linux/drivers/power/supply/bd99954-charger.c
Samuel Zou 2e9bcaccef power: supply: Make bd9995x_chip_reset static
Fix the following sparse warning:

drivers/power/supply/bd99954-charger.c:1028:6: warning: symbol 'bd9995x_chip_reset' was not declared.

The bd9995x_chip_reset() has only one call site within bd99954-charger.c
It should be static

Fixes: 0902f8366491 ("power: supply: Support ROHM bd99954 charger")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Samuel Zou <zou_wei@huawei.com>
Reviewed-by: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
2020-05-28 19:02:59 +02:00

1143 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ROHM BD99954 charger driver
*
* Copyright (C) 2020 Rohm Semiconductors
* Originally written by:
* Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
* Markus Laine <markus.laine@fi.rohmeurope.com>
* Bugs added by:
* Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
*/
/*
* The battery charging profile of BD99954.
*
* Curve (1) represents charging current.
* Curve (2) represents battery voltage.
*
* The BD99954 data sheet divides charging to three phases.
* a) Trickle-charge with constant current (8).
* b) pre-charge with constant current (6)
* c) fast-charge, first with constant current (5) phase. After
* the battery voltage has reached target level (4) we have constant
* voltage phase until charging current has dropped to termination
* level (7)
*
* V ^ ^ I
* . .
* . .
*(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
* . :/ .
* . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
* . + :: + .
* . + /- -- .
* . +`/- + .
* . o/- -: .
* . .s. +` .
* . .--+ `/ .
* . ..`` + .: .
* . -` + -- .
* . (2) ...`` + :- .
* . ...`` + -: .
*(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
* . + `:. .
* . + -: .
* . + -:. .
* . + .--. .
* . (1) + `.+` ` ` `.` ` (7)
* -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
* . + -
* -------------------------------------------------+++++++++-->
* | trickle | pre | fast |
*
* Details of DT properties for different limits can be found from BD99954
* device tree binding documentation.
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/linear_range.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/power_supply.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/types.h>
#include "bd99954-charger.h"
struct battery_data {
u16 precharge_current; /* Trickle-charge Current */
u16 fc_reg_voltage; /* Fast Charging Regulation Voltage */
u16 voltage_min;
u16 voltage_max;
};
/* Initial field values, converted to initial register values */
struct bd9995x_init_data {
u16 vsysreg_set; /* VSYS Regulation Setting */
u16 ibus_lim_set; /* VBUS input current limitation */
u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */
u16 itrich_set; /* Trickle-charge Current Setting */
u16 iprech_set; /* Pre-Charge Current Setting */
u16 ichg_set; /* Fast-Charge constant current */
u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */
u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */
u16 vrechg_set; /* Re-charge Battery Voltage Setting */
u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */
u16 iterm_set; /* Charging termination current */
};
struct bd9995x_state {
u8 online;
u16 chgstm_status;
u16 vbat_vsys_status;
u16 vbus_vcc_status;
};
struct bd9995x_device {
struct i2c_client *client;
struct device *dev;
struct power_supply *charger;
struct regmap *rmap;
struct regmap_field *rmap_fields[F_MAX_FIELDS];
int chip_id;
int chip_rev;
struct bd9995x_init_data init_data;
struct bd9995x_state state;
struct mutex lock; /* Protect state data */
};
static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
regmap_reg_range(CHIP_ID, CHIP_REV),
regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
};
static const struct regmap_access_table bd9995x_writeable_regs = {
.no_ranges = bd9995x_readonly_reg_ranges,
.n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
};
static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
regmap_reg_range(INT0_STATUS, INT7_STATUS),
regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
};
