mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 09:34:17 +00:00
668d663989
Add two fields to print in the helper which here covers tcp_send_loss_probe(). Link: https://lore.kernel.org/all/5632e043-bdba-4d75-bc7e-bf58014492fd@redhat.com/ Suggested-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Jason Xing <kernelxing@tencent.com> Cc: Neal Cardwell <ncardwell@google.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2824 lines
84 KiB
C
2824 lines
84 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Definitions for the TCP module.
|
|
*
|
|
* Version: @(#)tcp.h 1.0.5 05/23/93
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
*/
|
|
#ifndef _TCP_H
|
|
#define _TCP_H
|
|
|
|
#define FASTRETRANS_DEBUG 1
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/indirect_call_wrapper.h>
|
|
|
|
#include <net/inet_connection_sock.h>
|
|
#include <net/inet_timewait_sock.h>
|
|
#include <net/inet_hashtables.h>
|
|
#include <net/checksum.h>
|
|
#include <net/request_sock.h>
|
|
#include <net/sock_reuseport.h>
|
|
#include <net/sock.h>
|
|
#include <net/snmp.h>
|
|
#include <net/ip.h>
|
|
#include <net/tcp_states.h>
|
|
#include <net/tcp_ao.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/dst.h>
|
|
#include <net/mptcp.h>
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/bpf-cgroup.h>
|
|
#include <linux/siphash.h>
|
|
|
|
extern struct inet_hashinfo tcp_hashinfo;
|
|
|
|
DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
|
|
int tcp_orphan_count_sum(void);
|
|
|
|
DECLARE_PER_CPU(u32, tcp_tw_isn);
|
|
|
|
void tcp_time_wait(struct sock *sk, int state, int timeo);
|
|
|
|
#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
|
|
#define MAX_TCP_OPTION_SPACE 40
|
|
#define TCP_MIN_SND_MSS 48
|
|
#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
|
|
|
|
/*
|
|
* Never offer a window over 32767 without using window scaling. Some
|
|
* poor stacks do signed 16bit maths!
|
|
*/
|
|
#define MAX_TCP_WINDOW 32767U
|
|
|
|
/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
|
|
#define TCP_MIN_MSS 88U
|
|
|
|
/* The initial MTU to use for probing */
|
|
#define TCP_BASE_MSS 1024
|
|
|
|
/* probing interval, default to 10 minutes as per RFC4821 */
|
|
#define TCP_PROBE_INTERVAL 600
|
|
|
|
/* Specify interval when tcp mtu probing will stop */
|
|
#define TCP_PROBE_THRESHOLD 8
|
|
|
|
/* After receiving this amount of duplicate ACKs fast retransmit starts. */
|
|
#define TCP_FASTRETRANS_THRESH 3
|
|
|
|
/* Maximal number of ACKs sent quickly to accelerate slow-start. */
|
|
#define TCP_MAX_QUICKACKS 16U
|
|
|
|
/* Maximal number of window scale according to RFC1323 */
|
|
#define TCP_MAX_WSCALE 14U
|
|
|
|
/* urg_data states */
|
|
#define TCP_URG_VALID 0x0100
|
|
#define TCP_URG_NOTYET 0x0200
|
|
#define TCP_URG_READ 0x0400
|
|
|
|
#define TCP_RETR1 3 /*
|
|
* This is how many retries it does before it
|
|
* tries to figure out if the gateway is
|
|
* down. Minimal RFC value is 3; it corresponds
|
|
* to ~3sec-8min depending on RTO.
|
|
*/
|
|
|
|
#define TCP_RETR2 15 /*
|
|
* This should take at least
|
|
* 90 minutes to time out.
|
|
* RFC1122 says that the limit is 100 sec.
|
|
* 15 is ~13-30min depending on RTO.
|
|
*/
|
|
|
|
#define TCP_SYN_RETRIES 6 /* This is how many retries are done
|
|
* when active opening a connection.
|
|
* RFC1122 says the minimum retry MUST
|
|
* be at least 180secs. Nevertheless
|
|
* this value is corresponding to
|
|
* 63secs of retransmission with the
|
|
* current initial RTO.
|
|
*/
|
|
|
|
#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
|
|
* when passive opening a connection.
|
|
* This is corresponding to 31secs of
|
|
* retransmission with the current
|
|
* initial RTO.
|
|
*/
|
|
|
|
#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
|
|
* state, about 60 seconds */
|
|
#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
|
|
/* BSD style FIN_WAIT2 deadlock breaker.
|
|
* It used to be 3min, new value is 60sec,
|
|
* to combine FIN-WAIT-2 timeout with
|
|
* TIME-WAIT timer.
|
|
*/
|
|
#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
|
|
|
|
#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
|
|
static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
|
|
|
|
#if HZ >= 100
|
|
#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
|
|
#define TCP_ATO_MIN ((unsigned)(HZ/25))
|
|
#else
|
|
#define TCP_DELACK_MIN 4U
|
|
#define TCP_ATO_MIN 4U
|
|
#endif
|
|
#define TCP_RTO_MAX ((unsigned)(120*HZ))
|
|
#define TCP_RTO_MIN ((unsigned)(HZ/5))
|
|
#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
|
|
|
|
#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
|
|
|
|
#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
|
|
#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
|
|
* used as a fallback RTO for the
|
|
* initial data transmission if no
|
|
* valid RTT sample has been acquired,
|
|
* most likely due to retrans in 3WHS.
