mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 01:24:33 +00:00
6e15cf0486
Conflicts: arch/parisc/kernel/irq.c arch/x86/include/asm/fixmap_64.h arch/x86/include/asm/setup.h kernel/irq/handle.c Semantic merge: arch/x86/include/asm/fixmap.h Signed-off-by: Ingo Molnar <mingo@elte.hu>
582 lines
16 KiB
C
582 lines
16 KiB
C
/*
|
|
* Common EFI (Extensible Firmware Interface) support functions
|
|
* Based on Extensible Firmware Interface Specification version 1.0
|
|
*
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 1999-2002 Hewlett-Packard Co.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 2005-2008 Intel Co.
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Bibo Mao <bibo.mao@intel.com>
|
|
* Chandramouli Narayanan <mouli@linux.intel.com>
|
|
* Huang Ying <ying.huang@intel.com>
|
|
*
|
|
* Copied from efi_32.c to eliminate the duplicated code between EFI
|
|
* 32/64 support code. --ying 2007-10-26
|
|
*
|
|
* All EFI Runtime Services are not implemented yet as EFI only
|
|
* supports physical mode addressing on SoftSDV. This is to be fixed
|
|
* in a future version. --drummond 1999-07-20
|
|
*
|
|
* Implemented EFI runtime services and virtual mode calls. --davidm
|
|
*
|
|
* Goutham Rao: <goutham.rao@intel.com>
|
|
* Skip non-WB memory and ignore empty memory ranges.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/time.h>
|
|
#include <linux/io.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/bcd.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/time.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#define EFI_DEBUG 1
|
|
#define PFX "EFI: "
|
|
|
|
int efi_enabled;
|
|
EXPORT_SYMBOL(efi_enabled);
|
|
|
|
struct efi efi;
|
|
EXPORT_SYMBOL(efi);
|
|
|
|
struct efi_memory_map memmap;
|
|
|
|
static struct efi efi_phys __initdata;
|
|
static efi_system_table_t efi_systab __initdata;
|
|
|
|
static int __init setup_noefi(char *arg)
|
|
{
|
|
efi_enabled = 0;
|
|
return 0;
|
|
}
|
|
early_param("noefi", setup_noefi);
|
|
|
|
int add_efi_memmap;
|
|
EXPORT_SYMBOL(add_efi_memmap);
|
|
|
|
static int __init setup_add_efi_memmap(char *arg)
|
|
{
|
|
add_efi_memmap = 1;
|
|
return 0;
|
|
}
|
|
early_param("add_efi_memmap", setup_add_efi_memmap);
|
|
|
|
|
|
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
|
|
{
|
|
return efi_call_virt2(get_time, tm, tc);
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_time(efi_time_t *tm)
|
|
{
|
|
return efi_call_virt1(set_time, tm);
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
|
|
efi_bool_t *pending,
|
|
efi_time_t *tm)
|
|
{
|
|
return efi_call_virt3(get_wakeup_time,
|
|
enabled, pending, tm);
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
|
|
{
|
|
return efi_call_virt2(set_wakeup_time,
|
|
enabled, tm);
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_variable(efi_char16_t *name,
|
|
efi_guid_t *vendor,
|
|
u32 *attr,
|
|
unsigned long *data_size,
|
|
void *data)
|
|
{
|
|
return efi_call_virt5(get_variable,
|
|
name, vendor, attr,
|
|
data_size, data);
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
|
|
efi_char16_t *name,
|
|
efi_guid_t *vendor)
|
|
{
|
|
return efi_call_virt3(get_next_variable,
|
|
name_size, name, vendor);
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_variable(efi_char16_t *name,
|
|
efi_guid_t *vendor,
|
|
unsigned long attr,
|
|
unsigned long data_size,
|
|
void *data)
|
|
{
|
|
return efi_call_virt5(set_variable,
|
|
name, vendor, attr,
|
|
data_size, data);
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
|
|
{
|
|
return efi_call_virt1(get_next_high_mono_count, count);
|
|
}
|
|
|
|
static void virt_efi_reset_system(int reset_type,
|
|
efi_status_t status,
|
|
unsigned long data_size,
|
|
efi_char16_t *data)
|
|
{
|
|
efi_call_virt4(reset_system, reset_type, status,
|
|
data_size, data);
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_virtual_address_map(
|
|
unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map)
|
|
{
|
|
return efi_call_virt4(set_virtual_address_map,
|
|
memory_map_size, descriptor_size,
|
|
descriptor_version, virtual_map);
|
|
}
|
|
|
|
static efi_status_t __init phys_efi_set_virtual_address_map(
|
|
unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map)
|
|
{
|
|
efi_status_t status;
|
|
|
|
efi_call_phys_prelog();
|
|
status = efi_call_phys4(efi_phys.set_virtual_address_map,
|
|
memory_map_size, descriptor_size,
|
|
descriptor_version, virtual_map);
|
|
efi_call_phys_epilog();
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