static const struct regmap_access_table bd9995x_volatile_regs = {
.yes_ranges = bd9995x_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
};
static const struct regmap_range_cfg regmap_range_cfg[] = {
{
.selector_reg = MAP_SET,
.selector_mask = 0xFFFF,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
.range_min = 0 * 0x100,
.range_max = 3 * 0x100,
},
};
static const struct regmap_config bd9995x_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.reg_stride = 1,
.max_register = 3 * 0x100,
.cache_type = REGCACHE_RBTREE,
.ranges = regmap_range_cfg,
.num_ranges = ARRAY_SIZE(regmap_range_cfg),
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.wr_table = &bd9995x_writeable_regs,
.volatile_table = &bd9995x_volatile_regs,
};
enum bd9995x_chrg_fault {
CHRG_FAULT_NORMAL,
CHRG_FAULT_INPUT,
CHRG_FAULT_THERMAL_SHUTDOWN,
CHRG_FAULT_TIMER_EXPIRED,
};
static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
if (ret)
return POWER_SUPPLY_HEALTH_UNKNOWN;
/* TODO: Check these against datasheet page 34 */
switch (tmp) {
case ROOM:
return POWER_SUPPLY_HEALTH_GOOD;
case HOT1:
case HOT2:
case HOT3:
return POWER_SUPPLY_HEALTH_OVERHEAT;
case COLD1:
case COLD2:
return POWER_SUPPLY_HEALTH_COLD;
case TEMP_DIS:
case BATT_OPEN:
default:
return POWER_SUPPLY_HEALTH_UNKNOWN;
}
}
static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
if (ret)
return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
switch (tmp) {
case CHGSTM_TRICKLE_CHARGE:
case CHGSTM_PRE_CHARGE:
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
case CHGSTM_FAST_CHARGE:
return POWER_SUPPLY_CHARGE_TYPE_FAST;
case CHGSTM_TOP_OFF:
case CHGSTM_DONE:
case CHGSTM_SUSPEND:
return POWER_SUPPLY_CHARGE_TYPE_NONE;
default: /* Rest of the states are error related, no charging */
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
}
static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
if (ret)
return false;
return tmp != BATT_OPEN;
}
static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
if (ret)
return 0;
tmp = min(tmp, 19200);
return tmp * 1000;
}
static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
if (ret)
return 0;
return tmp * 1000;
}
#define DEFAULT_BATTERY_TEMPERATURE 250
static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
{
int ret, tmp;
ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
if (ret)
return DEFAULT_BATTERY_TEMPERATURE;
return (200 - tmp) * 10;
}
static int bd9995x_power_supply_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret, tmp;
struct bd9995x_device *bd = power_supply_get_drvdata(psy);
struct bd9995x_state state;
mutex_lock(&bd->lock);
state = bd->state;
mutex_unlock(&bd->lock);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
switch (state.chgstm_status) {
case CHGSTM_TRICKLE_CHARGE:
case CHGSTM_PRE_CHARGE:
case CHGSTM_FAST_CHARGE:
case CHGSTM_TOP_OFF:
val->intval = POWER_SUPPLY_STATUS_CHARGING;
break;
case CHGSTM_DONE:
val->intval = POWER_SUPPLY_STATUS_FULL;
break;
case CHGSTM_SUSPEND:
case CHGSTM_TEMPERATURE_ERROR_1:
case CHGSTM_TEMPERATURE_ERROR_2:
case CHGSTM_TEMPERATURE_ERROR_3:
case CHGSTM_TEMPERATURE_ERROR_4:
case CHGSTM_TEMPERATURE_ERROR_5:
case CHGSTM_TEMPERATURE_ERROR_6:
case CHGSTM_TEMPERATURE_ERROR_7:
case CHGSTM_THERMAL_SHUT_DOWN_1:
case CHGSTM_THERMAL_SHUT_DOWN_2:
case CHGSTM_THERMAL_SHUT_DOWN_3:
case CHGSTM_THERMAL_SHUT_DOWN_4:
case CHGSTM_THERMAL_SHUT_DOWN_5:
case CHGSTM_THERMAL_SHUT_DOWN_6:
case CHGSTM_THERMAL_SHUT_DOWN_7:
case CHGSTM_BATTERY_ERROR:
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
break;
default:
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
break;
}
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = BD9995X_MANUFACTURER;
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = state.online;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
if (ret)
return ret;
val->intval = tmp * 1000;
break;
case POWER_SUPPLY_PROP_CHARGE_AVG:
ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
if (ret)
return ret;
val->intval = tmp * 1000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
/*
* Currently the DT uses this property to give the
* target current for fast-charging constant current phase.