|
|
*/
|
|
|
|
#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
|
|
* for local resources.
|
|
*/
|
|
#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
|
|
#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
|
|
#define TCP_KEEPALIVE_INTVL (75*HZ)
|
|
|
|
#define MAX_TCP_KEEPIDLE 32767
|
|
#define MAX_TCP_KEEPINTVL 32767
|
|
#define MAX_TCP_KEEPCNT 127
|
|
#define MAX_TCP_SYNCNT 127
|
|
|
|
/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
|
|
* to avoid overflows. This assumes a clock smaller than 1 Mhz.
|
|
* Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
|
|
*/
|
|
#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
|
|
|
|
#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
|
|
* after this time. It should be equal
|
|
* (or greater than) TCP_TIMEWAIT_LEN
|
|
* to provide reliability equal to one
|
|
* provided by timewait state.
|
|
*/
|
|
#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
|
|
* timestamps. It must be less than
|
|
* minimal timewait lifetime.
|
|
*/
|
|
/*
|
|
* TCP option
|
|
*/
|
|
|
|
#define TCPOPT_NOP 1 /* Padding */
|
|
#define TCPOPT_EOL 0 /* End of options */
|
|
#define TCPOPT_MSS 2 /* Segment size negotiating */
|
|
#define TCPOPT_WINDOW 3 /* Window scaling */
|
|
#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
|
|
#define TCPOPT_SACK 5 /* SACK Block */
|
|
#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
|
|
#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
|
|
#define TCPOPT_AO 29 /* Authentication Option (RFC5925) */
|
|
#define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
|
|
#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
|
|
#define TCPOPT_EXP 254 /* Experimental */
|
|
/* Magic number to be after the option value for sharing TCP
|
|
* experimental options. See draft-ietf-tcpm-experimental-options-00.txt
|
|
*/
|
|
#define TCPOPT_FASTOPEN_MAGIC 0xF989
|
|
#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
|
|
|
|
/*
|
|
* TCP option lengths
|
|
*/
|
|
|
|
#define TCPOLEN_MSS 4
|
|
#define TCPOLEN_WINDOW 3
|
|
#define TCPOLEN_SACK_PERM 2
|
|
#define TCPOLEN_TIMESTAMP 10
|
|
#define TCPOLEN_MD5SIG 18
|
|
#define TCPOLEN_FASTOPEN_BASE 2
|
|
#define TCPOLEN_EXP_FASTOPEN_BASE 4
|
|
#define TCPOLEN_EXP_SMC_BASE 6
|
|
|
|
/* But this is what stacks really send out. */
|
|
#define TCPOLEN_TSTAMP_ALIGNED 12
|
|
#define TCPOLEN_WSCALE_ALIGNED 4
|
|
#define TCPOLEN_SACKPERM_ALIGNED 4
|
|
#define TCPOLEN_SACK_BASE 2
|
|
#define TCPOLEN_SACK_BASE_ALIGNED 4
|
|
#define TCPOLEN_SACK_PERBLOCK 8
|
|
#define TCPOLEN_MD5SIG_ALIGNED 20
|
|
#define TCPOLEN_MSS_ALIGNED 4
|
|
#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
|
|
|
|
/* Flags in tp->nonagle */
|
|
#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
|
|
#define TCP_NAGLE_CORK 2 /* Socket is corked */
|
|
#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
|
|
|
|
/* TCP thin-stream limits */
|
|
#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
|
|
|
|
/* TCP initial congestion window as per rfc6928 */
|
|
#define TCP_INIT_CWND 10
|
|
|
|
/* Bit Flags for sysctl_tcp_fastopen */
|
|
#define TFO_CLIENT_ENABLE 1
|
|
#define TFO_SERVER_ENABLE 2
|
|
#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
|
|
|
|
/* Accept SYN data w/o any cookie option */
|
|
#define TFO_SERVER_COOKIE_NOT_REQD 0x200
|
|
|
|
/* Force enable TFO on all listeners, i.e., not requiring the
|
|
* TCP_FASTOPEN socket option.
|
|
*/
|
|
#define TFO_SERVER_WO_SOCKOPT1 0x400
|
|
|
|
|
|
/* sysctl variables for tcp */
|
|
extern int sysctl_tcp_max_orphans;
|
|
extern long sysctl_tcp_mem[3];
|
|
|
|
#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
|
|
#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
|
|
#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
|
|
|
|
extern atomic_long_t tcp_memory_allocated;
|
|
DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
|
|
|
|
extern struct percpu_counter tcp_sockets_allocated;
|
|
extern unsigned long tcp_memory_pressure;
|
|
|
|
/* optimized version of sk_under_memory_pressure() for TCP sockets */
|
|
static inline bool tcp_under_memory_pressure(const struct sock *sk)
|
|
{
|
|
if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
|
|
mem_cgroup_under_socket_pressure(sk->sk_memcg))
|
|
return true;
|
|
|
|
return READ_ONCE(tcp_memory_pressure);
|
|
}
|
|
/*
|
|
* The next routines deal with comparing 32 bit unsigned ints
|
|
* and worry about wraparound (automatic with unsigned arithmetic).
