linux/fs/btrfs/ordered-data.h
Qu Wenruo 7dbeaad0af btrfs: change timing for qgroup reserved space for ordered extents to fix reserved space leak
[BUG]
The following simple workload from fsstress can lead to qgroup reserved
data space leak:
  0/0: creat f0 x:0 0 0
  0/0: creat add id=0,parent=-1
  0/1: write f0[259 1 0 0 0 0] [600030,27288] 0
  0/4: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 64 627318] return 25, fallback to stat()
  0/4: dwrite f0[259 1 0 0 64 627318] [610304,106496] 0

This would cause btrfs qgroup to leak 20480 bytes for data reserved
space.  If btrfs qgroup limit is enabled, such leak can lead to
unexpected early EDQUOT and unusable space.

[CAUSE]
When doing direct IO, kernel will try to writeback existing buffered
page cache, then invalidate them:
  generic_file_direct_write()
  |- filemap_write_and_wait_range();
  |- invalidate_inode_pages2_range();

However for btrfs, the bi_end_io hook doesn't finish all its heavy work
right after bio ends.  In fact, it delays its work further:

  submit_extent_page(end_io_func=end_bio_extent_writepage);
  end_bio_extent_writepage()
  |- btrfs_writepage_endio_finish_ordered()
     |- btrfs_init_work(finish_ordered_fn);

  <<< Work queue execution >>>
  finish_ordered_fn()
  |- btrfs_finish_ordered_io();
     |- Clear qgroup bits

This means, when filemap_write_and_wait_range() returns,
btrfs_finish_ordered_io() is not guaranteed to be executed, thus the
qgroup bits for related range are not cleared.

Now into how the leak happens, this will only focus on the overlapping
part of buffered and direct IO part.

1. After buffered write
   The inode had the following range with QGROUP_RESERVED bit:
   	596		616K
	|///////////////|
   Qgroup reserved data space: 20K

2. Writeback part for range [596K, 616K)
   Write back finished, but btrfs_finish_ordered_io() not get called
   yet.
   So we still have:
   	596K		616K
	|///////////////|
   Qgroup reserved data space: 20K

3. Pages for range [596K, 616K) get released
   This will clear all qgroup bits, but don't update the reserved data
   space.
   So we have:
   	596K		616K
	|		|
   Qgroup reserved data space: 20K
   That number doesn't match the qgroup bit range anymore.

4. Dio prepare space for range [596K, 700K)
   Qgroup reserved data space for that range, we got:
   	596K		616K			700K
	|///////////////|///////////////////////|
   Qgroup reserved data space: 20K + 104K = 124K

5. btrfs_finish_ordered_range() gets executed for range [596K, 616K)
   Qgroup free reserved space for that range, we got:
   	596K		616K			700K
	|		|///////////////////////|
   We need to free that range of reserved space.
   Qgroup reserved data space: 124K - 20K = 104K

6. btrfs_finish_ordered_range() gets executed for range [596K, 700K)
   However qgroup bit for range [596K, 616K) is already cleared in
   previous step, so we only free 84K for qgroup reserved space.
   	596K		616K			700K
	|		|			|
   We need to free that range of reserved space.
   Qgroup reserved data space: 104K - 84K = 20K

   Now there is no way to release that 20K unless disabling qgroup or
   unmounting the fs.

[FIX]
This patch will change the timing of btrfs_qgroup_release/free_data()
call.  Here it uses buffered COW write as an example.

	The new timing			|	The old timing
----------------------------------------+---------------------------------------
 btrfs_buffered_write()			| btrfs_buffered_write()
 |- btrfs_qgroup_reserve_data() 	| |- btrfs_qgroup_reserve_data()
					|
 btrfs_run_delalloc_range()		| btrfs_run_delalloc_range()
 |- btrfs_add_ordered_extent()  	|
    |- btrfs_qgroup_release_data()	|
       The reserved is passed into	|
       btrfs_ordered_extent structure	|
					|
 btrfs_finish_ordered_io()		| btrfs_finish_ordered_io()
 |- The reserved space is passed to 	| |- btrfs_qgroup_release_data()
    btrfs_qgroup_record			|    The resereved space is passed
					|    to btrfs_qgroup_recrod
					|
 btrfs_qgroup_account_extents()		| btrfs_qgroup_account_extents()
 |- btrfs_qgroup_free_refroot()		| |- btrfs_qgroup_free_refroot()

The point of such change is to ensure, when ordered extents are
submitted, the qgroup reserved space is already released, to keep the
timing aligned with file_write_and_wait_range().

So that qgroup data reserved space is all bound to btrfs_ordered_extent
and solve the timing mismatch.

