Tvrtko Ursulin 0ec208ce98 sched/psi: Optimise psi_group_change a bit
The current code loops over the psi_states only to call a helper which
then resolves back to the action needed for each state using a switch
statement. That is effectively creating a double indirection of a kind
which, given how all the states need to be explicitly listed and handled
anyway, we can simply remove. Both the for loop and the switch statement
that is.

The benefit is both in the code size and CPU time spent in this function.
YMMV but on my Steam Deck, while in a game, the patch makes the CPU usage
go from ~2.4% down to ~1.2%. Text size at the same time went from 0x323 to
0x2c1.

Signed-off-by: Tvrtko Ursulin <tursulin@ursulin.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20240625135000.38652-1-tursulin@igalia.com
2024-07-04 15:59:52 +02:00

1658 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Pressure stall information for CPU, memory and IO
*
* Copyright (c) 2018 Facebook, Inc.
* Author: Johannes Weiner <hannes@cmpxchg.org>
*
* Polling support by Suren Baghdasaryan <surenb@google.com>
* Copyright (c) 2018 Google, Inc.
*
* When CPU, memory and IO are contended, tasks experience delays that
* reduce throughput and introduce latencies into the workload. Memory
* and IO contention, in addition, can cause a full loss of forward
* progress in which the CPU goes idle.
*
* This code aggregates individual task delays into resource pressure
* metrics that indicate problems with both workload health and
* resource utilization.
*
* Model
*
* The time in which a task can execute on a CPU is our baseline for
* productivity. Pressure expresses the amount of time in which this
* potential cannot be realized due to resource contention.
*
* This concept of productivity has two components: the workload and
* the CPU. To measure the impact of pressure on both, we define two
* contention states for a resource: SOME and FULL.
*
* In the SOME state of a given resource, one or more tasks are
* delayed on that resource. This affects the workload's ability to
* perform work, but the CPU may still be executing other tasks.
*
* In the FULL state of a given resource, all non-idle tasks are
* delayed on that resource such that nobody is advancing and the CPU
* goes idle. This leaves both workload and CPU unproductive.
*
* SOME = nr_delayed_tasks != 0
* FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
*
* What it means for a task to be productive is defined differently
* for each resource. For IO, productive means a running task. For
* memory, productive means a running task that isn't a reclaimer. For
* CPU, productive means an on-CPU task.
*
* Naturally, the FULL state doesn't exist for the CPU resource at the
* system level, but exist at the cgroup level. At the cgroup level,
* FULL means all non-idle tasks in the cgroup are delayed on the CPU
* resource which is being used by others outside of the cgroup or
* throttled by the cgroup cpu.max configuration.
*
* The percentage of wall clock time spent in those compound stall
* states gives pressure numbers between 0 and 100 for each resource,
* where the SOME percentage indicates workload slowdowns and the FULL
* percentage indicates reduced CPU utilization:
*
* %SOME = time(SOME) / period
* %FULL = time(FULL) / period
*
* Multiple CPUs
*
* The more tasks and available CPUs there are, the more work can be
* performed concurrently. This means that the potential that can go
* unrealized due to resource contention *also* scales with non-idle
* tasks and CPUs.
*
* Consider a scenario where 257 number crunching tasks are trying to
* run concurrently on 256 CPUs. If we simply aggregated the task
* states, we would have to conclude a CPU SOME pressure number of
* 100%, since *somebody* is waiting on a runqueue at all
* times. However, that is clearly not the amount of contention the
* workload is experiencing: only one out of 256 possible execution
* threads will be contended at any given time, or about 0.4%.
*
* Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
* given time *one* of the tasks is delayed due to a lack of memory.
* Again, looking purely at the task state would yield a memory FULL
* pressure number of 0%, since *somebody* is always making forward
* progress. But again this wouldn't capture the amount of execution
* potential lost, which is 1 out of 4 CPUs, or 25%.
*
* To calculate wasted potential (pressure) with multiple processors,
* we have to base our calculation on the number of non-idle tasks in
* conjunction with the number of available CPUs, which is the number
* of potential execution threads. SOME becomes then the proportion of
* delayed tasks to possible threads, and FULL is the share of possible
* threads that are unproductive due to delays:
*
* threads = min(nr_nonidle_tasks, nr_cpus)
* SOME = min(nr_delayed_tasks / threads, 1)
* FULL = (threads - min(nr_productive_tasks, threads)) / threads
*
* For the 257 number crunchers on 256 CPUs, this yields:
*
* threads = min(257, 256)
* SOME = min(1 / 256, 1) = 0.4%
* FULL = (256 - min(256, 256)) / 256 = 0%
*
* For the 1 out of 4 memory-delayed tasks, this yields:
*
* threads = min(4, 4)
* SOME = min(1 / 4, 1) = 25%
* FULL = (4 - min(3, 4)) / 4 = 25%
*
* [ Substitute nr_cpus with 1, and you can see that it's a natural
* extension of the single-CPU model. ]
*
* Implementation
*
* To assess the precise time spent in each such state, we would have
* to freeze the system on task changes and start/stop the state
* clocks accordingly. Obviously that doesn't scale in practice.
*
* Because the scheduler aims to distribute the compute load evenly
* among the available CPUs, we can track task state locally to each
* CPU and, at much lower frequency, extrapolate the global state for
* the cumulative stall times and the running averages.
*
* For each runqueue, we track:
*
* tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
* tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
* tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
*
* and then periodically aggregate:
*
* tNONIDLE = sum(tNONIDLE[i])
*
* tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
* tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
*
* %SOME = tSOME / period
* %FULL = tFULL / period
*
* This gives us an approximation of pressure that is practical
* cost-wise, yet way more sensitive and accurate than periodic
* sampling of the aggregate task states would be.