|
|
*/
|
|
|
|
static inline bool before(__u32 seq1, __u32 seq2)
|
|
{
|
|
return (__s32)(seq1-seq2) < 0;
|
|
}
|
|
#define after(seq2, seq1) before(seq1, seq2)
|
|
|
|
/* is s2<=s1<=s3 ? */
|
|
static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
|
|
{
|
|
return seq3 - seq2 >= seq1 - seq2;
|
|
}
|
|
|
|
static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
sk_wmem_queued_add(sk, -skb->truesize);
|
|
if (!skb_zcopy_pure(skb))
|
|
sk_mem_uncharge(sk, skb->truesize);
|
|
else
|
|
sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
void sk_forced_mem_schedule(struct sock *sk, int size);
|
|
|
|
bool tcp_check_oom(const struct sock *sk, int shift);
|
|
|
|
|
|
extern struct proto tcp_prot;
|
|
|
|
#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
|
|
#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
|
|
#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
|
|
#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
|
|
|
|
void tcp_tasklet_init(void);
|
|
|
|
int tcp_v4_err(struct sk_buff *skb, u32);
|
|
|
|
void tcp_shutdown(struct sock *sk, int how);
|
|
|
|
int tcp_v4_early_demux(struct sk_buff *skb);
|
|
int tcp_v4_rcv(struct sk_buff *skb);
|
|
|
|
void tcp_remove_empty_skb(struct sock *sk);
|
|
int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
|
|
int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
|
|
int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
|
|
size_t size, struct ubuf_info *uarg);
|
|
void tcp_splice_eof(struct socket *sock);
|
|
int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
|
|
int tcp_wmem_schedule(struct sock *sk, int copy);
|
|
void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
|
|
int size_goal);
|
|
void tcp_release_cb(struct sock *sk);
|
|
void tcp_wfree(struct sk_buff *skb);
|
|
void tcp_write_timer_handler(struct sock *sk);
|
|
void tcp_delack_timer_handler(struct sock *sk);
|
|
int tcp_ioctl(struct sock *sk, int cmd, int *karg);
|
|
enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_rcv_space_adjust(struct sock *sk);
|
|
int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
|
|
void tcp_twsk_destructor(struct sock *sk);
|
|
void tcp_twsk_purge(struct list_head *net_exit_list);
|
|
ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
|
|
struct pipe_inode_info *pipe, size_t len,
|
|
unsigned int flags);
|
|
struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
|
|
bool force_schedule);
|
|
|
|
static inline void tcp_dec_quickack_mode(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
if (icsk->icsk_ack.quick) {
|
|
/* How many ACKs S/ACKing new data have we sent? */
|
|
const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
|
|
|
|
if (pkts >= icsk->icsk_ack.quick) {
|
|
icsk->icsk_ack.quick = 0;
|
|
/* Leaving quickack mode we deflate ATO. */
|
|
icsk->icsk_ack.ato = TCP_ATO_MIN;
|
|
} else
|
|
icsk->icsk_ack.quick -= pkts;
|
|
}
|
|
}
|
|
|
|
#define TCP_ECN_OK 1
|
|
#define TCP_ECN_QUEUE_CWR 2
|
|
#define TCP_ECN_DEMAND_CWR 4
|
|
#define TCP_ECN_SEEN 8
|
|
|
|
enum tcp_tw_status {
|
|
TCP_TW_SUCCESS = 0,
|
|
TCP_TW_RST = 1,
|
|
TCP_TW_ACK = 2,
|
|
TCP_TW_SYN = 3
|
|
};
|
|
|
|
|
|
enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
|
|
struct sk_buff *skb,
|
|
const struct tcphdr *th,
|
|
u32 *tw_isn);
|
|
struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req, bool fastopen,
|
|
bool *lost_race);
|
|
enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
|
|
struct sk_buff *skb);
|
|
void tcp_enter_loss(struct sock *sk);
|
|
void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
|
|
void tcp_clear_retrans(struct tcp_sock *tp);
|
|
void tcp_update_metrics(struct sock *sk);
|
|
void tcp_init_metrics(struct sock *sk);
|
|
void tcp_metrics_init(void);
|
|
bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
|
|
void __tcp_close(struct sock *sk, long timeout);
|
|
void tcp_close(struct sock *sk, long timeout);
|
|
void tcp_init_sock(struct sock *sk);
|
|
void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
|
|
__poll_t tcp_poll(struct file *file, struct socket *sock,
|
|
struct poll_table_struct *wait);
|
|
int do_tcp_getsockopt(struct sock *sk, int level,
|
|
int optname, sockptr_t optval, sockptr_t optlen);
|
|
int tcp_getsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, int __user *optlen);
|
|
bool tcp_bpf_bypass_getsockopt(int level, int optname);
|
|
int do_tcp_setsockopt(struct sock *sk, int level, int optname,
|
|
sockptr_t optval, unsigned int optlen);
|
|
int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
|
|
unsigned int optlen);
|
|
void tcp_set_keepalive(struct sock *sk, int val);
|
|
void tcp_syn_ack_timeout(const struct request_sock *req);
|
|
int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
|
|
int flags, int *addr_len);
|
|
int tcp_set_rcvlowat(struct sock *sk, int val);
|
|
int tcp_set_window_clamp(struct sock *sk, int val);
|
|
void tcp_update_recv_tstamps(struct sk_buff *skb,
|
|
struct scm_timestamping_internal *tss);
|
|
void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
|
|
struct scm_timestamping_internal *tss);
|
|
void tcp_data_ready(struct sock *sk);
|
|
#ifdef CONFIG_MMU
|
|
int tcp_mmap(struct file *file, struct socket *sock,
|
|