Fixes: f695fdcef83a ("btrfs: qgroup: Introduce functions to release/free qgroup reserve data space")
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00

196 lines
5.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#ifndef BTRFS_ORDERED_DATA_H
#define BTRFS_ORDERED_DATA_H
/* one of these per inode */
struct btrfs_ordered_inode_tree {
spinlock_t lock;
struct rb_root tree;
struct rb_node *last;
};
struct btrfs_ordered_sum {
/* bytenr is the start of this extent on disk */
u64 bytenr;
/*
* this is the length in bytes covered by the sums array below.
*/
int len;
struct list_head list;
/* last field is a variable length array of csums */
u8 sums[];
};
/*
* bits for the flags field:
*
* BTRFS_ORDERED_IO_DONE is set when all of the blocks are written.
* It is used to make sure metadata is inserted into the tree only once
* per extent.
*
* BTRFS_ORDERED_COMPLETE is set when the extent is removed from the
* rbtree, just before waking any waiters. It is used to indicate the
* IO is done and any metadata is inserted into the tree.
*/
enum {
/* set when all the pages are written */
BTRFS_ORDERED_IO_DONE,
/* set when removed from the tree */
BTRFS_ORDERED_COMPLETE,
/* set when we want to write in place */
BTRFS_ORDERED_NOCOW,
/* writing a zlib compressed extent */
BTRFS_ORDERED_COMPRESSED,
/* set when writing to preallocated extent */
BTRFS_ORDERED_PREALLOC,
/* set when we're doing DIO with this extent */
BTRFS_ORDERED_DIRECT,
/* We had an io error when writing this out */
BTRFS_ORDERED_IOERR,
/* Set when we have to truncate an extent */
BTRFS_ORDERED_TRUNCATED,
/* Regular IO for COW */
BTRFS_ORDERED_REGULAR,
};
struct btrfs_ordered_extent {
/* logical offset in the file */
u64 file_offset;
/*
* These fields directly correspond to the same fields in
* btrfs_file_extent_item.
*/
u64 disk_bytenr;
u64 num_bytes;
u64 disk_num_bytes;
/* number of bytes that still need writing */
u64 bytes_left;
/*
* the end of the ordered extent which is behind it but
* didn't update disk_i_size. Please see the comment of
* btrfs_ordered_update_i_size();
*/
u64 outstanding_isize;
/*
* If we get truncated we need to adjust the file extent we enter for
* this ordered extent so that we do not expose stale data.
*/
u64 truncated_len;
/* flags (described above) */
unsigned long flags;
/* compression algorithm */
int compress_type;
/* Qgroup reserved space */
int qgroup_rsv;
/* reference count */
refcount_t refs;
/* the inode we belong to */
struct inode *inode;
/* list of checksums for insertion when the extent io is done */
struct list_head list;
/* If we need to wait on this to be done */
struct list_head log_list;
/* If the transaction needs to wait on this ordered extent */
struct list_head trans_list;
/* used to wait for the BTRFS_ORDERED_COMPLETE bit */
wait_queue_head_t wait;
/* our friendly rbtree entry */
struct rb_node rb_node;
/* a per root list of all the pending ordered extents */
struct list_head root_extent_list;
struct btrfs_work work;
struct completion completion;
struct btrfs_work flush_work;
struct list_head work_list;
};
/*
* calculates the total size you need to allocate for an ordered sum
* structure spanning 'bytes' in the file
*/
static inline int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info,
unsigned long bytes)
{
int num_sectors = (int)DIV_ROUND_UP(bytes, fs_info->sectorsize);
int csum_size = btrfs_super_csum_size(fs_info->super_copy);
return sizeof(struct btrfs_ordered_sum) + num_sectors * csum_size;
}
static inline void
btrfs_ordered_inode_tree_init(struct btrfs_ordered_inode_tree *t)
{
spin_lock_init(&t->lock);
t->tree = RB_ROOT;
t->last = NULL;
}
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry);
void btrfs_remove_ordered_extent(struct inode *inode,
struct btrfs_ordered_extent *entry);
int btrfs_dec_test_ordered_pending(struct inode *inode,
struct btrfs_ordered_extent **cached,
u64 file_offset, u64 io_size, int uptodate);
int btrfs_dec_test_first_ordered_pending(struct inode *inode,
struct btrfs_ordered_extent **cached,
u64 *file_offset, u64 io_size,
int uptodate);
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
int type);
int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
u64 disk_bytenr, u64 num_bytes,
u64 disk_num_bytes, int type);
int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
u64 disk_bytenr, u64 num_bytes,
u64 disk_num_bytes, int type,
int compress_type);
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
struct btrfs_ordered_sum *sum);
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
u64 file_offset);
void btrfs_start_ordered_extent(struct inode *inode,
struct btrfs_ordered_extent *entry, int wait);
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len);
struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset);
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
struct btrfs_inode *inode,
u64 file_offset,
u64 len);
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
u8 *sum, int len);
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
const u64 range_start, const u64 range_len);
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
const u64 range_start, const u64 range_len);
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
u64 end,
struct extent_state **cached_state);
int __init ordered_data_init(void);
void __cold ordered_data_exit(void);
#endif