* I think it is correct in a sense.
*
* Yet, this prop we read and return here is the programmed
* safety limit for combined input currents. This feels
* also correct in a sense.
*
* However, this results a mismatch to DT value and value
* read from sysfs.
*/
ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
if (ret)
return ret;
val->intval = tmp * 1000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
if (!state.online) {
val->intval = 0;
break;
}
ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
&tmp);
if (ret)
return ret;
/*
* The actual range : 2560 to 19200 mV. No matter what the
* register says
*/
val->intval = clamp_val(tmp << 4, 2560, 19200);
val->intval *= 1000;
break;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
if (ret)
return ret;
/* Start step is 64 mA */
val->intval = tmp << 6;
/* Maximum is 1024 mA - no matter what register says */
val->intval = min(val->intval, 1024);
val->intval *= 1000;
break;
/* Battery properties which we access through charger */
case POWER_SUPPLY_PROP_PRESENT:
val->intval = bd9995x_get_prop_batt_present(bd);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = bd9995x_get_prop_batt_voltage(bd);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = bd9995x_get_prop_batt_current(bd);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = bd9995x_get_prop_charge_type(bd);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = bd9995x_get_prop_batt_health(bd);
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = bd9995x_get_prop_batt_temp(bd);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
val->strval = "bd99954";
break;
default:
return -EINVAL;
}
return 0;
}
static int bd9995x_get_chip_state(struct bd9995x_device *bd,
struct bd9995x_state *state)
{
int i, ret, tmp;
struct {
struct regmap_field *id;
u16 *data;
} state_fields[] = {
{
bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
}, {
bd->rmap_fields[F_VBAT_VSYS_STATUS],
&state->vbat_vsys_status,
}, {
bd->rmap_fields[F_VBUS_VCC_STATUS],
&state->vbus_vcc_status,
},
};
for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
ret = regmap_field_read(state_fields[i].id, &tmp);
if (ret)
return ret;
*state_fields[i].data = tmp;
}
if (state->vbus_vcc_status & STATUS_VCC_DET ||
state->vbus_vcc_status & STATUS_VBUS_DET)
state->online = 1;
else
state->online = 0;
return 0;
}
static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
{
struct bd9995x_device *bd = private;
int ret, status, mask, i;
unsigned long tmp;
struct bd9995x_state state;
/*
* The bd9995x does not seem to generate big amount of interrupts.
* The logic regarding which interrupts can cause relevant
* status changes seem to be pretty complex.
*
* So lets implement really simple and hopefully bullet-proof handler:
* It does not really matter which IRQ we handle, we just go and
* re-read all interesting statuses + give the framework a nudge.
*
* Other option would be building a _complex_ and error prone logic
* trying to decide what could have been changed (resulting this IRQ
* we are now handling). During the normal operation the BD99954 does
* not seem to be generating much of interrupts so benefit from such
* logic would probably be minimal.