struct vm_area_struct *vma);
|
|
#endif
|
|
void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
|
|
struct tcp_options_received *opt_rx,
|
|
int estab, struct tcp_fastopen_cookie *foc);
|
|
|
|
/*
|
|
* BPF SKB-less helpers
|
|
*/
|
|
u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
|
|
struct tcphdr *th, u32 *cookie);
|
|
u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
|
|
struct tcphdr *th, u32 *cookie);
|
|
u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
|
|
u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
|
|
const struct tcp_request_sock_ops *af_ops,
|
|
struct sock *sk, struct tcphdr *th);
|
|
/*
|
|
* TCP v4 functions exported for the inet6 API
|
|
*/
|
|
|
|
void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_v4_mtu_reduced(struct sock *sk);
|
|
void tcp_req_err(struct sock *sk, u32 seq, bool abort);
|
|
void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
|
|
int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
|
|
struct sock *tcp_create_openreq_child(const struct sock *sk,
|
|
struct request_sock *req,
|
|
struct sk_buff *skb);
|
|
void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
|
|
struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req,
|
|
struct dst_entry *dst,
|
|
struct request_sock *req_unhash,
|
|
bool *own_req);
|
|
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
|
|
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
|
|
int tcp_connect(struct sock *sk);
|
|
enum tcp_synack_type {
|
|
TCP_SYNACK_NORMAL,
|
|
TCP_SYNACK_FASTOPEN,
|
|
TCP_SYNACK_COOKIE,
|
|
};
|
|
struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
|
|
struct request_sock *req,
|
|
struct tcp_fastopen_cookie *foc,
|
|
enum tcp_synack_type synack_type,
|
|
struct sk_buff *syn_skb);
|
|
int tcp_disconnect(struct sock *sk, int flags);
|
|
|
|
void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
|
|
int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
|
|
void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
|
|
|
|
/* From syncookies.c */
|
|
struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req,
|
|
struct dst_entry *dst);
|
|
int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
|
|
struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
|
|
struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
|
|
struct sock *sk, struct sk_buff *skb,
|
|
struct tcp_options_received *tcp_opt,
|
|
int mss, u32 tsoff);
|
|
|
|
#if IS_ENABLED(CONFIG_BPF)
|
|
struct bpf_tcp_req_attrs {
|
|
u32 rcv_tsval;
|
|
u32 rcv_tsecr;
|
|
u16 mss;
|
|
u8 rcv_wscale;
|
|
u8 snd_wscale;
|
|
u8 ecn_ok;
|
|
u8 wscale_ok;
|
|
u8 sack_ok;
|
|
u8 tstamp_ok;
|
|
u8 usec_ts_ok;
|
|
u8 reserved[3];
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_SYN_COOKIES
|
|
|
|
/* Syncookies use a monotonic timer which increments every 60 seconds.
|
|
* This counter is used both as a hash input and partially encoded into
|
|
* the cookie value. A cookie is only validated further if the delta
|
|
* between the current counter value and the encoded one is less than this,
|
|
* i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
|
|
* the counter advances immediately after a cookie is generated).
|
|
*/
|
|
#define MAX_SYNCOOKIE_AGE 2
|
|
#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
|
|
#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
|
|
|
|
/* syncookies: remember time of last synqueue overflow
|
|
* But do not dirty this field too often (once per second is enough)
|
|
* It is racy as we do not hold a lock, but race is very minor.
|
|
*/
|
|
static inline void tcp_synq_overflow(const struct sock *sk)
|
|
{
|
|
unsigned int last_overflow;
|
|
unsigned int now = jiffies;
|
|
|
|
if (sk->sk_reuseport) {
|
|
struct sock_reuseport *reuse;
|
|
|
|
reuse = rcu_dereference(sk->sk_reuseport_cb);
|
|
if (likely(reuse)) {
|
|
last_overflow = READ_ONCE(reuse->synq_overflow_ts);
|
|
if (!time_between32(now, last_overflow,
|
|
last_overflow + HZ))
|
|
WRITE_ONCE(reuse->synq_overflow_ts, now);
|
|
return;
|
|
}
|
|
}
|
|
|
|
last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
|
|
if (!time_between32(now, last_overflow, last_overflow + HZ))
|
|
WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
|
|
}
|
|
|
|
/* syncookies: no recent synqueue overflow on this listening socket? */
|
|
static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
|
|
{
|
|
unsigned int last_overflow;
|
|
unsigned int now = jiffies;
|
|
|
|
if (sk->sk_reuseport) {
|
|
struct sock_reuseport *reuse;
|
|
|
|
reuse = rcu_dereference(sk->sk_reuseport_cb);
|
|
if (likely(reuse)) {
|
|
last_overflow = READ_ONCE(reuse->synq_overflow_ts);
|
|
return !time_between32(now, last_overflow - HZ,
|
|
last_overflow +
|
|
TCP_SYNCOOKIE_VALID);
|
|
}
|
|
}
|
|
|
|
last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
|
|
|
|
/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
|
|
* then we're under synflood. However, we have to use
|
|
* 'last_overflow - HZ' as lower bound. That's because a concurrent
|
|
* tcp_synq_overflow() could update .ts_recent_stamp after we read
|
|
* jiffies but before we store .ts_recent_stamp into last_overflow,
|
|
* which could lead to rejecting a valid syncookie.
