mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-19 11:43:40 +00:00
df9b455633
In netfslib, a buffered writeback operation has a 'write queue' of folios that are being written, held in a linear sequence of folio_queue structs. The 'issuer' adds new folio_queues on the leading edge of the queue and populates each one progressively; the 'collector' pops them off the trailing edge and discards them and the folios they point to as they are consumed. The queue is required to always retain at least one folio_queue structure. This allows the queue to be accessed without locking and with just a bit of barriering. When a new subrequest is prepared, its ->io_iter iterator is pointed at the current end of the write queue and then the iterator is extended as more data is added to the queue until the subrequest is committed. Now, the problem is that the folio_queue at the leading edge of the write queue when a subrequest is prepared might have been entirely consumed - but not yet removed from the queue as it is the only remaining one and is preventing the queue from collapsing. So, what happens is that subreq->io_iter is pointed at the spent folio_queue, then a new folio_queue is added, and, at that point, the collector is at entirely at liberty to immediately delete the spent folio_queue. This leaves the subreq->io_iter pointing at a freed object. If the system is lucky, iterate_folioq() sees ->io_iter, sees the as-yet uncorrupted freed object and advances to the next folio_queue in the queue. In the case seen, however, the freed object gets recycled and put back onto the queue at the tail and filled to the end. This confuses iterate_folioq() and it tries to step ->next, which may be NULL - resulting in an oops. Fix this by the following means: (1) When preparing a write subrequest, make sure there's a folio_queue struct with space in it at the leading edge of the queue. A function to make space is split out of the function to append a folio so that it can be called for this purpose. (2) If the request struct iterator is pointing to a completely spent folio_queue when we make space, then advance the iterator to the newly allocated folio_queue. The subrequest's iterator will then be set from this. The oops could be triggered using the generic/346 xfstest with a filesystem on9P over TCP with cache=loose. The oops looked something like: BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page ... RIP: 0010:_copy_from_iter+0x2db/0x530 ... Call Trace: <TASK> ... p9pdu_vwritef+0x3d8/0x5d0 p9_client_prepare_req+0xa8/0x140 p9_client_rpc+0x81/0x280 p9_client_write+0xcf/0x1c0 v9fs_issue_write+0x87/0xc0 netfs_advance_write+0xa0/0xb0 netfs_write_folio.isra.0+0x42d/0x500 netfs_writepages+0x15a/0x1f0 do_writepages+0xd1/0x220 filemap_fdatawrite_wbc+0x5c/0x80 v9fs_mmap_vm_close+0x7d/0xb0 remove_vma+0x35/0x70 vms_complete_munmap_vmas+0x11a/0x170 do_vmi_align_munmap+0x17d/0x1c0 do_vmi_munmap+0x13e/0x150 __vm_munmap+0x92/0xd0 __x64_sys_munmap+0x17/0x20 do_syscall_64+0x80/0xe0 entry_SYSCALL_64_after_hwframe+0x71/0x79 This also fixed a similar-looking issue with cifs and generic/074. Fixes: cd0277ed0c18 ("netfs: Use new folio_queue data type and iterator instead of xarray iter") Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202409180928.f20b5a08-oliver.sang@intel.com Closes: https://lore.kernel.org/oe-lkp/202409131438.3f225fbf-oliver.sang@intel.com Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: kernel test robot <oliver.sang@intel.com> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Paulo Alcantara <pc@manguebit.com> cc: Jeff Layton <jlayton@kernel.org> cc: v9fs@lists.linux.dev cc: linux-cifs@vger.kernel.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Signed-off-by: Steve French <stfrench@microsoft.com>
706 lines
20 KiB
C
706 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem high-level (buffered) writeback.
