linux/virt/kvm/pfncache.c
David Stevens c0461f2063 KVM: Introduce kvm_follow_pfn() to eventually replace "gfn_to_pfn" APIs
Introduce kvm_follow_pfn() to eventually supplant the various "gfn_to_pfn"
APIs, albeit by adding more wrappers.  The primary motivation of the new
helper is to pass a structure instead of an ever changing set of parameters,
e.g. so that tweaking the behavior, inputs, and/or outputs of the "to pfn"
helpers doesn't require churning half of KVM.

In the more distant future, the APIs exposed to arch code could also
follow suit, e.g. by adding something akin to x86's "struct kvm_page_fault"
when faulting in guest memory.  But for now, the goal is purely to clean
up KVM's "internal" MMU code.

As part of the conversion, replace the write_fault, interruptible, and
no-wait boolean flags with FOLL_WRITE, FOLL_INTERRUPTIBLE, and FOLL_NOWAIT
respectively.  Collecting the various FOLL_* flags into a single field
will again ease the pain of passing new flags.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: David Stevens <stevensd@chromium.org>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-20-seanjc@google.com>
2024-10-25 12:57:59 -04:00

482 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables kernel and guest-mode vCPU access to guest physical
* memory with suitable invalidation mechanisms.
*
* Copyright © 2021 Amazon.com, Inc. or its affiliates.
*
* Authors:
* David Woodhouse <dwmw2@infradead.org>
*/
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/errno.h>
#include "kvm_mm.h"
/*
* MMU notifier 'invalidate_range_start' hook.
*/
void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start,
unsigned long end)
{
struct gfn_to_pfn_cache *gpc;
spin_lock(&kvm->gpc_lock);
list_for_each_entry(gpc, &kvm->gpc_list, list) {
read_lock_irq(&gpc->lock);
/* Only a single page so no need to care about length */
if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) &&
gpc->uhva >= start && gpc->uhva < end) {
read_unlock_irq(&gpc->lock);
/*
* There is a small window here where the cache could
* be modified, and invalidation would no longer be
* necessary. Hence check again whether invalidation
* is still necessary once the write lock has been
* acquired.
*/
write_lock_irq(&gpc->lock);
if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) &&
gpc->uhva >= start && gpc->uhva < end)
gpc->valid = false;
write_unlock_irq(&gpc->lock);
continue;
}
read_unlock_irq(&gpc->lock);
}
spin_unlock(&kvm->gpc_lock);
}
static bool kvm_gpc_is_valid_len(gpa_t gpa, unsigned long uhva,
unsigned long len)
{
unsigned long offset = kvm_is_error_gpa(gpa) ? offset_in_page(uhva) :
offset_in_page(gpa);
/*
* The cached access must fit within a single page. The 'len' argument
* to activate() and refresh() exists only to enforce that.
*/
return offset + len <= PAGE_SIZE;
}
bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(gpc->kvm);
if (!gpc->active)
return false;
/*
* If the page was cached from a memslot, make sure the memslots have
* not been re-configured.
*/
if (!kvm_is_error_gpa(gpc->gpa) && gpc->generation != slots->generation)
return false;
if (kvm_is_error_hva(gpc->uhva))
return false;
if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len))
return false;
if (!gpc->valid)
return false;
return true;
}
static void *gpc_map(kvm_pfn_t pfn)
{
if (pfn_valid(pfn))
return kmap(pfn_to_page(pfn));
#ifdef CONFIG_HAS_IOMEM
return memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
#else
return NULL;
#endif
}
static void gpc_unmap(kvm_pfn_t pfn, void *khva)
{
/* Unmap the old pfn/page if it was mapped before. */
if (is_error_noslot_pfn(pfn) || !khva)
return;
if (pfn_valid(pfn)) {
kunmap(pfn_to_page(pfn));
return;
}
#ifdef CONFIG_HAS_IOMEM
memunmap(khva);
#endif
}
static inline bool mmu_notifier_retry_cache(struct kvm *kvm, unsigned long mmu_seq)
{
/*
* mn_active_invalidate_count acts for all intents and purposes
* like mmu_invalidate_in_progress here; but the latter cannot
* be used here because the invalidation of caches in the
* mmu_notifier event occurs _before_ mmu_invalidate_in_progress
* is elevated.
*
* Note, it does not matter that mn_active_invalidate_count
* is not protected by gpc->lock. It is guaranteed to
* be elevated before the mmu_notifier acquires gpc->lock, and
* isn't dropped until after mmu_invalidate_seq is updated.
*/
if (kvm->mn_active_invalidate_count)
return true;
/*
* Ensure mn_active_invalidate_count is read before
* mmu_invalidate_seq. This pairs with the smp_wmb() in
* mmu_notifier_invalidate_range_end() to guarantee either the
* old (non-zero) value of mn_active_invalidate_count or the
* new (incremented) value of mmu_invalidate_seq is observed.