|
|
*/
|
|
return !time_between32(now, last_overflow - HZ,
|
|
last_overflow + TCP_SYNCOOKIE_VALID);
|
|
}
|
|
|
|
static inline u32 tcp_cookie_time(void)
|
|
{
|
|
u64 val = get_jiffies_64();
|
|
|
|
do_div(val, TCP_SYNCOOKIE_PERIOD);
|
|
return val;
|
|
}
|
|
|
|
/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
|
|
static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
|
|
{
|
|
if (usec_ts)
|
|
return div_u64(val, NSEC_PER_USEC);
|
|
|
|
return div_u64(val, NSEC_PER_MSEC);
|
|
}
|
|
|
|
u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
|
|
u16 *mssp);
|
|
__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
|
|
u64 cookie_init_timestamp(struct request_sock *req, u64 now);
|
|
bool cookie_timestamp_decode(const struct net *net,
|
|
struct tcp_options_received *opt);
|
|
|
|
static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
|
|
{
|
|
return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
|
|
dst_feature(dst, RTAX_FEATURE_ECN);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_BPF)
|
|
static inline bool cookie_bpf_ok(struct sk_buff *skb)
|
|
{
|
|
return skb->sk;
|
|
}
|
|
|
|
struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
|
|
#else
|
|
static inline bool cookie_bpf_ok(struct sk_buff *skb)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/* From net/ipv6/syncookies.c */
|
|
int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
|
|
struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
|
|
|
|
u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
|
|
const struct tcphdr *th, u16 *mssp);
|
|
__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
|
|
#endif
|
|
/* tcp_output.c */
|
|
|
|
void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
|
|
void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
|
|
int nonagle);
|
|
int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
|
|
int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
|
|
void tcp_retransmit_timer(struct sock *sk);
|
|
void tcp_xmit_retransmit_queue(struct sock *);
|
|
void tcp_simple_retransmit(struct sock *);
|
|
void tcp_enter_recovery(struct sock *sk, bool ece_ack);
|
|
int tcp_trim_head(struct sock *, struct sk_buff *, u32);
|
|
enum tcp_queue {
|
|
TCP_FRAG_IN_WRITE_QUEUE,
|
|
TCP_FRAG_IN_RTX_QUEUE,
|
|
};
|
|
int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
|
|
struct sk_buff *skb, u32 len,
|
|
unsigned int mss_now, gfp_t gfp);
|
|
|
|
void tcp_send_probe0(struct sock *);
|
|
int tcp_write_wakeup(struct sock *, int mib);
|
|
void tcp_send_fin(struct sock *sk);
|
|
void tcp_send_active_reset(struct sock *sk, gfp_t priority,
|
|
enum sk_rst_reason reason);
|
|
int tcp_send_synack(struct sock *);
|
|
void tcp_push_one(struct sock *, unsigned int mss_now);
|
|
void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
|
|
void tcp_send_ack(struct sock *sk);
|
|
void tcp_send_delayed_ack(struct sock *sk);
|
|
void tcp_send_loss_probe(struct sock *sk);
|
|
bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
|
|
void tcp_skb_collapse_tstamp(struct sk_buff *skb,
|
|
const struct sk_buff *next_skb);
|
|
|
|
/* tcp_input.c */
|
|
void tcp_rearm_rto(struct sock *sk);
|
|
void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
|
|
void tcp_done_with_error(struct sock *sk, int err);
|
|
void tcp_reset(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_fin(struct sock *sk);
|
|
void tcp_check_space(struct sock *sk);
|
|
void tcp_sack_compress_send_ack(struct sock *sk);
|
|
|
|
/* tcp_timer.c */
|
|
void tcp_init_xmit_timers(struct sock *);
|
|
static inline void tcp_clear_xmit_timers(struct sock *sk)
|
|
{
|
|
if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
|
|
__sock_put(sk);
|
|
|
|
if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
|
|
__sock_put(sk);
|
|
|
|
inet_csk_clear_xmit_timers(sk);
|
|
}
|
|
|
|
unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
|
|
unsigned int tcp_current_mss(struct sock *sk);
|
|
u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
|
|
|
|
/* Bound MSS / TSO packet size with the half of the window */
|
|
static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
|
|
{
|
|
int cutoff;
|
|
|
|
/* When peer uses tiny windows, there is no use in packetizing
|
|
* to sub-MSS pieces for the sake of SWS or making sure there
|
|
* are enough packets in the pipe for fast recovery.
|
|
*
|
|
* On the other hand, for extremely large MSS devices, handling
|
|
* smaller than MSS windows in this way does make sense.