*/
static int psi_bug __read_mostly;
DEFINE_STATIC_KEY_FALSE(psi_disabled);
static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
#ifdef CONFIG_PSI_DEFAULT_DISABLED
static bool psi_enable;
#else
static bool psi_enable = true;
#endif
static int __init setup_psi(char *str)
{
return kstrtobool(str, &psi_enable) == 0;
}
__setup("psi=", setup_psi);
/* Running averages - we need to be higher-res than loadavg */
#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
#define EXP_60s 1981 /* 1/exp(2s/60s) */
#define EXP_300s 2034 /* 1/exp(2s/300s) */
/* PSI trigger definitions */
#define WINDOW_MAX_US 10000000 /* Max window size is 10s */
#define UPDATES_PER_WINDOW 10 /* 10 updates per window */
/* Sampling frequency in nanoseconds */
static u64 psi_period __read_mostly;
/* System-level pressure and stall tracking */
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
struct psi_group psi_system = {
.pcpu = &system_group_pcpu,
};
static void psi_avgs_work(struct work_struct *work);
static void poll_timer_fn(struct timer_list *t);
static void group_init(struct psi_group *group)
{
int cpu;
group->enabled = true;
for_each_possible_cpu(cpu)
seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
group->avg_last_update = sched_clock();
group->avg_next_update = group->avg_last_update + psi_period;
mutex_init(&group->avgs_lock);
/* Init avg trigger-related members */
INIT_LIST_HEAD(&group->avg_triggers);
memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
/* Init rtpoll trigger-related members */
atomic_set(&group->rtpoll_scheduled, 0);
mutex_init(&group->rtpoll_trigger_lock);
INIT_LIST_HEAD(&group->rtpoll_triggers);
group->rtpoll_min_period = U32_MAX;
group->rtpoll_next_update = ULLONG_MAX;
init_waitqueue_head(&group->rtpoll_wait);
timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
rcu_assign_pointer(group->rtpoll_task, NULL);
}
void __init psi_init(void)
{
if (!psi_enable) {
static_branch_enable(&psi_disabled);
static_branch_disable(&psi_cgroups_enabled);
return;
}
if (!cgroup_psi_enabled())
static_branch_disable(&psi_cgroups_enabled);
psi_period = jiffies_to_nsecs(PSI_FREQ);
group_init(&psi_system);
}
static u32 test_states(unsigned int *tasks, u32 state_mask)
{
const bool oncpu = state_mask & PSI_ONCPU;
if (tasks[NR_IOWAIT]) {
state_mask |= BIT(PSI_IO_SOME);
if (!tasks[NR_RUNNING])
state_mask |= BIT(PSI_IO_FULL);
}
if (tasks[NR_MEMSTALL]) {
state_mask |= BIT(PSI_MEM_SOME);
if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
state_mask |= BIT(PSI_MEM_FULL);
}
if (tasks[NR_RUNNING] > oncpu)
state_mask |= BIT(PSI_CPU_SOME);
if (tasks[NR_RUNNING] && !oncpu)
state_mask |= BIT(PSI_CPU_FULL);
if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
state_mask |= BIT(PSI_NONIDLE);
return state_mask;
}
static void get_recent_times(struct psi_group *group, int cpu,
enum psi_aggregators aggregator, u32 *times,
u32 *pchanged_states)
{
struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
int current_cpu = raw_smp_processor_id();
unsigned int tasks[NR_PSI_TASK_COUNTS];
u64 now, state_start;
enum psi_states s;
unsigned int seq;
u32 state_mask;
*pchanged_states = 0;
/* Snapshot a coherent view of the CPU state */
do {
seq = read_seqcount_begin(&groupc->seq);
now = cpu_clock(cpu);
memcpy(times, groupc->times, sizeof(groupc->times));
state_mask = groupc->state_mask;
state_start = groupc->state_start;
if (cpu == current_cpu)
memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
} while (read_seqcount_retry(&groupc->seq, seq));
/* Calculate state time deltas against the previous snapshot */
for (s = 0; s < NR_PSI_STATES; s++) {
u32 delta;
/*
* In addition to already concluded states, we also
* incorporate currently active states on the CPU,
* since states may last for many sampling periods.
*
* This way we keep our delta sampling buckets small
* (u32) and our reported pressure close to what's
* actually happening.
*/
if (state_mask & (1 << s))
times[s] += now - state_start;
delta = times[s] - groupc->times_prev[aggregator][s];
groupc->times_prev[aggregator][s] = times[s];
times[s] = delta;
if (delta)
*pchanged_states |= (1 << s);
}
/*
* When collect_percpu_times() from the avgs_work, we don't want to
* re-arm avgs_work when all CPUs are IDLE. But the current CPU running
* this avgs_work is never IDLE, cause avgs_work can't be shut off.
* So for the current CPU, we need to re-arm avgs_work only when
* (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
* we can just check PSI_NONIDLE delta.
*/
if (current_work() == &group->avgs_work.work) {
bool reschedule;
if (cpu == current_cpu)
reschedule = tasks[NR_RUNNING] +
tasks[NR_IOWAIT] +
tasks[NR_MEMSTALL] > 1;
else
reschedule = *pchanged_states & (1 << PSI_NONIDLE);
if (reschedule)
*pchanged_states |= PSI_STATE_RESCHEDULE;
}
}
static void calc_avgs(unsigned long avg[3], int missed_periods,
u64 time, u64 period)
{
unsigned long pct;
/* Fill in zeroes for periods of no activity */
if (missed_periods) {
avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
}
/* Sample the most recent active period */
pct = div_u64(time * 100, period);
pct *= FIXED_1;
avg[0] = calc_load(avg[0], EXP_10s, pct);
avg[1] = calc_load(avg[1], EXP_60s, pct);
avg[2] = calc_load(avg[2], EXP_300s, pct);
}
static void collect_percpu_times(struct psi_group *group,
enum psi_aggregators aggregator,
u32 *pchanged_states)
{
u64 deltas[NR_PSI_STATES - 1] = { 0, };
unsigned long nonidle_total = 0;
u32 changed_states = 0;
int cpu;
int s;
/*
* Collect the per-cpu time buckets and average them into a
* single time sample that is normalized to wall clock time.