|
|
*
|
|
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
*
|
|
* To support network filesystems with local caching, we manage a situation
|
|
* that can be envisioned like the following:
|
|
*
|
|
* +---+---+-----+-----+---+----------+
|
|
* Folios: | | | | | | |
|
|
* +---+---+-----+-----+---+----------+
|
|
*
|
|
* +------+------+ +----+----+
|
|
* Upload: | | |.....| | |
|
|
* (Stream 0) +------+------+ +----+----+
|
|
*
|
|
* +------+------+------+------+------+
|
|
* Cache: | | | | | |
|
|
* (Stream 1) +------+------+------+------+------+
|
|
*
|
|
* Where we have a sequence of folios of varying sizes that we need to overlay
|
|
* with multiple parallel streams of I/O requests, where the I/O requests in a
|
|
* stream may also be of various sizes (in cifs, for example, the sizes are
|
|
* negotiated with the server; in something like ceph, they may represent the
|
|
* sizes of storage objects).
|
|
*
|
|
* The sequence in each stream may contain gaps and noncontiguous subrequests
|
|
* may be glued together into single vectored write RPCs.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Kill all dirty folios in the event of an unrecoverable error, starting with
|
|
* a locked folio we've already obtained from writeback_iter().
|
|
*/
|
|
static void netfs_kill_dirty_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct folio *folio)
|
|
{
|
|
int error = 0;
|
|
|
|
do {
|
|
enum netfs_folio_trace why = netfs_folio_trace_kill;
|
|
struct netfs_group *group = NULL;
|
|
struct netfs_folio *finfo = NULL;
|
|
void *priv;
|
|
|
|
priv = folio_detach_private(folio);
|
|
if (priv) {
|
|
finfo = __netfs_folio_info(priv);
|
|
if (finfo) {
|
|
/* Kill folio from streaming write. */
|
|
group = finfo->netfs_group;
|
|
why = netfs_folio_trace_kill_s;
|
|
} else {
|
|
group = priv;
|
|
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
|
|
/* Kill copy-to-cache folio */
|
|
why = netfs_folio_trace_kill_cc;
|
|
group = NULL;
|
|
} else {
|
|
/* Kill folio with group */
|
|
why = netfs_folio_trace_kill_g;
|
|
}
|
|
}
|
|
}
|
|
|
|
trace_netfs_folio(folio, why);
|
|
|
|
folio_start_writeback(folio);
|
|
folio_unlock(folio);
|
|
folio_end_writeback(folio);
|
|
|
|
netfs_put_group(group);
|
|
kfree(finfo);
|
|
|
|
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
|
|
}
|
|
|
|
/*
|
|
* Create a write request and set it up appropriately for the origin type.
|
|
*/
|
|
struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
|
|
struct file *file,
|
|
loff_t start,
|
|
enum netfs_io_origin origin)
|
|
{
|
|
struct netfs_io_request *wreq;
|
|
struct netfs_inode *ictx;
|
|
bool is_buffered = (origin == NETFS_WRITEBACK ||
|
|
origin == NETFS_WRITETHROUGH ||
|
|
origin == NETFS_PGPRIV2_COPY_TO_CACHE);
|
|
|
|
wreq = netfs_alloc_request(mapping, file, start, 0, origin);
|
|
if (IS_ERR(wreq))
|
|
return wreq;
|
|
|
|
_enter("R=%x", wreq->debug_id);
|
|
|
|
ictx = netfs_inode(wreq->inode);
|
|
if (is_buffered && netfs_is_cache_enabled(ictx))
|
|
fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
|
|
|
|
wreq->cleaned_to = wreq->start;
|
|
|
|
wreq->io_streams[0].stream_nr = 0;
|
|
wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER;
|
|
wreq->io_streams[0].prepare_write = ictx->ops->prepare_write;
|
|
wreq->io_streams[0].issue_write = ictx->ops->issue_write;
|
|
wreq->io_streams[0].collected_to = start;
|
|
wreq->io_streams[0].transferred = LONG_MAX;
|
|
|
|
wreq->io_streams[1].stream_nr = 1;
|
|
wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE;
|
|
wreq->io_streams[1].collected_to = start;
|
|
wreq->io_streams[1].transferred = LONG_MAX;
|
|
if (fscache_resources_valid(&wreq->cache_resources)) {
|
|
wreq->io_streams[1].avail = true;
|
|
wreq->io_streams[1].active = true;
|
|
wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
|
|
wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
|
|
}
|
|
|
|
return wreq;
|
|
}
|
|
|
|
/**
|
|
* netfs_prepare_write_failed - Note write preparation failed
|
|
* @subreq: The subrequest to mark
|
|
*
|
|
* Mark a subrequest to note that preparation for write failed.