|
|
*/
|
|
if (tp->max_window > TCP_MSS_DEFAULT)
|
|
cutoff = (tp->max_window >> 1);
|
|
else
|
|
cutoff = tp->max_window;
|
|
|
|
if (cutoff && pktsize > cutoff)
|
|
return max_t(int, cutoff, 68U - tp->tcp_header_len);
|
|
else
|
|
return pktsize;
|
|
}
|
|
|
|
/* tcp.c */
|
|
void tcp_get_info(struct sock *, struct tcp_info *);
|
|
|
|
/* Read 'sendfile()'-style from a TCP socket */
|
|
int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
|
|
sk_read_actor_t recv_actor);
|
|
int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
|
|
struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
|
|
void tcp_read_done(struct sock *sk, size_t len);
|
|
|
|
void tcp_initialize_rcv_mss(struct sock *sk);
|
|
|
|
int tcp_mtu_to_mss(struct sock *sk, int pmtu);
|
|
int tcp_mss_to_mtu(struct sock *sk, int mss);
|
|
void tcp_mtup_init(struct sock *sk);
|
|
|
|
static inline void tcp_bound_rto(struct sock *sk)
|
|
{
|
|
if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
|
|
inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
|
|
}
|
|
|
|
static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
|
|
{
|
|
return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
|
|
}
|
|
|
|
static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
|
|
{
|
|
/* mptcp hooks are only on the slow path */
|
|
if (sk_is_mptcp((struct sock *)tp))
|
|
return;
|
|
|
|
tp->pred_flags = htonl((tp->tcp_header_len << 26) |
|
|
ntohl(TCP_FLAG_ACK) |
|
|
snd_wnd);
|
|
}
|
|
|
|
static inline void tcp_fast_path_on(struct tcp_sock *tp)
|
|
{
|
|
__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
|
|
}
|
|
|
|
static inline void tcp_fast_path_check(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
|
|
tp->rcv_wnd &&
|
|
atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
|
|
!tp->urg_data)
|
|
tcp_fast_path_on(tp);
|
|
}
|
|
|
|
u32 tcp_delack_max(const struct sock *sk);
|
|
|
|
/* Compute the actual rto_min value */
|
|
static inline u32 tcp_rto_min(const struct sock *sk)
|
|
{
|
|
const struct dst_entry *dst = __sk_dst_get(sk);
|
|
u32 rto_min = inet_csk(sk)->icsk_rto_min;
|
|
|
|
if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
|
|
rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
|
|
return rto_min;
|
|
}
|
|
|
|
static inline u32 tcp_rto_min_us(const struct sock *sk)
|
|
{
|
|
return jiffies_to_usecs(tcp_rto_min(sk));
|
|
}
|
|
|
|
static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
|
|
{
|
|
return dst_metric_locked(dst, RTAX_CC_ALGO);
|
|
}
|
|
|
|
/* Minimum RTT in usec. ~0 means not available. */
|
|
static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
|
|
{
|
|
return minmax_get(&tp->rtt_min);
|
|
}
|
|
|
|
/* Compute the actual receive window we are currently advertising.
|
|
* Rcv_nxt can be after the window if our peer push more data
|
|
* than the offered window.
|
|
*/
|
|
static inline u32 tcp_receive_window(const struct tcp_sock *tp)
|
|
{
|
|
s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
|
|
|
|
if (win < 0)
|
|
win = 0;
|
|
return (u32) win;
|
|
}
|
|
|
|
/* Choose a new window, without checks for shrinking, and without
|
|
* scaling applied to the result. The caller does these things
|
|
* if necessary. This is a "raw" window selection.
|
|
*/
|
|
u32 __tcp_select_window(struct sock *sk);
|
|
|
|
void tcp_send_window_probe(struct sock *sk);
|
|
|
|
/* TCP uses 32bit jiffies to save some space.
|
|
* Note that this is different from tcp_time_stamp, which
|
|
* historically has been the same until linux-4.13.
|
|
*/
|
|
#define tcp_jiffies32 ((u32)jiffies)
|
|
|
|
/*
|
|
* Deliver a 32bit value for TCP timestamp option (RFC 7323)
|
|
* It is no longer tied to jiffies, but to 1 ms clock.
|
|
* Note: double check if you want to use tcp_jiffies32 instead of this.
|
|
*/
|
|
#define TCP_TS_HZ 1000
|
|
|
|
static inline u64 tcp_clock_ns(void)
|
|
{
|
|
return ktime_get_ns();
|
|
}
|
|
|
|
static inline u64 tcp_clock_us(void)
|
|
{
|
|
return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
|
|
}
|
|
|
|
static inline u64 tcp_clock_ms(void)
|
|
{
|
|
return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
|
|
}
|
|
|
|
/* TCP Timestamp included in TS option (RFC 1323) can either use ms
|
|
* or usec resolution. Each socket carries a flag to select one or other
|
|
* resolution, as the route attribute could change anytime.
|
|
* Each flow must stick to initial resolution.
|
|
*/
|
|
static inline u32 tcp_clock_ts(bool usec_ts)
|
|
{
|
|
return usec_ts ? tcp_clock_us() : tcp_clock_ms();
|
|
}
|
|
|
|
static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
|
|
{
|
|
return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
|
|
}
|
|
|
|
static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
|
|
{
|
|
if (tp->tcp_usec_ts)
|
|
return tp->tcp_mstamp;
|
|
return tcp_time_stamp_ms(tp);
|
|
}
|
|
|
|
void tcp_mstamp_refresh(struct tcp_sock *tp);
|
|
|
|
static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
|
|
{
|
|
return max_t(s64, t1 - t0, 0);
|
|
}
|
|
|
|
/* provide the departure time in us unit */
|
|
static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
|
|
{
|
|
return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
|
|
}
|
|
|
|
/* Provide skb TSval in usec or ms unit */
|
|
static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
|
|
{
|
|
if (usec_ts)
|
|
return tcp_skb_timestamp_us(skb);
|
|
|
|
return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
|
|
}
|
|
|
|
static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
|
|
{
|
|
return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
|
|
}
|
|
|
|
static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
|
|
{
|
|
return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
|
|
}
|
|
|
|
#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
|
|
|
|
#define TCPHDR_FIN 0x01
|
|
#define TCPHDR_SYN 0x02
|
|
#define TCPHDR_RST 0x04
|
|
#define TCPHDR_PSH 0x08
|
|
#define TCPHDR_ACK 0x10
|
|
#define TCPHDR_URG 0x20
|
|
#define TCPHDR_ECE 0x40
|
|
#define TCPHDR_CWR 0x80
|
|
|
|
#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
|
|
|
|
/* State flags for sacked in struct tcp_skb_cb */
|
|
enum tcp_skb_cb_sacked_flags {
|
|
TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */
|
|
TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */
|
|
TCPCB_LOST = (1 << 2), /* SKB is lost */
|
|
TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
|
|
TCPCB_LOST), /* All tag bits */
|
|
TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */
|
|
TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */
|
|
TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
|
|
TCPCB_REPAIRED),
|
|
};
|
|
|
|
/* This is what the send packet queuing engine uses to pass
|
|
* TCP per-packet control information to the transmission code.