|
|
efi_time_cap_t *tc)
|
|
{
|
|
efi_status_t status;
|
|
|
|
efi_call_phys_prelog();
|
|
status = efi_call_phys2(efi_phys.get_time, tm, tc);
|
|
efi_call_phys_epilog();
|
|
return status;
|
|
}
|
|
|
|
int efi_set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int real_seconds, real_minutes;
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
status = efi.get_time(&eft, &cap);
|
|
if (status != EFI_SUCCESS) {
|
|
printk(KERN_ERR "Oops: efitime: can't read time!\n");
|
|
return -1;
|
|
}
|
|
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
|
|
real_minutes += 30;
|
|
real_minutes %= 60;
|
|
eft.minute = real_minutes;
|
|
eft.second = real_seconds;
|
|
|
|
status = efi.set_time(&eft);
|
|
if (status != EFI_SUCCESS) {
|
|
printk(KERN_ERR "Oops: efitime: can't write time!\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned long efi_get_time(void)
|
|
{
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
status = efi.get_time(&eft, &cap);
|
|
if (status != EFI_SUCCESS)
|
|
printk(KERN_ERR "Oops: efitime: can't read time!\n");
|
|
|
|
return mktime(eft.year, eft.month, eft.day, eft.hour,
|
|
eft.minute, eft.second);
|
|
}
|
|
|
|
/*
|
|
* Tell the kernel about the EFI memory map. This might include
|
|
* more than the max 128 entries that can fit in the e820 legacy
|
|
* (zeropage) memory map.
|
|
*/
|
|
|
|
static void __init do_add_efi_memmap(void)
|
|
{
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
int e820_type;
|
|
|
|
if (md->attribute & EFI_MEMORY_WB)
|
|
e820_type = E820_RAM;
|
|
else
|
|
e820_type = E820_RESERVED;
|
|
e820_add_region(start, size, e820_type);
|
|
}
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
}
|
|
|
|
void __init efi_reserve_early(void)
|
|
{
|
|
unsigned long pmap;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
pmap = boot_params.efi_info.efi_memmap;
|
|
#else
|
|
pmap = (boot_params.efi_info.efi_memmap |
|
|
((__u64)boot_params.efi_info.efi_memmap_hi<<32));
|
|
#endif
|
|
memmap.phys_map = (void *)pmap;
|
|
memmap.nr_map = boot_params.efi_info.efi_memmap_size /
|
|
boot_params.efi_info.efi_memdesc_size;
|
|
memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
|
|
memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
|
|
reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size,
|
|
"EFI memmap");
|
|
}
|
|
|
|
#if EFI_DEBUG
|
|
static void __init print_efi_memmap(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
int i;
|
|
|
|
for (p = memmap.map, i = 0;
|
|
p < memmap.map_end;
|
|
p += memmap.desc_size, i++) {
|
|
md = p;
|
|
printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
|
|
"range=[0x%016llx-0x%016llx) (%lluMB)\n",
|
|
i, md->type, md->attribute, md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
|
|
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
|
|
}
|
|
}
|
|
#endif /* EFI_DEBUG */
|
|
|
|
void __init efi_init(void)
|
|
{
|
|
efi_config_table_t *config_tables;
|
|
efi_runtime_services_t *runtime;
|
|
efi_char16_t *c16;
|
|
char vendor[100] = "unknown";
|
|
int i = 0;
|
|
void *tmp;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
|
|
#else
|
|
efi_phys.systab = (efi_system_table_t *)
|
|
(boot_params.efi_info.efi_systab |
|
|
((__u64)boot_params.efi_info.efi_systab_hi<<32));
|
|
#endif
|
|
|
|
efi.systab = early_ioremap((unsigned long)efi_phys.systab,
|
|
sizeof(efi_system_table_t));
|
|
if (efi.systab == NULL)
|
|
printk(KERN_ERR "Couldn't map the EFI system table!\n");
|
|
memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
|
|
early_iounmap(efi.systab, sizeof(efi_system_table_t));
|
|
efi.systab = &efi_systab;
|
|
|
|
/*
|
|
* Verify the EFI Table
|
|
*/
|
|
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
printk(KERN_ERR "EFI system table signature incorrect!\n");
|
|
if ((efi.systab->hdr.revision >> 16) == 0)
|
|
printk(KERN_ERR "Warning: EFI system table version "
|
|
"%d.%02d, expected 1.00 or greater!\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff);
|
|
|
|
/*
|
|
* Show what we know for posterity
|
|
*/
|
|
c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
|
|
if (c16) {
|
|
for (i = 0; i < sizeof(vendor) && *c16; ++i)
|
|
vendor[i] = *c16++;
|
|
vendor[i] = '\0';
|
|
} else
|
|
printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
|
|
early_iounmap(tmp, 2);
|
|
|
|
printk(KERN_INFO "EFI v%u.%.02u by %s \n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff, vendor);
|
|
|
|
/*
|
|
* Let's see what config tables the firmware passed to us.