*
* For averaging, each CPU is weighted by its non-idle time in
* the sampling period. This eliminates artifacts from uneven
* loading, or even entirely idle CPUs.
*/
for_each_possible_cpu(cpu) {
u32 times[NR_PSI_STATES];
u32 nonidle;
u32 cpu_changed_states;
get_recent_times(group, cpu, aggregator, times,
&cpu_changed_states);
changed_states |= cpu_changed_states;
nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
nonidle_total += nonidle;
for (s = 0; s < PSI_NONIDLE; s++)
deltas[s] += (u64)times[s] * nonidle;
}
/*
* Integrate the sample into the running statistics that are
* reported to userspace: the cumulative stall times and the
* decaying averages.
*
* Pressure percentages are sampled at PSI_FREQ. We might be
* called more often when the user polls more frequently than
* that; we might be called less often when there is no task
* activity, thus no data, and clock ticks are sporadic. The
* below handles both.
*/
/* total= */
for (s = 0; s < NR_PSI_STATES - 1; s++)
group->total[aggregator][s] +=
div_u64(deltas[s], max(nonidle_total, 1UL));
if (pchanged_states)
*pchanged_states = changed_states;
}
/* Trigger tracking window manipulations */
static void window_reset(struct psi_window *win, u64 now, u64 value,
u64 prev_growth)
{
win->start_time = now;
win->start_value = value;
win->prev_growth = prev_growth;
}
/*
* PSI growth tracking window update and growth calculation routine.
*
* This approximates a sliding tracking window by interpolating
* partially elapsed windows using historical growth data from the
* previous intervals. This minimizes memory requirements (by not storing
* all the intermediate values in the previous window) and simplifies
* the calculations. It works well because PSI signal changes only in
* positive direction and over relatively small window sizes the growth
* is close to linear.
*/
static u64 window_update(struct psi_window *win, u64 now, u64 value)
{
u64 elapsed;
u64 growth;
elapsed = now - win->start_time;
growth = value - win->start_value;
/*
* After each tracking window passes win->start_value and
* win->start_time get reset and win->prev_growth stores
* the average per-window growth of the previous window.
* win->prev_growth is then used to interpolate additional
* growth from the previous window assuming it was linear.
*/
if (elapsed > win->size)
window_reset(win, now, value, growth);
else {
u32 remaining;
remaining = win->size - elapsed;
growth += div64_u64(win->prev_growth * remaining, win->size);
}
return growth;
}
static void update_triggers(struct psi_group *group, u64 now,
enum psi_aggregators aggregator)
{
struct psi_trigger *t;
u64 *total = group->total[aggregator];
struct list_head *triggers;
u64 *aggregator_total;
if (aggregator == PSI_AVGS) {
triggers = &group->avg_triggers;
aggregator_total = group->avg_total;
} else {
triggers = &group->rtpoll_triggers;
aggregator_total = group->rtpoll_total;
}
/*
* On subsequent updates, calculate growth deltas and let
* watchers know when their specified thresholds are exceeded.
*/
list_for_each_entry(t, triggers, node) {
u64 growth;
bool new_stall;
new_stall = aggregator_total[t->state] != total[t->state];
/* Check for stall activity or a previous threshold breach */
if (!new_stall && !t->pending_event)
continue;
/*
* Check for new stall activity, as well as deferred
* events that occurred in the last window after the
* trigger had already fired (we want to ratelimit
* events without dropping any).
*/
if (new_stall) {
/* Calculate growth since last update */
growth = window_update(&t->win, now, total[t->state]);
if (!t->pending_event) {
if (growth < t->threshold)
continue;
t->pending_event = true;
}
}
/* Limit event signaling to once per window */
if (now < t->last_event_time + t->win.size)
continue;
/* Generate an event */
if (cmpxchg(&t->event, 0, 1) == 0) {
if (t->of)
kernfs_notify(t->of->kn);
else
wake_up_interruptible(&t->event_wait);
}
t->last_event_time = now;
/* Reset threshold breach flag once event got generated */
t->pending_event = false;
}
}
static u64 update_averages(struct psi_group *group, u64 now)
{
unsigned long missed_periods = 0;
u64 expires, period;
u64 avg_next_update;
int s;
/* avgX= */
expires = group->avg_next_update;
if (now - expires >= psi_period)
missed_periods = div_u64(now - expires, psi_period);
/*
* The periodic clock tick can get delayed for various
* reasons, especially on loaded systems. To avoid clock
* drift, we schedule the clock in fixed psi_period intervals.
* But the deltas we sample out of the per-cpu buckets above
* are based on the actual time elapsing between clock ticks.
*/
avg_next_update = expires + ((1 + missed_periods) * psi_period);
period = now - (group->avg_last_update + (missed_periods * psi_period));
group->avg_last_update = now;
for (s = 0; s < NR_PSI_STATES - 1; s++) {
u32 sample;
sample = group->total[PSI_AVGS][s] - group->avg_total[s];
/*
* Due to the lockless sampling of the time buckets,
* recorded time deltas can slip into the next period,
* which under full pressure can result in samples in
* excess of the period length.
*
* We don't want to report non-sensical pressures in
* excess of 100%, nor do we want to drop such events
* on the floor. Instead we punt any overage into the
* future until pressure subsides. By doing this we
* don't underreport the occurring pressure curve, we
* just report it delayed by one period length.
*
* The error isn't cumulative. As soon as another
* delta slips from a period P to P+1, by definition
* it frees up its time T in P.