|
|
* We also store the host-order sequence numbers in here too.
|
|
* This is 44 bytes if IPV6 is enabled.
|
|
* If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
|
|
*/
|
|
struct tcp_skb_cb {
|
|
__u32 seq; /* Starting sequence number */
|
|
__u32 end_seq; /* SEQ + FIN + SYN + datalen */
|
|
union {
|
|
/* Note :
|
|
* tcp_gso_segs/size are used in write queue only,
|
|
* cf tcp_skb_pcount()/tcp_skb_mss()
|
|
*/
|
|
struct {
|
|
u16 tcp_gso_segs;
|
|
u16 tcp_gso_size;
|
|
};
|
|
};
|
|
__u8 tcp_flags; /* TCP header flags. (tcp[13]) */
|
|
|
|
__u8 sacked; /* State flags for SACK. */
|
|
__u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
|
|
__u8 txstamp_ack:1, /* Record TX timestamp for ack? */
|
|
eor:1, /* Is skb MSG_EOR marked? */
|
|
has_rxtstamp:1, /* SKB has a RX timestamp */
|
|
unused:5;
|
|
__u32 ack_seq; /* Sequence number ACK'd */
|
|
union {
|
|
struct {
|
|
#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
|
|
/* There is space for up to 24 bytes */
|
|
__u32 is_app_limited:1, /* cwnd not fully used? */
|
|
delivered_ce:20,
|
|
unused:11;
|
|
/* pkts S/ACKed so far upon tx of skb, incl retrans: */
|
|
__u32 delivered;
|
|
/* start of send pipeline phase */
|
|
u64 first_tx_mstamp;
|
|
/* when we reached the "delivered" count */
|
|
u64 delivered_mstamp;
|
|
} tx; /* only used for outgoing skbs */
|
|
union {
|
|
struct inet_skb_parm h4;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
struct inet6_skb_parm h6;
|
|
#endif
|
|
} header; /* For incoming skbs */
|
|
};
|
|
};
|
|
|
|
#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
extern const struct inet_connection_sock_af_ops ipv4_specific;
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
/* This is the variant of inet6_iif() that must be used by TCP,
|
|
* as TCP moves IP6CB into a different location in skb->cb[]
|
|
*/
|
|
static inline int tcp_v6_iif(const struct sk_buff *skb)
|
|
{
|
|
return TCP_SKB_CB(skb)->header.h6.iif;
|
|
}
|
|
|
|
static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
|
|
{
|
|
bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
|
|
|
|
return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
|
|
}
|
|
|
|
/* TCP_SKB_CB reference means this can not be used from early demux */
|
|
static inline int tcp_v6_sdif(const struct sk_buff *skb)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
|
|
if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
|
|
return TCP_SKB_CB(skb)->header.h6.iif;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
extern const struct inet_connection_sock_af_ops ipv6_specific;
|
|
|
|
INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
|
|
INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
|
|
void tcp_v6_early_demux(struct sk_buff *skb);
|
|
|
|
#endif
|
|
|
|
/* TCP_SKB_CB reference means this can not be used from early demux */
|
|
static inline int tcp_v4_sdif(struct sk_buff *skb)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
|
|
if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
|
|
return TCP_SKB_CB(skb)->header.h4.iif;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Due to TSO, an SKB can be composed of multiple actual
|
|
* packets. To keep these tracked properly, we use this.