|
|
*/
|
|
void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
|
|
{
|
|
__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
|
|
}
|
|
EXPORT_SYMBOL(netfs_prepare_write_failed);
|
|
|
|
/*
|
|
* Prepare a write subrequest. We need to allocate a new subrequest
|
|
* if we don't have one.
|
|
*/
|
|
static void netfs_prepare_write(struct netfs_io_request *wreq,
|
|
struct netfs_io_stream *stream,
|
|
loff_t start)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct iov_iter *wreq_iter = &wreq->io_iter;
|
|
|
|
/* Make sure we don't point the iterator at a used-up folio_queue
|
|
* struct being used as a placeholder to prevent the queue from
|
|
* collapsing. In such a case, extend the queue.
|
|
*/
|
|
if (iov_iter_is_folioq(wreq_iter) &&
|
|
wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) {
|
|
netfs_buffer_make_space(wreq);
|
|
}
|
|
|
|
subreq = netfs_alloc_subrequest(wreq);
|
|
subreq->source = stream->source;
|
|
subreq->start = start;
|
|
subreq->stream_nr = stream->stream_nr;
|
|
subreq->io_iter = *wreq_iter;
|
|
|
|
_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
|
|
stream->sreq_max_len = UINT_MAX;
|
|
stream->sreq_max_segs = INT_MAX;
|
|
switch (stream->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload);
|
|
stream->sreq_max_len = wreq->wsize;
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
}
|
|
|
|
if (stream->prepare_write)
|
|
stream->prepare_write(subreq);
|
|
|
|
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
|
|
|
/* We add to the end of the list whilst the collector may be walking
|
|
* the list. The collector only goes nextwards and uses the lock to
|
|
* remove entries off of the front.
|
|
*/
|
|
spin_lock_bh(&wreq->lock);
|
|
list_add_tail(&subreq->rreq_link, &stream->subrequests);
|
|
if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
|
|
stream->front = subreq;
|
|
if (!stream->active) {
|
|
stream->collected_to = stream->front->start;
|
|
/* Write list pointers before active flag */
|
|
smp_store_release(&stream->active, true);
|
|
}
|
|
}
|
|
|
|
spin_unlock_bh(&wreq->lock);
|
|
|
|
stream->construct = subreq;
|
|
}
|
|
|
|
/*
|
|
* Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
|
|
* operation. The operation may be asynchronous and should call
|
|
* netfs_write_subrequest_terminated() when complete.
|
|
*/
|
|
static void netfs_do_issue_write(struct netfs_io_stream *stream,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
struct netfs_io_request *wreq = subreq->rreq;
|
|
|
|
_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
|
|
|
|
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
|
|
return netfs_write_subrequest_terminated(subreq, subreq->error, false);
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
stream->issue_write(subreq);
|
|
}
|
|
|
|
void netfs_reissue_write(struct netfs_io_stream *stream,
|
|
struct netfs_io_subrequest *subreq,
|
|
struct iov_iter *source)
|
|
{
|
|
size_t size = subreq->len - subreq->transferred;
|
|
|
|
// TODO: Use encrypted buffer
|
|
subreq->io_iter = *source;
|
|
iov_iter_advance(source, size);
|
|
iov_iter_truncate(&subreq->io_iter, size);
|
|
|
|
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
|
netfs_do_issue_write(stream, subreq);
|
|
}
|
|
|
|
void netfs_issue_write(struct netfs_io_request *wreq,
|
|
struct netfs_io_stream *stream)
|
|
{
|
|
struct netfs_io_subrequest *subreq = stream->construct;
|
|
|
|
if (!subreq)
|
|
return;
|
|
stream->construct = NULL;
|
|
subreq->io_iter.count = subreq->len;
|
|
netfs_do_issue_write(stream, subreq);
|
|
}
|
|
|
|
/*
|
|
* Add data to the write subrequest, dispatching each as we fill it up or if it
|
|
* is discontiguous with the previous. We only fill one part at a time so that
|
|
* we can avoid overrunning the credits obtained (cifs) and try to parallelise
|
|
* content-crypto preparation with network writes.