*/
ret = regmap_read(bd->rmap, INT0_STATUS, &status);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ status\n");
return IRQ_NONE;
}
ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ mask\n");
return IRQ_NONE;
}
/* Handle only IRQs that are not masked */
status &= mask;
tmp = status;
/* Lowest bit does not represent any sub-registers */
tmp >>= 1;
/*
* Mask and ack IRQs we will handle (+ the idiot bit)
*/
ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
if (ret) {
dev_err(bd->dev, "Failed to mask F_INT0\n");
return IRQ_NONE;
}
ret = regmap_write(bd->rmap, INT0_STATUS, status);
if (ret) {
dev_err(bd->dev, "Failed to ack F_INT0\n");
goto err_umask;
}
for_each_set_bit(i, &tmp, 7) {
int sub_status, sub_mask;
int sub_status_reg[] = {
INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
INT5_STATUS, INT6_STATUS, INT7_STATUS,
};
struct regmap_field *sub_mask_f[] = {
bd->rmap_fields[F_INT1_SET],
bd->rmap_fields[F_INT2_SET],
bd->rmap_fields[F_INT3_SET],
bd->rmap_fields[F_INT4_SET],
bd->rmap_fields[F_INT5_SET],
bd->rmap_fields[F_INT6_SET],
bd->rmap_fields[F_INT7_SET],
};
/* Clear sub IRQs */
ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ sub-status\n");
goto err_umask;
}
ret = regmap_field_read(sub_mask_f[i], &sub_mask);
if (ret) {
dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
goto err_umask;
}
/* Ack active sub-statuses */
sub_status &= sub_mask;
ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
if (ret) {
dev_err(bd->dev, "Failed to ack sub-IRQ\n");
goto err_umask;
}
}
ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
if (ret)
/* May as well retry once */
goto err_umask;
/* Read whole chip state */
ret = bd9995x_get_chip_state(bd, &state);
if (ret < 0) {
dev_err(bd->dev, "Failed to read chip state\n");
} else {
mutex_lock(&bd->lock);
bd->state = state;
mutex_unlock(&bd->lock);
power_supply_changed(bd->charger);
}
return IRQ_HANDLED;
err_umask:
ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
if (ret)
dev_err(bd->dev,
"Failed to un-mask F_INT0 - IRQ permanently disabled\n");
return IRQ_NONE;
}
static int __bd9995x_chip_reset(struct bd9995x_device *bd)
{
int ret, state;
int rst_check_counter = 10;
u16 tmp = ALLRST | OTPLD;
ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
if (ret < 0)
return ret;
do {
ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
if (ret)
return ret;
msleep(10);
} while (state == 0 && --rst_check_counter);
if (!rst_check_counter) {
dev_err(bd->dev, "chip reset not completed\n");
return -ETIMEDOUT;
}
tmp = 0;
ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
return ret;
}
static int bd9995x_hw_init(struct bd9995x_device *bd)
{
int ret;
int i;
struct bd9995x_state state;
struct bd9995x_init_data *id = &bd->init_data;
const struct {
enum bd9995x_fields id;
u16 value;
} init_data[] = {
/* Enable the charging trigger after SDP charger attached */
{F_SDP_CHG_TRIG_EN, 1},
/* Enable charging trigger after SDP charger attached */
{F_SDP_CHG_TRIG, 1},
/* Disable charging trigger by BC1.2 detection */
{F_VBUS_BC_DISEN, 1},
/* Disable charging trigger by BC1.2 detection */
{F_VCC_BC_DISEN, 1},
/* Disable automatic limitation of the input current */
{F_ILIM_AUTO_DISEN, 1},
/* Select current limitation when SDP charger attached*/
{F_SDP_500_SEL, 1},
/* Select current limitation when DCP charger attached */
{F_DCP_2500_SEL, 1},
{F_VSYSREG_SET, id->vsysreg_set},
/* Activate USB charging and DC/DC converter */
{F_USB_SUS, 0},