*/
if (sample > period)
sample = period;
group->avg_total[s] += sample;
calc_avgs(group->avg[s], missed_periods, sample, period);
}
return avg_next_update;
}
static void psi_avgs_work(struct work_struct *work)
{
struct delayed_work *dwork;
struct psi_group *group;
u32 changed_states;
u64 now;
dwork = to_delayed_work(work);
group = container_of(dwork, struct psi_group, avgs_work);
mutex_lock(&group->avgs_lock);
now = sched_clock();
collect_percpu_times(group, PSI_AVGS, &changed_states);
/*
* If there is task activity, periodically fold the per-cpu
* times and feed samples into the running averages. If things
* are idle and there is no data to process, stop the clock.
* Once restarted, we'll catch up the running averages in one
* go - see calc_avgs() and missed_periods.
*/
if (now >= group->avg_next_update) {
update_triggers(group, now, PSI_AVGS);
group->avg_next_update = update_averages(group, now);
}
if (changed_states & PSI_STATE_RESCHEDULE) {
schedule_delayed_work(dwork, nsecs_to_jiffies(
group->avg_next_update - now) + 1);
}
mutex_unlock(&group->avgs_lock);
}
static void init_rtpoll_triggers(struct psi_group *group, u64 now)
{
struct psi_trigger *t;
list_for_each_entry(t, &group->rtpoll_triggers, node)
window_reset(&t->win, now,
group->total[PSI_POLL][t->state], 0);
memcpy(group->rtpoll_total, group->total[PSI_POLL],
sizeof(group->rtpoll_total));
group->rtpoll_next_update = now + group->rtpoll_min_period;
}
/* Schedule rtpolling if it's not already scheduled or forced. */
static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
bool force)
{
struct task_struct *task;
/*
* atomic_xchg should be called even when !force to provide a
* full memory barrier (see the comment inside psi_rtpoll_work).
*/
if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
return;
rcu_read_lock();
task = rcu_dereference(group->rtpoll_task);
/*
* kworker might be NULL in case psi_trigger_destroy races with
* psi_task_change (hotpath) which can't use locks
*/
if (likely(task))
mod_timer(&group->rtpoll_timer, jiffies + delay);
else
atomic_set(&group->rtpoll_scheduled, 0);
rcu_read_unlock();
}
static void psi_rtpoll_work(struct psi_group *group)
{
bool force_reschedule = false;
u32 changed_states;
u64 now;
mutex_lock(&group->rtpoll_trigger_lock);
now = sched_clock();
if (now > group->rtpoll_until) {
/*
* We are either about to start or might stop rtpolling if no
* state change was recorded. Resetting rtpoll_scheduled leaves
* a small window for psi_group_change to sneak in and schedule
* an immediate rtpoll_work before we get to rescheduling. One
* potential extra wakeup at the end of the rtpolling window
* should be negligible and rtpoll_next_update still keeps
* updates correctly on schedule.
*/
atomic_set(&group->rtpoll_scheduled, 0);
/*
* A task change can race with the rtpoll worker that is supposed to
* report on it. To avoid missing events, ensure ordering between
* rtpoll_scheduled and the task state accesses, such that if the
* rtpoll worker misses the state update, the task change is
* guaranteed to reschedule the rtpoll worker:
*
* rtpoll worker:
* atomic_set(rtpoll_scheduled, 0)
* smp_mb()
* LOAD states
*
* task change:
* STORE states
* if atomic_xchg(rtpoll_scheduled, 1) == 0:
* schedule rtpoll worker
*
* The atomic_xchg() implies a full barrier.
*/
smp_mb();
} else {
/* The rtpolling window is not over, keep rescheduling */
force_reschedule = true;
}
collect_percpu_times(group, PSI_POLL, &changed_states);
if (changed_states & group->rtpoll_states) {
/* Initialize trigger windows when entering rtpolling mode */
if (now > group->rtpoll_until)
init_rtpoll_triggers(group, now);
/*
* Keep the monitor active for at least the duration of the
* minimum tracking window as long as monitor states are
* changing.
*/
group->rtpoll_until = now +
group->rtpoll_min_period * UPDATES_PER_WINDOW;
}
if (now > group->rtpoll_until) {
group->rtpoll_next_update = ULLONG_MAX;
goto out;
}
if (now >= group->rtpoll_next_update) {
if (changed_states & group->rtpoll_states) {
update_triggers(group, now, PSI_POLL);
memcpy(group->rtpoll_total, group->total[PSI_POLL],
sizeof(group->rtpoll_total));
}
group->rtpoll_next_update = now + group->rtpoll_min_period;
}
psi_schedule_rtpoll_work(group,
nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
force_reschedule);
out:
mutex_unlock(&group->rtpoll_trigger_lock);
}
static int psi_rtpoll_worker(void *data)
{
struct psi_group *group = (struct psi_group *)data;
sched_set_fifo_low(current);
while (true) {
wait_event_interruptible(group->rtpoll_wait,
atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
kthread_should_stop());
if (kthread_should_stop())
break;
psi_rtpoll_work(group);
}
return 0;
}
static void poll_timer_fn(struct timer_list *t)
{
struct psi_group *group = from_timer(group, t, rtpoll_timer);
atomic_set(&group->rtpoll_wakeup, 1);
wake_up_interruptible(&group->rtpoll_wait);
}
static void record_times(struct psi_group_cpu *groupc, u64 now)
{
u32 delta;
delta = now - groupc->state_start;
groupc->state_start = now;
if (groupc->state_mask & (1 << PSI_IO_SOME)) {
groupc->times[PSI_IO_SOME] += delta;
if (groupc->state_mask & (1 << PSI_IO_FULL))
groupc->times[PSI_IO_FULL] += delta;
}
if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
groupc->times[PSI_MEM_SOME] += delta;
if (groupc->state_mask & (1 << PSI_MEM_FULL))
groupc->times[PSI_MEM_FULL] += delta;
}
if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
groupc->times[PSI_CPU_SOME] += delta;
if (groupc->state_mask & (1 << PSI_CPU_FULL))
groupc->times[PSI_CPU_FULL] += delta;
}
if (groupc->state_mask & (1 << PSI_NONIDLE))
groupc->times[PSI_NONIDLE] += delta;
}
static void psi_group_change(struct psi_group *group, int cpu,
unsigned int clear, unsigned int set, u64 now,
bool wake_clock)
{
struct psi_group_cpu *groupc;
unsigned int t, m;
u32 state_mask;
groupc = per_cpu_ptr(group->pcpu, cpu);
/*
* First we update the task counts according to the state
* change requested through the @clear and @set bits.
