = mlx90635_read_ambient_raw(data->regmap, ambient_new_raw,
ambient_old_raw);
if (ret < 0)
goto read_unlock;
ret = mlx90635_read_object_raw(data->regmap, object_raw);
read_unlock:
mutex_unlock(&data->lock);
return ret;
}
static s64 mlx90635_preprocess_temp_amb(s16 ambient_new_raw,
s16 ambient_old_raw, s16 Gb)
{
s64 VR_Ta, kGb, tmp;
kGb = ((s64)Gb * 1000LL) >> 10ULL;
VR_Ta = (s64)ambient_old_raw * 1000000LL +
kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
(MLX90635_PTAT_DIV));
tmp = div64_s64(
div64_s64(((s64)ambient_new_raw * 1000000000000LL),
(MLX90635_PTAT_DIV)), VR_Ta);
return div64_s64(tmp << 19ULL, 1000LL);
}
static s64 mlx90635_preprocess_temp_obj(s16 object_raw,
s16 ambient_new_raw,
s16 ambient_old_raw, s16 Gb)
{
s64 VR_IR, kGb, tmp;
kGb = ((s64)Gb * 1000LL) >> 10ULL;
VR_IR = (s64)ambient_old_raw * 1000000LL +
kGb * (div64_s64((s64)ambient_new_raw * 1000LL,
MLX90635_PTAT_DIV));
tmp = div64_s64(
div64_s64((s64)(object_raw * 1000000LL),
MLX90635_IR_DIV) * 1000000LL,
VR_IR);
return div64_s64((tmp << 19ULL), 1000LL);
}
static s32 mlx90635_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
u16 P_G, u16 P_O, s16 Gb)
{
s64 kPG, kPO, AMB;
AMB = mlx90635_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
Gb);
kPG = ((s64)P_G * 1000000LL) >> 9ULL;
kPO = AMB - (((s64)P_O * 1000LL) >> 1ULL);
return 30 * 1000LL + div64_s64(kPO * 1000000LL, kPG);
}
static s32 mlx90635_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
s64 TAdut, s64 TAdut4, s16 Ga,
u32 Fa, u16 Fa_scale, s16 Fb,
s16 Ha, s16 Hb, u16 emissivity)
{
s64 calcedGa, calcedGb, calcedFa, Alpha_corr;
s64 Ha_customer, Hb_customer;
Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
Hb_customer = ((s64)Hb * 100) >> 10ULL;
calcedGa = ((s64)((s64)Ga * (prev_object_temp - 35 * 1000LL)
* 1000LL)) >> 24LL;
calcedGb = ((s64)(Fb * (TAdut - 30 * 1000000LL))) >> 24LL;
Alpha_corr = ((s64)((s64)Fa * Ha_customer * 10000LL) >> Fa_scale);
Alpha_corr *= ((s64)(1 * 1000000LL + calcedGa + calcedGb));
Alpha_corr = div64_s64(Alpha_corr, 1000LL);
Alpha_corr *= emissivity;
Alpha_corr = div64_s64(Alpha_corr, 100LL);
calcedFa = div64_s64((s64)object * 100000000000LL, Alpha_corr);
return (int_sqrt64(int_sqrt64(calcedFa * 100000000LL + TAdut4))
- 27315 - Hb_customer) * 10;
}
static s64 mlx90635_calc_ta4(s64 TAdut, s64 scale)
{
return (div64_s64(TAdut, scale) + 27315) *
(div64_s64(TAdut, scale) + 27315) *
(div64_s64(TAdut, scale) + 27315) *
(div64_s64(TAdut, scale) + 27315);
}
static s32 mlx90635_calc_temp_object(s64 object, s64 ambient, u32 Ea, u32 Eb,
s16 Ga, u32 Fa, u16 Fa_scale, s16 Fb, s16 Ha, s16 Hb,
u16 tmp_emi)
{
s64 kTA, kTA0, TAdut, TAdut4;
s64 temp = 35000;
s8 i;
kTA = (Ea * 1000LL) >> 16LL;
kTA0 = (Eb * 1000LL) >> 8LL;
TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 30 * 1000000LL;
TAdut4 = mlx90635_calc_ta4(TAdut, 10000LL);
/* Iterations of calculation as described in datasheet */
for (i = 0; i < 5; ++i) {
temp = mlx90635_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
Ga, Fa, Fa_scale, Fb, Ha, Hb,
tmp_emi);
}
return temp;
}
static int mlx90635_calc_object(struct mlx90635_data *data, int *val)
{
s16 ambient_new_raw, ambient_old_raw, object_raw;
s16 Fb, Ga, Gb, Ha, Hb;
s64 object, ambient;
u32 Ea, Eb, Fa;
u16 Fa_scale;
int ret;
ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
if (ret < 0)
return ret;
ret = mlx90635_read_all_channel(data,
&ambient_new_raw, &ambient_old_raw,
&object_raw);
if (ret < 0)
return ret;
ambient = mlx90635_preprocess_temp_amb(ambient_new_raw,
ambient_old_raw, Gb);
object = mlx90635_preprocess_temp_obj(object_raw,
ambient_new_raw,
ambient_old_raw, Gb);