|
|
*/
|
|
int netfs_advance_write(struct netfs_io_request *wreq,
|
|
struct netfs_io_stream *stream,
|
|
loff_t start, size_t len, bool to_eof)
|
|
{
|
|
struct netfs_io_subrequest *subreq = stream->construct;
|
|
size_t part;
|
|
|
|
if (!stream->avail) {
|
|
_leave("no write");
|
|
return len;
|
|
}
|
|
|
|
_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
|
|
|
|
if (subreq && start != subreq->start + subreq->len) {
|
|
netfs_issue_write(wreq, stream);
|
|
subreq = NULL;
|
|
}
|
|
|
|
if (!stream->construct)
|
|
netfs_prepare_write(wreq, stream, start);
|
|
subreq = stream->construct;
|
|
|
|
part = umin(stream->sreq_max_len - subreq->len, len);
|
|
_debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len);
|
|
subreq->len += part;
|
|
subreq->nr_segs++;
|
|
stream->submit_extendable_to -= part;
|
|
|
|
if (subreq->len >= stream->sreq_max_len ||
|
|
subreq->nr_segs >= stream->sreq_max_segs ||
|
|
to_eof) {
|
|
netfs_issue_write(wreq, stream);
|
|
subreq = NULL;
|
|
}
|
|
|
|
return part;
|
|
}
|
|
|
|
/*
|
|
* Write some of a pending folio data back to the server.
|
|
*/
|
|
static int netfs_write_folio(struct netfs_io_request *wreq,
|
|
struct writeback_control *wbc,
|
|
struct folio *folio)
|
|
{
|
|
struct netfs_io_stream *upload = &wreq->io_streams[0];
|
|
struct netfs_io_stream *cache = &wreq->io_streams[1];
|
|
struct netfs_io_stream *stream;
|
|
struct netfs_group *fgroup; /* TODO: Use this with ceph */
|
|
struct netfs_folio *finfo;
|
|
size_t fsize = folio_size(folio), flen = fsize, foff = 0;
|
|
loff_t fpos = folio_pos(folio), i_size;
|
|
bool to_eof = false, streamw = false;
|
|
bool debug = false;
|
|
|
|
_enter("");
|
|
|
|
/* netfs_perform_write() may shift i_size around the page or from out
|
|
* of the page to beyond it, but cannot move i_size into or through the
|
|
* page since we have it locked.