|
|
*/
|
|
config_tables = early_ioremap(
|
|
efi.systab->tables,
|
|
efi.systab->nr_tables * sizeof(efi_config_table_t));
|
|
if (config_tables == NULL)
|
|
printk(KERN_ERR "Could not map EFI Configuration Table!\n");
|
|
|
|
printk(KERN_INFO);
|
|
for (i = 0; i < efi.systab->nr_tables; i++) {
|
|
if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
|
|
efi.mps = config_tables[i].table;
|
|
printk(" MPS=0x%lx ", config_tables[i].table);
|
|
} else if (!efi_guidcmp(config_tables[i].guid,
|
|
ACPI_20_TABLE_GUID)) {
|
|
efi.acpi20 = config_tables[i].table;
|
|
printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
|
|
} else if (!efi_guidcmp(config_tables[i].guid,
|
|
ACPI_TABLE_GUID)) {
|
|
efi.acpi = config_tables[i].table;
|
|
printk(" ACPI=0x%lx ", config_tables[i].table);
|
|
} else if (!efi_guidcmp(config_tables[i].guid,
|
|
SMBIOS_TABLE_GUID)) {
|
|
efi.smbios = config_tables[i].table;
|
|
printk(" SMBIOS=0x%lx ", config_tables[i].table);
|
|
#ifdef CONFIG_X86_UV
|
|
} else if (!efi_guidcmp(config_tables[i].guid,
|
|
UV_SYSTEM_TABLE_GUID)) {
|
|
efi.uv_systab = config_tables[i].table;
|
|
printk(" UVsystab=0x%lx ", config_tables[i].table);
|
|
#endif
|
|
} else if (!efi_guidcmp(config_tables[i].guid,
|
|
HCDP_TABLE_GUID)) {
|
|
efi.hcdp = config_tables[i].table;
|
|
printk(" HCDP=0x%lx ", config_tables[i].table);
|
|
} else if (!efi_guidcmp(config_tables[i].guid,
|
|
UGA_IO_PROTOCOL_GUID)) {
|
|
efi.uga = config_tables[i].table;
|
|
printk(" UGA=0x%lx ", config_tables[i].table);
|
|
}
|
|
}
|
|
printk("\n");
|
|
early_iounmap(config_tables,
|
|
efi.systab->nr_tables * sizeof(efi_config_table_t));
|
|
|
|
/*
|
|
* Check out the runtime services table. We need to map
|
|
* the runtime services table so that we can grab the physical
|
|
* address of several of the EFI runtime functions, needed to
|
|
* set the firmware into virtual mode.
|
|
*/
|
|
runtime = early_ioremap((unsigned long)efi.systab->runtime,
|
|
sizeof(efi_runtime_services_t));
|
|
if (runtime != NULL) {
|
|
/*
|
|
* We will only need *early* access to the following
|
|
* two EFI runtime services before set_virtual_address_map
|
|
* is invoked.
|
|
*/
|
|
efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
|
|
efi_phys.set_virtual_address_map =
|
|
(efi_set_virtual_address_map_t *)
|
|
runtime->set_virtual_address_map;
|
|
/*
|
|
* Make efi_get_time can be called before entering
|
|
* virtual mode.