/* DCDC clock: 1200 kHz*/
{F_DCDC_CLK_SEL, 3},
/* Enable charging */
{F_CHG_EN, 1},
/* Disable Input current Limit setting voltage measurement */
{F_EXTIADPEN, 0},
/* Disable input current limiting */
{F_VSYS_PRIORITY, 1},
{F_IBUS_LIM_SET, id->ibus_lim_set},
{F_ICC_LIM_SET, id->icc_lim_set},
/* Charge Termination Current Setting to 0*/
{F_ITERM_SET, id->iterm_set},
/* Trickle-charge Current Setting */
{F_ITRICH_SET, id->itrich_set},
/* Pre-charge Current setting */
{F_IPRECH_SET, id->iprech_set},
/* Fast Charge Current for constant current phase */
{F_ICHG_SET, id->ichg_set},
/* Fast Charge Voltage Regulation Setting */
{F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1},
/* Set Pre-charge Voltage Threshold for trickle charging. */
{F_VPRECHG_TH_SET, id->vprechg_th_set},
{F_VRECHG_SET, id->vrechg_set},
{F_VBATOVP_SET, id->vbatovp_set},
/* Reverse buck boost voltage Setting */
{F_VRBOOST_SET, 0},
/* Disable fast-charging watchdog */
{F_WDT_FST, 0},
/* Disable pre-charging watchdog */
{F_WDT_PRE, 0},
/* Power save off */
{F_POWER_SAVE_MODE, 0},
{F_INT1_SET, INT1_ALL},
{F_INT2_SET, INT2_ALL},
{F_INT3_SET, INT3_ALL},
{F_INT4_SET, INT4_ALL},
{F_INT5_SET, INT5_ALL},
{F_INT6_SET, INT6_ALL},
{F_INT7_SET, INT7_ALL},
};
/*
* Currently we initialize charger to a known state at startup.
* If we want to allow for example the boot code to initialize
* charger we should get rid of this.
*/
ret = __bd9995x_chip_reset(bd);
if (ret < 0)
return ret;
/* Initialize currents/voltages and other parameters */
for (i = 0; i < ARRAY_SIZE(init_data); i++) {
ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
init_data[i].value);
if (ret) {
dev_err(bd->dev, "failed to initialize charger (%d)\n",
ret);
return ret;
}
}
ret = bd9995x_get_chip_state(bd, &state);
if (ret < 0)
return ret;
mutex_lock(&bd->lock);
bd->state = state;
mutex_unlock(&bd->lock);
return 0;
}
static enum power_supply_property bd9995x_power_supply_props[] = {
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
POWER_SUPPLY_PROP_CHARGE_AVG,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
/* Battery props we access through charger */
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_MODEL_NAME,
};
static const struct power_supply_desc bd9995x_power_supply_desc = {
.name = "bd9995x-charger",
.type = POWER_SUPPLY_TYPE_USB,
.properties = bd9995x_power_supply_props,
.num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
.get_property = bd9995x_power_supply_get_property,
};
/*
* Limit configurations for vbus-input-current and vcc-vacp-input-current
* Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
* configured by writing a register so that each increment in register
* value equals to 32000 uA limit increment.
*
* Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
* Describe the setting in linear_range table.
*/
static const struct linear_range input_current_limit_ranges[] = {
{
.min = 0,
.step = 32000,
.min_sel = 0x0,
.max_sel = 0x1ff,
},
};
/* Possible trickle, pre-charging and termination current values */
static const struct linear_range charging_current_ranges[] = {
{
.min = 0,
.step = 64000,
.min_sel = 0x0,
.max_sel = 0x10,
}, {
.min = 1024000,
.step = 0,
.min_sel = 0x11,
.max_sel = 0x1f,
},
};
/*
* Fast charging voltage regulation, starting re-charging limit
* and battery over voltage protection have same possible values
*/
static const struct linear_range charge_voltage_regulation_ranges[] = {
{
.min = 2560000,