*/
smp_rmb();
return kvm->mmu_invalidate_seq != mmu_seq;
}
static kvm_pfn_t hva_to_pfn_retry(struct gfn_to_pfn_cache *gpc)
{
/* Note, the new page offset may be different than the old! */
void *old_khva = (void *)PAGE_ALIGN_DOWN((uintptr_t)gpc->khva);
kvm_pfn_t new_pfn = KVM_PFN_ERR_FAULT;
void *new_khva = NULL;
unsigned long mmu_seq;
struct kvm_follow_pfn kfp = {
.slot = gpc->memslot,
.gfn = gpa_to_gfn(gpc->gpa),
.flags = FOLL_WRITE,
.hva = gpc->uhva,
};
lockdep_assert_held(&gpc->refresh_lock);
lockdep_assert_held_write(&gpc->lock);
/*
* Invalidate the cache prior to dropping gpc->lock, the gpa=>uhva
* assets have already been updated and so a concurrent check() from a
* different task may not fail the gpa/uhva/generation checks.
*/
gpc->valid = false;
do {
mmu_seq = gpc->kvm->mmu_invalidate_seq;
smp_rmb();
write_unlock_irq(&gpc->lock);
/*
* If the previous iteration "failed" due to an mmu_notifier
* event, release the pfn and unmap the kernel virtual address
* from the previous attempt. Unmapping might sleep, so this
* needs to be done after dropping the lock. Opportunistically
* check for resched while the lock isn't held.
*/
if (new_pfn != KVM_PFN_ERR_FAULT) {
/*
* Keep the mapping if the previous iteration reused
* the existing mapping and didn't create a new one.
*/
if (new_khva != old_khva)
gpc_unmap(new_pfn, new_khva);
kvm_release_pfn_clean(new_pfn);
cond_resched();
}
new_pfn = hva_to_pfn(&kfp);
if (is_error_noslot_pfn(new_pfn))
goto out_error;
/*
* Obtain a new kernel mapping if KVM itself will access the
* pfn. Note, kmap() and memremap() can both sleep, so this
* too must be done outside of gpc->lock!
*/
if (new_pfn == gpc->pfn)
new_khva = old_khva;
else
new_khva = gpc_map(new_pfn);
if (!new_khva) {
kvm_release_pfn_clean(new_pfn);
goto out_error;
}
write_lock_irq(&gpc->lock);
/*
* Other tasks must wait for _this_ refresh to complete before
* attempting to refresh.
*/
WARN_ON_ONCE(gpc->valid);
} while (mmu_notifier_retry_cache(gpc->kvm, mmu_seq));
gpc->valid = true;
gpc->pfn = new_pfn;
gpc->khva = new_khva + offset_in_page(gpc->uhva);
/*
* Put the reference to the _new_ pfn. The pfn is now tracked by the
* cache and can be safely migrated, swapped, etc... as the cache will
* invalidate any mappings in response to relevant mmu_notifier events.
*/
kvm_release_pfn_clean(new_pfn);
return 0;
out_error:
write_lock_irq(&gpc->lock);
return -EFAULT;
}
static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva)
{
unsigned long page_offset;
bool unmap_old = false;
unsigned long old_uhva;
kvm_pfn_t old_pfn;
bool hva_change = false;
void *old_khva;
int ret;
/* Either gpa or uhva must be valid, but not both */
if (WARN_ON_ONCE(kvm_is_error_gpa(gpa) == kvm_is_error_hva(uhva)))
return -EINVAL;
lockdep_assert_held(&gpc->refresh_lock);
write_lock_irq(&gpc->lock);
if (!gpc->active) {
ret = -EINVAL;
goto out_unlock;
}
old_pfn = gpc->pfn;
old_khva = (void *)PAGE_ALIGN_DOWN((uintptr_t)gpc->khva);
old_uhva = PAGE_ALIGN_DOWN(gpc->uhva);
if (kvm_is_error_gpa(gpa)) {
page_offset = offset_in_page(uhva);
gpc->gpa = INVALID_GPA;
gpc->memslot = NULL;
gpc->uhva = PAGE_ALIGN_DOWN(uhva);
if (gpc->uhva != old_uhva)
hva_change = true;
} else {
struct kvm_memslots *slots = kvm_memslots(gpc->kvm);
page_offset = offset_in_page(gpa);
if (gpc->gpa != gpa || gpc->generation != slots->generation ||
kvm_is_error_hva(gpc->uhva)) {
gfn_t gfn = gpa_to_gfn(gpa);
gpc->gpa = gpa;
gpc->generation = slots->generation;
gpc->memslot = __gfn_to_memslot(slots, gfn);
gpc->uhva = gfn_to_hva_memslot(gpc->memslot, gfn);
if (kvm_is_error_hva(gpc->uhva)) {
ret = -EFAULT;
goto out;
}
/*
* Even if the GPA and/or the memslot generation changed, the
* HVA may still be the same.