*
* Then if the cgroup PSI stats accounting enabled, we
* assess the aggregate resource states this CPU's tasks
* have been in since the last change, and account any
* SOME and FULL time these may have resulted in.
*/
write_seqcount_begin(&groupc->seq);
/*
* Start with TSK_ONCPU, which doesn't have a corresponding
* task count - it's just a boolean flag directly encoded in
* the state mask. Clear, set, or carry the current state if
* no changes are requested.
*/
if (unlikely(clear & TSK_ONCPU)) {
state_mask = 0;
clear &= ~TSK_ONCPU;
} else if (unlikely(set & TSK_ONCPU)) {
state_mask = PSI_ONCPU;
set &= ~TSK_ONCPU;
} else {
state_mask = groupc->state_mask & PSI_ONCPU;
}
/*
* The rest of the state mask is calculated based on the task
* counts. Update those first, then construct the mask.
*/
for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
if (!(m & (1 << t)))
continue;
if (groupc->tasks[t]) {
groupc->tasks[t]--;
} else if (!psi_bug) {
printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
cpu, t, groupc->tasks[0],
groupc->tasks[1], groupc->tasks[2],
groupc->tasks[3], clear, set);
psi_bug = 1;
}
}
for (t = 0; set; set &= ~(1 << t), t++)
if (set & (1 << t))
groupc->tasks[t]++;
if (!group->enabled) {
/*
* On the first group change after disabling PSI, conclude
* the current state and flush its time. This is unlikely
* to matter to the user, but aggregation (get_recent_times)
* may have already incorporated the live state into times_prev;
* avoid a delta sample underflow when PSI is later re-enabled.
*/
if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
record_times(groupc, now);
groupc->state_mask = state_mask;
write_seqcount_end(&groupc->seq);
return;
}
state_mask = test_states(groupc->tasks, state_mask);
/*
* Since we care about lost potential, a memstall is FULL
* when there are no other working tasks, but also when
* the CPU is actively reclaiming and nothing productive
* could run even if it were runnable. So when the current
* task in a cgroup is in_memstall, the corresponding groupc
* on that cpu is in PSI_MEM_FULL state.
*/
if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
state_mask |= (1 << PSI_MEM_FULL);
record_times(groupc, now);
groupc->state_mask = state_mask;
write_seqcount_end(&groupc->seq);
if (state_mask & group->rtpoll_states)
psi_schedule_rtpoll_work(group, 1, false);
if (wake_clock && !delayed_work_pending(&group->avgs_work))
schedule_delayed_work(&group->avgs_work, PSI_FREQ);
}
static inline struct psi_group *task_psi_group(struct task_struct *task)
{
#ifdef CONFIG_CGROUPS
if (static_branch_likely(&psi_cgroups_enabled))
return cgroup_psi(task_dfl_cgroup(task));
#endif
return &psi_system;
}
static void psi_flags_change(struct task_struct *task, int clear, int set)
{
if (((task->psi_flags & set) ||
(task->psi_flags & clear) != clear) &&
!psi_bug) {
printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
task->pid, task->comm, task_cpu(task),
task->psi_flags, clear, set);
psi_bug = 1;
}
task->psi_flags &= ~clear;
task->psi_flags |= set;
}
void psi_task_change(struct task_struct *task, int clear, int set)
{
int cpu = task_cpu(task);
struct psi_group *group;
u64 now;
if (!task->pid)
return;
psi_flags_change(task, clear, set);
now = cpu_clock(cpu);
group = task_psi_group(task);
do {
psi_group_change(group, cpu, clear, set, now, true);
} while ((group = group->parent));
}
void psi_task_switch(struct task_struct *prev, struct task_struct *next,
bool sleep)
{
struct psi_group *group, *common = NULL;
int cpu = task_cpu(prev);
u64 now = cpu_clock(cpu);
if (next->pid) {
psi_flags_change(next, 0, TSK_ONCPU);
/*
* Set TSK_ONCPU on @next's cgroups. If @next shares any
* ancestors with @prev, those will already have @prev's
* TSK_ONCPU bit set, and we can stop the iteration there.
*/
group = task_psi_group(next);
do {
if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
PSI_ONCPU) {
common = group;
break;
}
psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
} while ((group = group->parent));
}
if (prev->pid) {
int clear = TSK_ONCPU, set = 0;
bool wake_clock = true;
/*
* When we're going to sleep, psi_dequeue() lets us
* handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
* TSK_IOWAIT here, where we can combine it with
* TSK_ONCPU and save walking common ancestors twice.
*/
if (sleep) {
clear |= TSK_RUNNING;
if (prev->in_memstall)
clear |= TSK_MEMSTALL_RUNNING;
if (prev->in_iowait)
set |= TSK_IOWAIT;
/*
* Periodic aggregation shuts off if there is a period of no
* task changes, so we wake it back up if necessary. However,
* don't do this if the task change is the aggregation worker
* itself going to sleep, or we'll ping-pong forever.