.step = 0,
.min_sel = 0,
.max_sel = 0xA0,
}, {
.min = 2560000,
.step = 16000,
.min_sel = 0xA0,
.max_sel = 0x4B0,
}, {
.min = 19200000,
.step = 0,
.min_sel = 0x4B0,
.max_sel = 0x7FF,
},
};
/* Possible VSYS voltage regulation values */
static const struct linear_range vsys_voltage_regulation_ranges[] = {
{
.min = 2560000,
.step = 0,
.min_sel = 0,
.max_sel = 0x28,
}, {
.min = 2560000,
.step = 64000,
.min_sel = 0x28,
.max_sel = 0x12C,
}, {
.min = 19200000,
.step = 0,
.min_sel = 0x12C,
.max_sel = 0x1FF,
},
};
/* Possible settings for switching from trickle to pre-charging limits */
static const struct linear_range trickle_to_pre_threshold_ranges[] = {
{
.min = 2048000,
.step = 0,
.min_sel = 0,
.max_sel = 0x20,
}, {
.min = 2048000,
.step = 64000,
.min_sel = 0x20,
.max_sel = 0x12C,
}, {
.min = 19200000,
.step = 0,
.min_sel = 0x12C,
.max_sel = 0x1FF
}
};
/* Possible current values for fast-charging constant current phase */
static const struct linear_range fast_charge_current_ranges[] = {
{
.min = 0,
.step = 64000,
.min_sel = 0,
.max_sel = 0xFF,
}
};
struct battery_init {
const char *name;
int *info_data;
const struct linear_range *range;
int ranges;
u16 *data;
};
struct dt_init {
char *prop;
const struct linear_range *range;
int ranges;
u16 *data;
};
static int bd9995x_fw_probe(struct bd9995x_device *bd)
{
int ret;
struct power_supply_battery_info info;
u32 property;
int i;
int regval;
bool found;
struct bd9995x_init_data *init = &bd->init_data;
struct battery_init battery_inits[] = {
{
.name = "trickle-charging current",
.info_data = &info.tricklecharge_current_ua,
.range = &charging_current_ranges[0],
.ranges = 2,
.data = &init->itrich_set,
}, {
.name = "pre-charging current",
.info_data = &info.precharge_current_ua,
.range = &charging_current_ranges[0],
.ranges = 2,
.data = &init->iprech_set,
}, {
.name = "pre-to-trickle charge voltage threshold",
.info_data = &info.precharge_voltage_max_uv,
.range = &trickle_to_pre_threshold_ranges[0],
.ranges = 2,
.data = &init->vprechg_th_set,
}, {
.name = "charging termination current",
.info_data = &info.charge_term_current_ua,
.range = &charging_current_ranges[0],
.ranges = 2,
.data = &init->iterm_set,
}, {
.name = "charging re-start voltage",
.info_data = &info.charge_restart_voltage_uv,
.range = &charge_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vrechg_set,
}, {
.name = "battery overvoltage limit",
.info_data = &info.overvoltage_limit_uv,
.range = &charge_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vbatovp_set,
}, {
.name = "fast-charging max current",
.info_data = &info.constant_charge_current_max_ua,
.range = &fast_charge_current_ranges[0],
.ranges = 1,
.data = &init->ichg_set,
}, {
.name = "fast-charging voltage",
.info_data = &info.constant_charge_voltage_max_uv,
.range = &charge_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vfastchg_reg_set1,
},
};
struct dt_init props[] = {
{
.prop = "rohm,vsys-regulation-microvolt",
.range = &vsys_voltage_regulation_ranges[0],
.ranges = 2,
.data = &init->vsysreg_set,
}, {
.prop = "rohm,vbus-input-current-limit-microamp",
.range = &input_current_limit_ranges[0],
.ranges = 1,
.data = &init->ibus_lim_set,
}, {
.prop = "rohm,vcc-input-current-limit-microamp",
.range = &input_current_limit_ranges[0],
.ranges = 1,
.data = &init->icc_lim_set,
},
};
/*
* The power_supply_get_battery_info() does not support getting values
* from ACPI. Let's fix it if ACPI is required here.