*/
if (gpc->uhva != old_uhva)
hva_change = true;
} else {
gpc->uhva = old_uhva;
}
}
/* Note: the offset must be correct before calling hva_to_pfn_retry() */
gpc->uhva += page_offset;
/*
* If the userspace HVA changed or the PFN was already invalid,
* drop the lock and do the HVA to PFN lookup again.
*/
if (!gpc->valid || hva_change) {
ret = hva_to_pfn_retry(gpc);
} else {
/*
* If the HVA→PFN mapping was already valid, don't unmap it.
* But do update gpc->khva because the offset within the page
* may have changed.
*/
gpc->khva = old_khva + page_offset;
ret = 0;
goto out_unlock;
}
out:
/*
* Invalidate the cache and purge the pfn/khva if the refresh failed.
* Some/all of the uhva, gpa, and memslot generation info may still be
* valid, leave it as is.
*/
if (ret) {
gpc->valid = false;
gpc->pfn = KVM_PFN_ERR_FAULT;
gpc->khva = NULL;
}
/* Detect a pfn change before dropping the lock! */
unmap_old = (old_pfn != gpc->pfn);
out_unlock:
write_unlock_irq(&gpc->lock);
if (unmap_old)
gpc_unmap(old_pfn, old_khva);
return ret;
}
int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len)
{
unsigned long uhva;
guard(mutex)(&gpc->refresh_lock);
if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len))
return -EINVAL;
/*
* If the GPA is valid then ignore the HVA, as a cache can be GPA-based
* or HVA-based, not both. For GPA-based caches, the HVA will be
* recomputed during refresh if necessary.
*/
uhva = kvm_is_error_gpa(gpc->gpa) ? gpc->uhva : KVM_HVA_ERR_BAD;
return __kvm_gpc_refresh(gpc, gpc->gpa, uhva);
}
void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm)
{
rwlock_init(&gpc->lock);
mutex_init(&gpc->refresh_lock);
gpc->kvm = kvm;
gpc->pfn = KVM_PFN_ERR_FAULT;
gpc->gpa = INVALID_GPA;
gpc->uhva = KVM_HVA_ERR_BAD;
gpc->active = gpc->valid = false;
}
static int __kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva,
unsigned long len)
{
struct kvm *kvm = gpc->kvm;
if (!kvm_gpc_is_valid_len(gpa, uhva, len))
return -EINVAL;
guard(mutex)(&gpc->refresh_lock);
if (!gpc->active) {
if (KVM_BUG_ON(gpc->valid, kvm))
return -EIO;
spin_lock(&kvm->gpc_lock);
list_add(&gpc->list, &kvm->gpc_list);
spin_unlock(&kvm->gpc_lock);
/*
* Activate the cache after adding it to the list, a concurrent
* refresh must not establish a mapping until the cache is
* reachable by mmu_notifier events.
*/
write_lock_irq(&gpc->lock);
gpc->active = true;
write_unlock_irq(&gpc->lock);
}
return __kvm_gpc_refresh(gpc, gpa, uhva);
}
int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len)
{
/*
* Explicitly disallow INVALID_GPA so that the magic value can be used
* by KVM to differentiate between GPA-based and HVA-based caches.
*/
if (WARN_ON_ONCE(kvm_is_error_gpa(gpa)))
return -EINVAL;
return __kvm_gpc_activate(gpc, gpa, KVM_HVA_ERR_BAD, len);
}
int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long uhva, unsigned long len)
{
if (!access_ok((void __user *)uhva, len))
return -EINVAL;
return __kvm_gpc_activate(gpc, INVALID_GPA, uhva, len);
}
void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc)
{
struct kvm *kvm = gpc->kvm;
kvm_pfn_t old_pfn;
void *old_khva;
guard(mutex)(&gpc->refresh_lock);
if (gpc->active) {
/*
* Deactivate the cache before removing it from the list, KVM
* must stall mmu_notifier events until all users go away, i.e.
* until gpc->lock is dropped and refresh is guaranteed to fail.
*/
write_lock_irq(&gpc->lock);
gpc->active = false;
gpc->valid = false;
/*
* Leave the GPA => uHVA cache intact, it's protected by the
* memslot generation. The PFN lookup needs to be redone every
* time as mmu_notifier protection is lost when the cache is
* removed from the VM's gpc_list.
*/
old_khva = gpc->khva - offset_in_page(gpc->khva);
gpc->khva = NULL;
old_pfn = gpc->pfn;
gpc->pfn = KVM_PFN_ERR_FAULT;
write_unlock_irq(&gpc->lock);
spin_lock(&kvm->gpc_lock);
list_del(&gpc->list);
spin_unlock(&kvm->gpc_lock);
gpc_unmap(old_pfn, old_khva);
}
}