*/
if (unlikely((prev->flags & PF_WQ_WORKER) &&
wq_worker_last_func(prev) == psi_avgs_work))
wake_clock = false;
}
psi_flags_change(prev, clear, set);
group = task_psi_group(prev);
do {
if (group == common)
break;
psi_group_change(group, cpu, clear, set, now, wake_clock);
} while ((group = group->parent));
/*
* TSK_ONCPU is handled up to the common ancestor. If there are
* any other differences between the two tasks (e.g. prev goes
* to sleep, or only one task is memstall), finish propagating
* those differences all the way up to the root.
*/
if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
clear &= ~TSK_ONCPU;
for (; group; group = group->parent)
psi_group_change(group, cpu, clear, set, now, wake_clock);
}
}
}
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
void psi_account_irqtime(struct task_struct *task, u32 delta)
{
int cpu = task_cpu(task);
struct psi_group *group;
struct psi_group_cpu *groupc;
u64 now;
if (static_branch_likely(&psi_disabled))
return;
if (!task->pid)
return;
now = cpu_clock(cpu);
group = task_psi_group(task);
do {
if (!group->enabled)
continue;
groupc = per_cpu_ptr(group->pcpu, cpu);
write_seqcount_begin(&groupc->seq);
record_times(groupc, now);
groupc->times[PSI_IRQ_FULL] += delta;
write_seqcount_end(&groupc->seq);
if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
psi_schedule_rtpoll_work(group, 1, false);
} while ((group = group->parent));
}
#endif
/**
* psi_memstall_enter - mark the beginning of a memory stall section
* @flags: flags to handle nested sections
*
* Marks the calling task as being stalled due to a lack of memory,
* such as waiting for a refault or performing reclaim.
*/
void psi_memstall_enter(unsigned long *flags)
{
struct rq_flags rf;
struct rq *rq;
if (static_branch_likely(&psi_disabled))
return;
*flags = current->in_memstall;
if (*flags)
return;
/*
* in_memstall setting & accounting needs to be atomic wrt
* changes to the task's scheduling state, otherwise we can
* race with CPU migration.
*/
rq = this_rq_lock_irq(&rf);
current->in_memstall = 1;
psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
rq_unlock_irq(rq, &rf);
}
EXPORT_SYMBOL_GPL(psi_memstall_enter);
/**
* psi_memstall_leave - mark the end of an memory stall section
* @flags: flags to handle nested memdelay sections
*
* Marks the calling task as no longer stalled due to lack of memory.
*/
void psi_memstall_leave(unsigned long *flags)
{
struct rq_flags rf;
struct rq *rq;
if (static_branch_likely(&psi_disabled))
return;
if (*flags)
return;
/*
* in_memstall clearing & accounting needs to be atomic wrt
* changes to the task's scheduling state, otherwise we could
* race with CPU migration.
*/
rq = this_rq_lock_irq(&rf);
current->in_memstall = 0;
psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
rq_unlock_irq(rq, &rf);
}
EXPORT_SYMBOL_GPL(psi_memstall_leave);
#ifdef CONFIG_CGROUPS
int psi_cgroup_alloc(struct cgroup *cgroup)
{
if (!static_branch_likely(&psi_cgroups_enabled))
return 0;
cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
if (!cgroup->psi)
return -ENOMEM;
cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
if (!cgroup->psi->pcpu) {
kfree(cgroup->psi);
return -ENOMEM;
}
group_init(cgroup->psi);
cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
return 0;
}
void psi_cgroup_free(struct cgroup *cgroup)
{
if (!static_branch_likely(&psi_cgroups_enabled))
return;
cancel_delayed_work_sync(&cgroup->psi->avgs_work);
free_percpu(cgroup->psi->pcpu);
/* All triggers must be removed by now */
WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
kfree(cgroup->psi);
}
/**
* cgroup_move_task - move task to a different cgroup
* @task: the task
* @to: the target css_set
*
* Move task to a new cgroup and safely migrate its associated stall
* state between the different groups.
*
* This function acquires the task's rq lock to lock out concurrent
* changes to the task's scheduling state and - in case the task is
* running - concurrent changes to its stall state.
*/
void cgroup_move_task(struct task_struct *task, struct css_set *to)
{
unsigned int task_flags;
struct rq_flags rf;
struct rq *rq;
if (!static_branch_likely(&psi_cgroups_enabled)) {
/*
* Lame to do this here, but the scheduler cannot be locked
* from the outside, so we move cgroups from inside sched/.
*/
rcu_assign_pointer(task->cgroups, to);
return;
}
rq = task_rq_lock(task, &rf);
/*
* We may race with schedule() dropping the rq lock between
* deactivating prev and switching to next. Because the psi
* updates from the deactivation are deferred to the switch
* callback to save cgroup tree updates, the task's scheduling
* state here is not coherent with its psi state:
*
* schedule() cgroup_move_task()
* rq_lock()
* deactivate_task()
* p->on_rq = 0
* psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
* pick_next_task()
* rq_unlock()
* rq_lock()
* psi_task_change() // old cgroup
* task->cgroups = to
* psi_task_change() // new cgroup
* rq_unlock()
* rq_lock()
* psi_sched_switch() // does deferred updates in new cgroup
*
* Don't rely on the scheduling state. Use psi_flags instead.
*/
task_flags = task->psi_flags;
if (task_flags)
psi_task_change(task, task_flags, 0);
/* See comment above */
rcu_assign_pointer(task->cgroups, to);
if (task_flags)
psi_task_change(task, 0, task_flags);
task_rq_unlock(rq, task, &rf);
}
void psi_cgroup_restart(struct psi_group *group)
{
int cpu;
/*
* After we disable psi_group->enabled, we don't actually
* stop percpu tasks accounting in each psi_group_cpu,
* instead only stop test_states() loop, record_times()
* and averaging worker, see psi_group_change() for details.