*/
ret = power_supply_get_battery_info(bd->charger, &info);
if (ret < 0)
return ret;
for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
int val = *battery_inits[i].info_data;
const struct linear_range *range = battery_inits[i].range;
int ranges = battery_inits[i].ranges;
if (val == -EINVAL)
continue;
ret = linear_range_get_selector_low_array(range, ranges, val,
&regval, &found);
if (ret) {
dev_err(bd->dev, "Unsupported value for %s\n",
battery_inits[i].name);
power_supply_put_battery_info(bd->charger, &info);
return -EINVAL;
}
if (!found) {
dev_warn(bd->dev,
"Unsupported value for %s - using smaller\n",
battery_inits[i].name);
}
*(battery_inits[i].data) = regval;
}
power_supply_put_battery_info(bd->charger, &info);
for (i = 0; i < ARRAY_SIZE(props); i++) {
ret = device_property_read_u32(bd->dev, props[i].prop,
&property);
if (ret < 0) {
dev_err(bd->dev, "failed to read %s", props[i].prop);
return ret;
}
ret = linear_range_get_selector_low_array(props[i].range,
props[i].ranges,
property, &regval,
&found);
if (ret) {
dev_err(bd->dev, "Unsupported value for '%s'\n",
props[i].prop);
return -EINVAL;
}
if (!found) {
dev_warn(bd->dev,
"Unsupported value for '%s' - using smaller\n",
props[i].prop);
}
*(props[i].data) = regval;
}
return 0;
}
static void bd9995x_chip_reset(void *bd)
{
__bd9995x_chip_reset(bd);
}
static int bd9995x_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct bd9995x_device *bd;
struct power_supply_config psy_cfg = {};
int ret;
int i;
bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
if (!bd)
return -ENOMEM;
bd->client = client;
bd->dev = dev;
psy_cfg.drv_data = bd;
psy_cfg.of_node = dev->of_node;
mutex_init(&bd->lock);
bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
if (IS_ERR(bd->rmap)) {
dev_err(dev, "Failed to setup register access via i2c\n");
return PTR_ERR(bd->rmap);
}
for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
const struct reg_field *reg_fields = bd9995x_reg_fields;
bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
reg_fields[i]);
if (IS_ERR(bd->rmap_fields[i])) {
dev_err(dev, "cannot allocate regmap field\n");
return PTR_ERR(bd->rmap_fields[i]);
}
}
i2c_set_clientdata(client, bd);
ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
if (ret) {
dev_err(dev, "Cannot read chip ID.\n");
return ret;
}
if (bd->chip_id != BD99954_ID) {
dev_err(dev, "Chip with ID=0x%x, not supported!\n",
bd->chip_id);
return -ENODEV;
}
ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
if (ret) {
dev_err(dev, "Cannot read revision.\n");
return ret;
}
dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
/*
* We need to init the psy before we can call
* power_supply_get_battery_info() for it
*/
bd->charger = devm_power_supply_register(bd->dev,
&bd9995x_power_supply_desc,
&psy_cfg);
if (IS_ERR(bd->charger)) {
dev_err(dev, "Failed to register power supply\n");
return PTR_ERR(bd->charger);
}
ret = bd9995x_fw_probe(bd);
if (ret < 0) {
dev_err(dev, "Cannot read device properties.\n");
return ret;
}
ret = bd9995x_hw_init(bd);
if (ret < 0) {
dev_err(dev, "Cannot initialize the chip.\n");
return ret;
}
ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
if (ret)
return ret;
return devm_request_threaded_irq(dev, client->irq, NULL,
bd9995x_irq_handler_thread,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
BD9995X_IRQ_PIN, bd);
}
static const struct of_device_id bd9995x_of_match[] = {
{ .compatible = "rohm,bd99954", },
{ }
};
MODULE_DEVICE_TABLE(of, bd9995x_of_match);
static struct i2c_driver bd9995x_driver = {
.driver = {
.name = "bd9995x-charger",
.of_match_table = bd9995x_of_match,
},
.probe_new = bd9995x_probe,
};
module_i2c_driver(bd9995x_driver);
MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
MODULE_DESCRIPTION("ROHM BD99954 charger driver");
MODULE_LICENSE("GPL");