|
|
*/
|
|
i_size = i_size_read(wreq->inode);
|
|
|
|
if (fpos >= i_size) {
|
|
/* mmap beyond eof. */
|
|
_debug("beyond eof");
|
|
folio_start_writeback(folio);
|
|
folio_unlock(folio);
|
|
wreq->nr_group_rel += netfs_folio_written_back(folio);
|
|
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
|
|
wreq->nr_group_rel = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (fpos + fsize > wreq->i_size)
|
|
wreq->i_size = i_size;
|
|
|
|
fgroup = netfs_folio_group(folio);
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo) {
|
|
foff = finfo->dirty_offset;
|
|
flen = foff + finfo->dirty_len;
|
|
streamw = true;
|
|
}
|
|
|
|
if (wreq->origin == NETFS_WRITETHROUGH) {
|
|
to_eof = false;
|
|
if (flen > i_size - fpos)
|
|
flen = i_size - fpos;
|
|
} else if (flen > i_size - fpos) {
|
|
flen = i_size - fpos;
|
|
if (!streamw)
|
|
folio_zero_segment(folio, flen, fsize);
|
|
to_eof = true;
|
|
} else if (flen == i_size - fpos) {
|
|
to_eof = true;
|
|
}
|
|
flen -= foff;
|
|
|
|
_debug("folio %zx %zx %zx", foff, flen, fsize);
|
|
|
|
/* Deal with discontinuities in the stream of dirty pages. These can
|
|
* arise from a number of sources:
|
|
*
|
|
* (1) Intervening non-dirty pages from random-access writes, multiple
|
|
* flushers writing back different parts simultaneously and manual
|
|
* syncing.
|
|
*
|
|
* (2) Partially-written pages from write-streaming.
|
|
*
|
|
* (3) Pages that belong to a different write-back group (eg. Ceph
|
|
* snapshots).
|
|
*
|
|
* (4) Actually-clean pages that were marked for write to the cache
|
|
* when they were read. Note that these appear as a special
|
|
* write-back group.
|
|
*/
|
|
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
|
|
netfs_issue_write(wreq, upload);
|
|
} else if (fgroup != wreq->group) {
|
|
/* We can't write this page to the server yet. */
|
|
kdebug("wrong group");
|
|
folio_redirty_for_writepage(wbc, folio);
|
|
folio_unlock(folio);
|
|
netfs_issue_write(wreq, upload);
|
|
netfs_issue_write(wreq, cache);
|
|
return 0;
|
|
}
|
|
|
|
if (foff > 0)
|
|
netfs_issue_write(wreq, upload);
|
|
if (streamw)
|
|
netfs_issue_write(wreq, cache);
|
|
|
|
/* Flip the page to the writeback state and unlock. If we're called
|
|
* from write-through, then the page has already been put into the wb
|
|
* state.
|
|
*/
|
|
if (wreq->origin == NETFS_WRITEBACK)
|
|
folio_start_writeback(folio);
|
|
folio_unlock(folio);
|
|
|
|
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
|
|
if (!cache->avail) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
|
|
netfs_issue_write(wreq, upload);
|
|
netfs_folio_written_back(folio);
|
|
return 0;
|
|
}
|
|
trace_netfs_folio(folio, netfs_folio_trace_store_copy);
|
|
} else if (!upload->avail && !cache->avail) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_cancel_store);
|
|
netfs_folio_written_back(folio);
|
|
return 0;
|
|
} else if (!upload->construct) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_store);
|
|
} else {
|
|
trace_netfs_folio(folio, netfs_folio_trace_store_plus);
|
|
}
|
|
|
|
/* Attach the folio to the rolling buffer. */
|
|
netfs_buffer_append_folio(wreq, folio, false);
|
|
|
|
/* Move the submission point forward to allow for write-streaming data
|
|
* not starting at the front of the page. We don't do write-streaming
|
|
* with the cache as the cache requires DIO alignment.
|
|
*
|
|
* Also skip uploading for data that's been read and just needs copying
|
|
* to the cache.
|
|
*/
|
|
for (int s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
stream->submit_off = foff;
|
|
stream->submit_len = flen;
|
|
if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
|
|
(stream->source == NETFS_UPLOAD_TO_SERVER &&
|
|
fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
|
|
stream->submit_off = UINT_MAX;
|
|
stream->submit_len = 0;
|
|
}
|
|
}
|
|
|
|
/* Attach the folio to one or more subrequests. For a big folio, we
|
|
* could end up with thousands of subrequests if the wsize is small -
|
|
* but we might need to wait during the creation of subrequests for
|
|
* network resources (eg. SMB credits).