*
* When disable cgroup PSI, this function has nothing to sync
* since cgroup pressure files are hidden and percpu psi_group_cpu
* would see !psi_group->enabled and only do task accounting.
*
* When re-enable cgroup PSI, this function use psi_group_change()
* to get correct state mask from test_states() loop on tasks[],
* and restart groupc->state_start from now, use .clear = .set = 0
* here since no task status really changed.
*/
if (!group->enabled)
return;
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
u64 now;
rq_lock_irq(rq, &rf);
now = cpu_clock(cpu);
psi_group_change(group, cpu, 0, 0, now, true);
rq_unlock_irq(rq, &rf);
}
}
#endif /* CONFIG_CGROUPS */
int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
{
bool only_full = false;
int full;
u64 now;
if (static_branch_likely(&psi_disabled))
return -EOPNOTSUPP;
/* Update averages before reporting them */
mutex_lock(&group->avgs_lock);
now = sched_clock();
collect_percpu_times(group, PSI_AVGS, NULL);
if (now >= group->avg_next_update)
group->avg_next_update = update_averages(group, now);
mutex_unlock(&group->avgs_lock);
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
only_full = res == PSI_IRQ;
#endif
for (full = 0; full < 2 - only_full; full++) {
unsigned long avg[3] = { 0, };
u64 total = 0;
int w;
/* CPU FULL is undefined at the system level */
if (!(group == &psi_system && res == PSI_CPU && full)) {
for (w = 0; w < 3; w++)
avg[w] = group->avg[res * 2 + full][w];
total = div_u64(group->total[PSI_AVGS][res * 2 + full],
NSEC_PER_USEC);
}
seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
full || only_full ? "full" : "some",
LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
total);
}
return 0;
}
struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
enum psi_res res, struct file *file,
struct kernfs_open_file *of)
{
struct psi_trigger *t;
enum psi_states state;
u32 threshold_us;
bool privileged;
u32 window_us;
if (static_branch_likely(&psi_disabled))
return ERR_PTR(-EOPNOTSUPP);
/*
* Checking the privilege here on file->f_cred implies that a privileged user
* could open the file and delegate the write to an unprivileged one.
*/
privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
state = PSI_IO_SOME + res * 2;
else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
state = PSI_IO_FULL + res * 2;
else
return ERR_PTR(-EINVAL);
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
return ERR_PTR(-EINVAL);
#endif
if (state >= PSI_NONIDLE)
return ERR_PTR(-EINVAL);
if (window_us == 0 || window_us > WINDOW_MAX_US)
return ERR_PTR(-EINVAL);
/*
* Unprivileged users can only use 2s windows so that averages aggregation
* work is used, and no RT threads need to be spawned.
*/
if (!privileged && window_us % 2000000)
return ERR_PTR(-EINVAL);
/* Check threshold */
if (threshold_us == 0 || threshold_us > window_us)
return ERR_PTR(-EINVAL);
t = kmalloc(sizeof(*t), GFP_KERNEL);
if (!t)
return ERR_PTR(-ENOMEM);
t->group = group;
t->state = state;
t->threshold = threshold_us * NSEC_PER_USEC;
t->win.size = window_us * NSEC_PER_USEC;
window_reset(&t->win, sched_clock(),
group->total[PSI_POLL][t->state], 0);
t->event = 0;
t->last_event_time = 0;
t->of = of;
if (!of)
init_waitqueue_head(&t->event_wait);
t->pending_event = false;
t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
if (privileged) {
mutex_lock(&group->rtpoll_trigger_lock);
if (!rcu_access_pointer(group->rtpoll_task)) {
struct task_struct *task;
task = kthread_create(psi_rtpoll_worker, group, "psimon");
if (IS_ERR(task)) {
kfree(t);
mutex_unlock(&group->rtpoll_trigger_lock);
return ERR_CAST(task);
}
atomic_set(&group->rtpoll_wakeup, 0);
wake_up_process(task);
rcu_assign_pointer(group->rtpoll_task, task);
}
list_add(&t->node, &group->rtpoll_triggers);
group->rtpoll_min_period = min(group->rtpoll_min_period,
div_u64(t->win.size, UPDATES_PER_WINDOW));
group->rtpoll_nr_triggers[t->state]++;
group->rtpoll_states |= (1 << t->state);
mutex_unlock(&group->rtpoll_trigger_lock);
} else {
mutex_lock(&group->avgs_lock);
list_add(&t->node, &group->avg_triggers);
group->avg_nr_triggers[t->state]++;
mutex_unlock(&group->avgs_lock);
}
return t;
}
void psi_trigger_destroy(struct psi_trigger *t)
{
struct psi_group *group;
struct task_struct *task_to_destroy = NULL;
/*
* We do not check psi_disabled since it might have been disabled after
* the trigger got created.
*/
if (!t)
return;
group = t->group;
/*
* Wakeup waiters to stop polling and clear the queue to prevent it from
* being accessed later. Can happen if cgroup is deleted from under a
* polling process.
*/
if (t->of)
kernfs_notify(t->of->kn);
else
wake_up_interruptible(&t->event_wait);
if (t->aggregator == PSI_AVGS) {
mutex_lock(&group->avgs_lock);
if (!list_empty(&t->node)) {
list_del(&t->node);
group->avg_nr_triggers[t->state]--;
}
mutex_unlock(&group->avgs_lock);
} else {
mutex_lock(&group->rtpoll_trigger_lock);
if (!list_empty(&t->node)) {
struct psi_trigger *tmp;
u64 period = ULLONG_MAX;
list_del(&t->node);
group->rtpoll_nr_triggers[t->state]--;
if (!group->rtpoll_nr_triggers[t->state])
group->rtpoll_states &= ~(1 << t->state);
/*
* Reset min update period for the remaining triggers
* iff the destroying trigger had the min window size.