|
|
*/
|
|
efi.get_time = phys_efi_get_time;
|
|
} else
|
|
printk(KERN_ERR "Could not map the EFI runtime service "
|
|
"table!\n");
|
|
early_iounmap(runtime, sizeof(efi_runtime_services_t));
|
|
|
|
/* Map the EFI memory map */
|
|
memmap.map = early_ioremap((unsigned long)memmap.phys_map,
|
|
memmap.nr_map * memmap.desc_size);
|
|
if (memmap.map == NULL)
|
|
printk(KERN_ERR "Could not map the EFI memory map!\n");
|
|
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
|
|
|
if (memmap.desc_size != sizeof(efi_memory_desc_t))
|
|
printk(KERN_WARNING
|
|
"Kernel-defined memdesc doesn't match the one from EFI!\n");
|
|
|
|
if (add_efi_memmap)
|
|
do_add_efi_memmap();
|
|
|
|
/* Setup for EFI runtime service */
|
|
reboot_type = BOOT_EFI;
|
|
|
|
#if EFI_DEBUG
|
|
print_efi_memmap();
|
|
#endif
|
|
}
|
|
|
|
static void __init runtime_code_page_mkexec(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
u64 addr, npages;
|
|
|
|
/* Make EFI runtime service code area executable */
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if (md->type != EFI_RUNTIME_SERVICES_CODE)
|
|
continue;
|
|
|
|
addr = md->virt_addr;
|
|
npages = md->num_pages;
|
|
memrange_efi_to_native(&addr, &npages);
|
|
set_memory_x(addr, npages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function will switch the EFI runtime services to virtual mode.
|
|
* Essentially, look through the EFI memmap and map every region that
|
|
* has the runtime attribute bit set in its memory descriptor and update
|
|
* that memory descriptor with the virtual address obtained from ioremap().
|
|
* This enables the runtime services to be called without having to
|
|
* thunk back into physical mode for every invocation.
|
|
*/
|
|
void __init efi_enter_virtual_mode(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
u64 end, systab, addr, npages, end_pfn;
|
|
void *p, *va;
|
|
|
|
efi.systab = NULL;
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
|
|
size = md->num_pages << EFI_PAGE_SHIFT;
|
|
end = md->phys_addr + size;
|
|
|
|
end_pfn = PFN_UP(end);
|
|
if (end_pfn <= max_low_pfn_mapped
|
|
|| (end_pfn > (1UL << (32 - PAGE_SHIFT))
|
|
&& end_pfn <= max_pfn_mapped))
|
|
va = __va(md->phys_addr);
|
|
else
|
|
va = efi_ioremap(md->phys_addr, size);
|
|
|
|
md->virt_addr = (u64) (unsigned long) va;
|
|
|
|
if (!va) {
|
|
printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
|
|
(unsigned long long)md->phys_addr);
|
|
continue;
|
|
}
|
|
|
|
if (!(md->attribute & EFI_MEMORY_WB)) {
|
|
addr = md->virt_addr;
|
|
npages = md->num_pages;
|
|
memrange_efi_to_native(&addr, &npages);
|
|
set_memory_uc(addr, npages);
|
|
}
|
|
|
|
systab = (u64) (unsigned long) efi_phys.systab;
|
|
if (md->phys_addr <= systab && systab < end) {
|
|
systab += md->virt_addr - md->phys_addr;
|
|
efi.systab = (efi_system_table_t *) (unsigned long) systab;
|
|
}
|
|
}
|
|
|
|
BUG_ON(!efi.systab);
|
|
|
|
status = phys_efi_set_virtual_address_map(
|
|
memmap.desc_size * memmap.nr_map,
|
|
memmap.desc_size,
|
|
memmap.desc_version,
|
|
memmap.phys_map);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
printk(KERN_ALERT "Unable to switch EFI into virtual mode "
|
|
"(status=%lx)!\n", status);
|
|
panic("EFI call to SetVirtualAddressMap() failed!");
|
|
}
|
|
|
|
/*
|
|
* Now that EFI is in virtual mode, update the function
|
|
* pointers in the runtime service table to the new virtual addresses.
|
|
*
|
|
* Call EFI services through wrapper functions.
|
|
*/
|
|
efi.get_time = virt_efi_get_time;
|
|
efi.set_time = virt_efi_set_time;
|
|
efi.get_wakeup_time = virt_efi_get_wakeup_time;
|
|
efi.set_wakeup_time = virt_efi_set_wakeup_time;
|
|
efi.get_variable = virt_efi_get_variable;
|
|
efi.get_next_variable = virt_efi_get_next_variable;
|
|
efi.set_variable = virt_efi_set_variable;
|
|
efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
|
|
efi.reset_system = virt_efi_reset_system;
|
|
efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
|
|
if (__supported_pte_mask & _PAGE_NX)
|
|
runtime_code_page_mkexec();
|
|
early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
|
|
memmap.map = NULL;
|
|
}
|
|
|
|
/*
|
|
* Convenience functions to obtain memory types and attributes
|
|
*/
|
|
u32 efi_mem_type(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->type;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u64 efi_mem_attributes(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->attribute;
|
|
}
|
|
return 0;
|
|
}
|