|
|
*/
|
|
for (;;) {
|
|
ssize_t part;
|
|
size_t lowest_off = ULONG_MAX;
|
|
int choose_s = -1;
|
|
|
|
/* Always add to the lowest-submitted stream first. */
|
|
for (int s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->submit_len > 0 &&
|
|
stream->submit_off < lowest_off) {
|
|
lowest_off = stream->submit_off;
|
|
choose_s = s;
|
|
}
|
|
}
|
|
|
|
if (choose_s < 0)
|
|
break;
|
|
stream = &wreq->io_streams[choose_s];
|
|
wreq->io_iter.iov_offset = stream->submit_off;
|
|
|
|
atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
|
|
stream->submit_extendable_to = fsize - stream->submit_off;
|
|
part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
|
|
stream->submit_len, to_eof);
|
|
stream->submit_off += part;
|
|
if (part > stream->submit_len)
|
|
stream->submit_len = 0;
|
|
else
|
|
stream->submit_len -= part;
|
|
if (part > 0)
|
|
debug = true;
|
|
}
|
|
|
|
wreq->io_iter.iov_offset = 0;
|
|
iov_iter_advance(&wreq->io_iter, fsize);
|
|
atomic64_set(&wreq->issued_to, fpos + fsize);
|
|
|
|
if (!debug)
|
|
kdebug("R=%x: No submit", wreq->debug_id);
|
|
|
|
if (foff + flen < fsize)
|
|
for (int s = 0; s < NR_IO_STREAMS; s++)
|
|
netfs_issue_write(wreq, &wreq->io_streams[s]);
|
|
|
|
_leave(" = 0");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write some of the pending data back to the server
|
|
*/
|
|
int netfs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct netfs_inode *ictx = netfs_inode(mapping->host);
|
|
struct netfs_io_request *wreq = NULL;
|
|
struct folio *folio;
|
|
int error = 0;
|
|
|
|
if (!mutex_trylock(&ictx->wb_lock)) {
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
netfs_stat(&netfs_n_wb_lock_skip);
|
|
return 0;
|
|
}
|
|
netfs_stat(&netfs_n_wb_lock_wait);
|
|
mutex_lock(&ictx->wb_lock);
|
|
}
|
|
|
|
/* Need the first folio to be able to set up the op. */
|
|
folio = writeback_iter(mapping, wbc, NULL, &error);
|
|
if (!folio)
|
|
goto out;
|
|
|
|
wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
|
|
if (IS_ERR(wreq)) {
|
|
error = PTR_ERR(wreq);
|
|
goto couldnt_start;
|
|
}
|
|
|
|
trace_netfs_write(wreq, netfs_write_trace_writeback);
|
|
netfs_stat(&netfs_n_wh_writepages);
|
|
|
|
do {
|
|
_debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to));
|
|
|
|
/* It appears we don't have to handle cyclic writeback wrapping. */
|
|
WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to));
|
|
|
|
if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
|
|
unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
|
|
set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
|
|
wreq->netfs_ops->begin_writeback(wreq);
|
|
}
|
|
|
|
error = netfs_write_folio(wreq, wbc, folio);
|
|
if (error < 0)
|
|
break;
|
|
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
|
|
|
|
for (int s = 0; s < NR_IO_STREAMS; s++)
|
|
netfs_issue_write(wreq, &wreq->io_streams[s]);
|
|
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
|
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
|
|
|
|
mutex_unlock(&ictx->wb_lock);
|
|
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
|
_leave(" = %d", error);
|
|
return error;
|
|
|
|
couldnt_start:
|
|
netfs_kill_dirty_pages(mapping, wbc, folio);
|
|
out:
|
|
mutex_unlock(&ictx->wb_lock);
|
|
_leave(" = %d", error);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(netfs_writepages);
|
|
|
|
/*
|
|
* Begin a write operation for writing through the pagecache.