*/
if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
list_for_each_entry(tmp, &group->rtpoll_triggers, node)
period = min(period, div_u64(tmp->win.size,
UPDATES_PER_WINDOW));
group->rtpoll_min_period = period;
}
/* Destroy rtpoll_task when the last trigger is destroyed */
if (group->rtpoll_states == 0) {
group->rtpoll_until = 0;
task_to_destroy = rcu_dereference_protected(
group->rtpoll_task,
lockdep_is_held(&group->rtpoll_trigger_lock));
rcu_assign_pointer(group->rtpoll_task, NULL);
del_timer(&group->rtpoll_timer);
}
}
mutex_unlock(&group->rtpoll_trigger_lock);
}
/*
* Wait for psi_schedule_rtpoll_work RCU to complete its read-side
* critical section before destroying the trigger and optionally the
* rtpoll_task.
*/
synchronize_rcu();
/*
* Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
* a deadlock while waiting for psi_rtpoll_work to acquire
* rtpoll_trigger_lock
*/
if (task_to_destroy) {
/*
* After the RCU grace period has expired, the worker
* can no longer be found through group->rtpoll_task.
*/
kthread_stop(task_to_destroy);
atomic_set(&group->rtpoll_scheduled, 0);
}
kfree(t);
}
__poll_t psi_trigger_poll(void **trigger_ptr,
struct file *file, poll_table *wait)
{
__poll_t ret = DEFAULT_POLLMASK;
struct psi_trigger *t;
if (static_branch_likely(&psi_disabled))
return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
t = smp_load_acquire(trigger_ptr);
if (!t)
return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
if (t->of)
kernfs_generic_poll(t->of, wait);
else
poll_wait(file, &t->event_wait, wait);
if (cmpxchg(&t->event, 1, 0) == 1)
ret |= EPOLLPRI;
return ret;
}
#ifdef CONFIG_PROC_FS
static int psi_io_show(struct seq_file *m, void *v)
{
return psi_show(m, &psi_system, PSI_IO);
}
static int psi_memory_show(struct seq_file *m, void *v)
{
return psi_show(m, &psi_system, PSI_MEM);
}
static int psi_cpu_show(struct seq_file *m, void *v)
{
return psi_show(m, &psi_system, PSI_CPU);
}
static int psi_io_open(struct inode *inode, struct file *file)
{
return single_open(file, psi_io_show, NULL);
}
static int psi_memory_open(struct inode *inode, struct file *file)
{
return single_open(file, psi_memory_show, NULL);
}
static int psi_cpu_open(struct inode *inode, struct file *file)
{
return single_open(file, psi_cpu_show, NULL);
}
static ssize_t psi_write(struct file *file, const char __user *user_buf,
size_t nbytes, enum psi_res res)
{
char buf[32];
size_t buf_size;
struct seq_file *seq;
struct psi_trigger *new;
if (static_branch_likely(&psi_disabled))
return -EOPNOTSUPP;
if (!nbytes)
return -EINVAL;
buf_size = min(nbytes, sizeof(buf));
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
buf[buf_size - 1] = '\0';
seq = file->private_data;
/* Take seq->lock to protect seq->private from concurrent writes */
mutex_lock(&seq->lock);
/* Allow only one trigger per file descriptor */
if (seq->private) {
mutex_unlock(&seq->lock);
return -EBUSY;
}
new = psi_trigger_create(&psi_system, buf, res, file, NULL);
if (IS_ERR(new)) {
mutex_unlock(&seq->lock);
return PTR_ERR(new);
}
smp_store_release(&seq->private, new);
mutex_unlock(&seq->lock);
return nbytes;
}
static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
size_t nbytes, loff_t *ppos)
{
return psi_write(file, user_buf, nbytes, PSI_IO);
}
static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
size_t nbytes, loff_t *ppos)
{
return psi_write(file, user_buf, nbytes, PSI_MEM);
}
static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
size_t nbytes, loff_t *ppos)
{
return psi_write(file, user_buf, nbytes, PSI_CPU);
}
static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
{
struct seq_file *seq = file->private_data;
return psi_trigger_poll(&seq->private, file, wait);
}
static int psi_fop_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
psi_trigger_destroy(seq->private);
return single_release(inode, file);
}
static const struct proc_ops psi_io_proc_ops = {
.proc_open = psi_io_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_write = psi_io_write,
.proc_poll = psi_fop_poll,
.proc_release = psi_fop_release,
};
static const struct proc_ops psi_memory_proc_ops = {
.proc_open = psi_memory_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_write = psi_memory_write,
.proc_poll = psi_fop_poll,
.proc_release = psi_fop_release,
};
static const struct proc_ops psi_cpu_proc_ops = {
.proc_open = psi_cpu_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_write = psi_cpu_write,
.proc_poll = psi_fop_poll,
.proc_release = psi_fop_release,
};
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
static int psi_irq_show(struct seq_file *m, void *v)
{
return psi_show(m, &psi_system, PSI_IRQ);
}
static int psi_irq_open(struct inode *inode, struct file *file)
{
return single_open(file, psi_irq_show, NULL);
}
static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
size_t nbytes, loff_t *ppos)
{
return psi_write(file, user_buf, nbytes, PSI_IRQ);
}
static const struct proc_ops psi_irq_proc_ops = {
.proc_open = psi_irq_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_write = psi_irq_write,
.proc_poll = psi_fop_poll,
.proc_release = psi_fop_release,
};
#endif
static int __init psi_proc_init(void)
{
if (psi_enable) {
proc_mkdir("pressure", NULL);
proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
#endif
}
return 0;
}
module_init(psi_proc_init);
#endif /* CONFIG_PROC_FS */