*val = mlx90635_calc_temp_object(object, ambient, Ea, Eb, Ga, Fa, Fa_scale, Fb,
Ha, Hb, data->emissivity);
return 0;
}
static int mlx90635_calc_ambient(struct mlx90635_data *data, int *val)
{
s16 ambient_new_raw, ambient_old_raw;
s16 PG, PO, Gb;
int ret;
ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
if (ret < 0)
return ret;
mutex_lock(&data->lock);
if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
ret = mlx90635_perform_measurement_burst(data);
if (ret < 0)
goto read_ambient_unlock;
}
ret = mlx90635_read_ambient_raw(data->regmap, &ambient_new_raw,
&ambient_old_raw);
read_ambient_unlock:
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
*val = mlx90635_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
PG, PO, Gb);
return ret;
}
static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
unsigned int *refresh_rate)
{
unsigned int reg;
int ret;
ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
if (ret < 0)
return ret;
*refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
return 0;
}
static const struct {
int val;
int val2;
} mlx90635_freqs[] = {
{ 0, 200000 },
{ 0, 500000 },
{ 0, 900000 },
{ 1, 700000 },
{ 3, 0 },
{ 4, 800000 },
{ 6, 900000 },
{ 8, 900000 }
};
/**
* mlx90635_pm_interaction_wakeup() - Measure time between user interactions to change powermode
* @data: pointer to mlx90635_data object containing interaction_ts information
*
* Switch to continuous mode when interaction is faster than MLX90635_MEAS_MAX_TIME. Update the
* interaction_ts for each function call with the jiffies to enable measurement between function
* calls. Initial value of the interaction_ts needs to be set before this function call.
*/
static int mlx90635_pm_interaction_wakeup(struct mlx90635_data *data)
{
unsigned long now;
int ret;
now = jiffies;
if (time_in_range(now, data->interaction_ts,
data->interaction_ts +
msecs_to_jiffies(MLX90635_MEAS_MAX_TIME + 100))) {
ret = mlx90635_pwr_continuous(data);
if (ret < 0)
return ret;
}
data->interaction_ts = now;
return 0;
}
static int mlx90635_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mlx90635_data *data = iio_priv(indio_dev);
int ret;
int cr;
pm_runtime_get_sync(&data->client->dev);
ret = mlx90635_pm_interaction_wakeup(data);
if (ret < 0)
goto mlx90635_read_raw_pm;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (channel->channel2) {
case IIO_MOD_TEMP_AMBIENT:
ret = mlx90635_calc_ambient(data, val);
if (ret < 0)
goto mlx90635_read_raw_pm;
ret = IIO_VAL_INT;
break;
case IIO_MOD_TEMP_OBJECT:
ret = mlx90635_calc_object(data, val);
if (ret < 0)
goto mlx90635_read_raw_pm;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
break;
}
break;
case IIO_CHAN_INFO_CALIBEMISSIVITY:
if (data->emissivity == 1000) {
*val = 1;
*val2 = 0;
} else {
*val = 0;
*val2 = data->emissivity * 1000;
}
ret = IIO_VAL_INT_PLUS_MICRO;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = mlx90635_get_refresh_rate(data, &cr);
if (ret < 0)
goto mlx90635_read_raw_pm;
*val = mlx90635_freqs[cr].val;
*val2 = mlx90635_freqs[cr].val2;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
ret = -EINVAL;
break;
}
mlx90635_read_raw_pm:
pm_runtime_mark_last_busy(&data->client->dev);
pm_runtime_put_autosuspend(&data->client->dev);
return ret;
}
static int mlx90635_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int val,
int val2, long mask)
{
struct mlx90635_data *data = iio_priv(indio_dev);
int ret;
int i;
switch (mask) {
case IIO_CHAN_INFO_CALIBEMISSIVITY:
/* Confirm we are within 0 and 1.0 */
if (val < 0 || val2 < 0 || val > 1 ||
(val == 1 && val2 != 0))
return -EINVAL;
data->emissivity = val * 1000 + val2 / 1000;
return 0;
case IIO_CHAN_INFO_SAMP_FREQ:
for (i = 0; i < ARRAY_SIZE(mlx90635_freqs); i++) {