|
|
*/
|
|
struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
|
|
{
|
|
struct netfs_io_request *wreq = NULL;
|
|
struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
|
|
|
|
mutex_lock(&ictx->wb_lock);
|
|
|
|
wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
|
|
iocb->ki_pos, NETFS_WRITETHROUGH);
|
|
if (IS_ERR(wreq)) {
|
|
mutex_unlock(&ictx->wb_lock);
|
|
return wreq;
|
|
}
|
|
|
|
wreq->io_streams[0].avail = true;
|
|
trace_netfs_write(wreq, netfs_write_trace_writethrough);
|
|
return wreq;
|
|
}
|
|
|
|
/*
|
|
* Advance the state of the write operation used when writing through the
|
|
* pagecache. Data has been copied into the pagecache that we need to append
|
|
* to the request. If we've added more than wsize then we need to create a new
|
|
* subrequest.
|
|
*/
|
|
int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
|
|
struct folio *folio, size_t copied, bool to_page_end,
|
|
struct folio **writethrough_cache)
|
|
{
|
|
_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
|
|
wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
|
|
|
|
if (!*writethrough_cache) {
|
|
if (folio_test_dirty(folio))
|
|
/* Sigh. mmap. */
|
|
folio_clear_dirty_for_io(folio);
|
|
|
|
/* We can make multiple writes to the folio... */
|
|
folio_start_writeback(folio);
|
|
if (wreq->len == 0)
|
|
trace_netfs_folio(folio, netfs_folio_trace_wthru);
|
|
else
|
|
trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
|
|
*writethrough_cache = folio;
|
|
}
|
|
|
|
wreq->len += copied;
|
|
if (!to_page_end)
|
|
return 0;
|
|
|
|
*writethrough_cache = NULL;
|
|
return netfs_write_folio(wreq, wbc, folio);
|
|
}
|
|
|
|
/*
|
|
* End a write operation used when writing through the pagecache.
|
|
*/
|
|
int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
|
|
struct folio *writethrough_cache)
|
|
{
|
|
struct netfs_inode *ictx = netfs_inode(wreq->inode);
|
|
int ret;
|
|
|
|
_enter("R=%x", wreq->debug_id);
|
|
|
|
if (writethrough_cache)
|
|
netfs_write_folio(wreq, wbc, writethrough_cache);
|
|
|
|
netfs_issue_write(wreq, &wreq->io_streams[0]);
|
|
netfs_issue_write(wreq, &wreq->io_streams[1]);
|
|
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
|
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
|
|
|
|
mutex_unlock(&ictx->wb_lock);
|
|
|
|
if (wreq->iocb) {
|
|
ret = -EIOCBQUEUED;
|
|
} else {
|
|
wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
|
|
ret = wreq->error;
|
|
}
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write data to the server without going through the pagecache and without
|
|
* writing it to the local cache.
|
|
*/
|
|
int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
|
|
{
|
|
struct netfs_io_stream *upload = &wreq->io_streams[0];
|
|
ssize_t part;
|
|
loff_t start = wreq->start;
|
|
int error = 0;
|
|
|
|
_enter("%zx", len);
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE)
|
|
inode_dio_begin(wreq->inode);
|
|
|
|
while (len) {
|
|
// TODO: Prepare content encryption
|
|
|
|
_debug("unbuffered %zx", len);
|
|
part = netfs_advance_write(wreq, upload, start, len, false);
|
|
start += part;
|
|
len -= part;
|
|
iov_iter_advance(&wreq->io_iter, part);
|
|
if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
|
|
wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
|
|
}
|
|
if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
|
|
break;
|
|
}
|
|
|
|
netfs_issue_write(wreq, upload);
|
|
|
|
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
|
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
|
|
if (list_empty(&upload->subrequests))
|
|
netfs_wake_write_collector(wreq, false);
|
|
|
|
_leave(" = %d", error);
|
|
return error;
|
|
}
|