if (val == mlx90635_freqs[i].val &&
val2 == mlx90635_freqs[i].val2)
break;
}
if (i == ARRAY_SIZE(mlx90635_freqs))
return -EINVAL;
ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
MLX90635_CTRL1_REFRESH_RATE_MASK, i);
return ret;
default:
return -EINVAL;
}
}
static int mlx90635_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)mlx90635_freqs;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = 2 * ARRAY_SIZE(mlx90635_freqs);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static const struct iio_chan_spec mlx90635_channels[] = {
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_AMBIENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_OBJECT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
};
static const struct iio_info mlx90635_info = {
.read_raw = mlx90635_read_raw,
.write_raw = mlx90635_write_raw,
.read_avail = mlx90635_read_avail,
};
static void mlx90635_sleep(void *_data)
{
struct mlx90635_data *data = _data;
mlx90635_pwr_sleep_step(data);
}
static int mlx90635_suspend(struct mlx90635_data *data)
{
return mlx90635_pwr_sleep_step(data);
}
static int mlx90635_wakeup(struct mlx90635_data *data)
{
s16 Fb, Ga, Gb, Ha, Hb, PG, PO;
unsigned int dsp_version;
u32 Ea, Eb, Fa;
u16 Fa_scale;
int ret;
regcache_cache_bypass(data->regmap_ee, false);
regcache_cache_only(data->regmap_ee, false);
regcache_cache_only(data->regmap, false);
ret = mlx90635_pwr_continuous(data);
if (ret < 0) {
dev_err(&data->client->dev, "Switch to continuous mode failed\n");
return ret;
}
ret = regmap_write_bits(data->regmap, MLX90635_REG_EE,
MLX90635_EE_ACTIVE, MLX90635_EE_ACTIVE);
if (ret < 0) {
dev_err(&data->client->dev, "Powering EEPROM failed\n");
return ret;
}
usleep_range(MLX90635_TIMING_EE_ACTIVE_MIN, MLX90635_TIMING_EE_ACTIVE_MAX);
regcache_mark_dirty(data->regmap_ee);
ret = regcache_sync(data->regmap_ee);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to sync cache: %d\n", ret);
return ret;
}
ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to read to cache Ambient coefficients EEPROM region: %d\n", ret);
return ret;
}
ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to read to cache Object coefficients EEPROM region: %d\n", ret);
return ret;
}
ret = regmap_read(data->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to read to cache of EEPROM version: %d\n", ret);
return ret;
}
regcache_cache_only(data->regmap_ee, true);
return ret;
}
static void mlx90635_disable_regulator(void *_data)
{
struct mlx90635_data *data = _data;
int ret;
ret = regulator_disable(data->regulator);
if (ret < 0)
dev_err(regmap_get_device(data->regmap),
"Failed to disable power regulator: %d\n", ret);
}
static int mlx90635_enable_regulator(struct mlx90635_data *data)
{
int ret;
ret = regulator_enable(data->regulator);
if (ret < 0) {
dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
return ret;
}
mlx90635_reset_delay();
return ret;
}
static int mlx90635_probe(struct i2c_client *client)
{
struct mlx90635_data *mlx90635;
struct iio_dev *indio_dev;
unsigned int dsp_version;
struct regmap *regmap;
struct regmap *regmap_ee;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90635));
if (!indio_dev)
return dev_err_probe(&client->dev, -ENOMEM, "failed to allocate device\n");
regmap = devm_regmap_init_i2c(client, &mlx90635_regmap);
if (IS_ERR(regmap))
return dev_err_probe(&client->dev, PTR_ERR(regmap),
"failed to allocate regmap\n");
regmap_ee = devm_regmap_init_i2c(client, &mlx90635_regmap_ee);
if (IS_ERR(regmap_ee))
return dev_err_probe(&client->dev, PTR_ERR(regmap_ee),
"failed to allocate EEPROM regmap\n");
mlx90635 = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
mlx90635->client = client;
mlx90635->regmap = regmap;
mlx90635->regmap_ee = regmap_ee;
mlx90635->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
mutex_init(&mlx90635->lock);
indio_dev->name = "mlx90635";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mlx90635_info;
indio_dev->channels = mlx90635_channels;
indio_dev->num_channels = ARRAY_SIZE(mlx90635_channels);
mlx90635->regulator = devm_regulator_get(&client->dev, "vdd");
if (IS_ERR(mlx90635->regulator))
return dev_err_probe(&client->dev, PTR_ERR(mlx90635->regulator),
"failed to get vdd regulator");
ret = mlx90635_enable_regulator(mlx90635);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(&client->dev, mlx90635_disable_regulator,
mlx90635);
if (ret < 0)
return dev_err_probe(&client->dev, ret,
"failed to setup regulator cleanup action\n");
ret = mlx90635_wakeup(mlx90635);
if (ret < 0)
return dev_err_probe(&client->dev, ret, "wakeup failed\n");
ret = devm_add_action_or_reset(&client->dev, mlx90635_sleep, mlx90635);
if (ret < 0)
return dev_err_probe(&client->dev, ret,
"failed to setup low power cleanup\n");
ret = regmap_read(mlx90635->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
if (ret < 0)
return dev_err_probe(&client->dev, ret, "read of version failed\n");
dsp_version = dsp_version & MLX90635_VERSION_MASK;
if (FIELD_GET(MLX90635_DSP_FIXED, dsp_version)) {
if (MLX90635_DSP_VERSION(dsp_version) == MLX90635_ID_DSPv1) {
dev_dbg(&client->dev,
"Detected DSP v1 calibration %x\n", dsp_version);
} else {
dev_dbg(&client->dev,
"Detected Unknown EEPROM calibration %lx\n",
MLX90635_DSP_VERSION(dsp_version));
}
} else {
return dev_err_probe(&client->dev, -EPROTONOSUPPORT,
"Wrong fixed top bit %x (expected 0x8X0X)\n",
dsp_version);
}
mlx90635->emissivity = 1000;
mlx90635->interaction_ts = jiffies; /* Set initial value */
pm_runtime_get_noresume(&client->dev);
pm_runtime_set_active(&client->dev);
ret = devm_pm_runtime_enable(&client->dev);
if (ret)
return dev_err_probe(&client->dev, ret,
"failed to enable powermanagement\n");
pm_runtime_set_autosuspend_delay(&client->dev, MLX90635_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct i2c_device_id mlx90635_id[] = {
{ "mlx90635" },
{ }
};
MODULE_DEVICE_TABLE(i2c, mlx90635_id);
static const struct of_device_id mlx90635_of_match[] = {
{ .compatible = "melexis,mlx90635" },
{ }
};
MODULE_DEVICE_TABLE(of, mlx90635_of_match);
static int mlx90635_pm_suspend(struct device *dev)
{
struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
int ret;
ret = mlx90635_suspend(data);
if (ret < 0)
return ret;
ret = regulator_disable(data->regulator);
if (ret < 0)
dev_err(regmap_get_device(data->regmap),
"Failed to disable power regulator: %d\n", ret);
return ret;
}
static int mlx90635_pm_resume(struct device *dev)
{
struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
int ret;
ret = mlx90635_enable_regulator(data);
if (ret < 0)
return ret;
return mlx90635_wakeup(data);
}
static int mlx90635_pm_runtime_suspend(struct device *dev)
{
struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
return mlx90635_pwr_sleep_step(data);
}
static const struct dev_pm_ops mlx90635_pm_ops = {
SYSTEM_SLEEP_PM_OPS(mlx90635_pm_suspend, mlx90635_pm_resume)
RUNTIME_PM_OPS(mlx90635_pm_runtime_suspend, NULL, NULL)
};
static struct i2c_driver mlx90635_driver = {
.driver = {
.name = "mlx90635",
.of_match_table = mlx90635_of_match,
.pm = pm_ptr(&mlx90635_pm_ops),
},
.probe = mlx90635_probe,
.id_table = mlx90635_id,
};
module_i2c_driver(mlx90635_driver);
MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
MODULE_DESCRIPTION("Melexis MLX90635 contactless Infra Red temperature sensor driver");
MODULE_LICENSE("GPL");