|
|
*/
|
|
static inline int tcp_skb_pcount(const struct sk_buff *skb)
|
|
{
|
|
return TCP_SKB_CB(skb)->tcp_gso_segs;
|
|
}
|
|
|
|
static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
|
|
{
|
|
TCP_SKB_CB(skb)->tcp_gso_segs = segs;
|
|
}
|
|
|
|
static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
|
|
{
|
|
TCP_SKB_CB(skb)->tcp_gso_segs += segs;
|
|
}
|
|
|
|
/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
|
|
static inline int tcp_skb_mss(const struct sk_buff *skb)
|
|
{
|
|
return TCP_SKB_CB(skb)->tcp_gso_size;
|
|
}
|
|
|
|
static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
|
|
{
|
|
return likely(!TCP_SKB_CB(skb)->eor);
|
|
}
|
|
|
|
static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
|
|
const struct sk_buff *from)
|
|
{
|
|
/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
|
|
return likely(tcp_skb_can_collapse_to(to) &&
|
|
mptcp_skb_can_collapse(to, from) &&
|
|
skb_pure_zcopy_same(to, from) &&
|
|
skb_frags_readable(to) == skb_frags_readable(from));
|
|
}
|
|
|
|
static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
|
|
const struct sk_buff *from)
|
|
{
|
|
return likely(mptcp_skb_can_collapse(to, from) &&
|
|
!skb_cmp_decrypted(to, from));
|
|
}
|
|
|
|
/* Events passed to congestion control interface */
|
|
enum tcp_ca_event {
|
|
CA_EVENT_TX_START, /* first transmit when no packets in flight */
|
|
CA_EVENT_CWND_RESTART, /* congestion window restart */
|
|
CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
|
|
CA_EVENT_LOSS, /* loss timeout */
|
|
CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
|
|
CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
|
|
};
|
|
|
|
/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
|
|
enum tcp_ca_ack_event_flags {
|
|
CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
|
|
CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
|
|
CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
|
|
};
|
|
|
|
/*
|
|
* Interface for adding new TCP congestion control handlers
|
|
*/
|
|
#define TCP_CA_NAME_MAX 16
|
|
#define TCP_CA_MAX 128
|
|
#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
|
|
|
|
#define TCP_CA_UNSPEC 0
|
|
|
|
/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
|
|
#define TCP_CONG_NON_RESTRICTED 0x1
|
|
/* Requires ECN/ECT set on all packets */
|
|
#define TCP_CONG_NEEDS_ECN 0x2
|
|
#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
|
|
|
|
union tcp_cc_info;
|
|
|
|
struct ack_sample {
|
|
u32 pkts_acked;
|
|
s32 rtt_us;
|
|
u32 in_flight;
|
|
};
|
|
|
|
/* A rate sample measures the number of (original/retransmitted) data
|
|
* packets delivered "delivered" over an interval of time "interval_us".
|
|
* The tcp_rate.c code fills in the rate sample, and congestion
|
|
* control modules that define a cong_control function to run at the end
|
|
* of ACK processing can optionally chose to consult this sample when
|
|
* setting cwnd and pacing rate.
|
|
* A sample is invalid if "delivered" or "interval_us" is negative.
|
|
*/
|
|
struct rate_sample {
|
|
u64 prior_mstamp; /* starting timestamp for interval */
|
|
u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
|
|
u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
|
|
s32 delivered; /* number of packets delivered over interval */
|
|
s32 delivered_ce; /* number of packets delivered w/ CE marks*/
|
|
long interval_us; /* time for tp->delivered to incr "delivered" */
|
|
u32 snd_interval_us; /* snd interval for delivered packets */
|
|
u32 rcv_interval_us; /* rcv interval for delivered packets */
|
|
long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
|
|
int losses; /* number of packets marked lost upon ACK */
|
|
u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
|
|
u32 prior_in_flight; /* in flight before this ACK */
|
|
u32 last_end_seq; /* end_seq of most recently ACKed packet */
|
|
bool is_app_limited; /* is sample from packet with bubble in pipe? */
|
|
bool is_retrans; /* is sample from retransmission? */
|
|
bool is_ack_delayed; /* is this (likely) a delayed ACK? */
|
|
};
|
|
|
|
struct tcp_congestion_ops {
|
|
/* fast path fields are put first to fill one cache line */
|
|
|
|
/* return slow start threshold (required) */
|
|
u32 (*ssthresh)(struct sock *sk);
|
|
|
|
/* do new cwnd calculation (required) */
|
|
void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
|
|
|
|
/* call before changing ca_state (optional) */
|
|
void (*set_state)(struct sock *sk, u8 new_state);
|
|
|
|
/* call when cwnd event occurs (optional) */
|
|
void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
|
|
|
|
/* call when ack arrives (optional) */
|
|
void (*in_ack_event)(struct sock *sk, u32 flags);
|
|
|
|
/* hook for packet ack accounting (optional) */
|
|
void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
|
|
|
|
/* override sysctl_tcp_min_tso_segs */
|
|
u32 (*min_tso_segs)(struct sock *sk);
|
|
|
|
/* call when packets are delivered to update cwnd and pacing rate,
|
|
* after all the ca_state processing. (optional)
|
|
*/
|
|
void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
|
|
|
|
|
|
/* new value of cwnd after loss (required) */
|
|
u32 (*undo_cwnd)(struct sock *sk);
|
|
/* returns the multiplier used in tcp_sndbuf_expand (optional) */
|
|
u32 (*sndbuf_expand)(struct sock *sk);
|
|
|
|
/* control/slow paths put last */
|
|
/* get info for inet_diag (optional) */
|
|
size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
|
|
union tcp_cc_info *info);
|
|
|
|
char name[TCP_CA_NAME_MAX];
|
|
struct module *owner;
|
|
struct list_head list;
|
|
u32 key;
|
|
u32 flags;
|
|
|
|
/* initialize private data (optional) */
|
|
void (*init)(struct sock *sk);
|
|
/* cleanup private data (optional) */
|
|
void (*release)(struct sock *sk);
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
int tcp_register_congestion_control(struct tcp_congestion_ops *type);
|
|
void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
|
|
int tcp_update_congestion_control(struct tcp_congestion_ops *type,
|
|
struct tcp_congestion_ops *old_type);
|
|
int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
|
|
|
|
void tcp_assign_congestion_control(struct sock *sk);
|
|
void tcp_init_congestion_control(struct sock *sk);
|
|
void tcp_cleanup_congestion_control(struct sock *sk);
|
|
int tcp_set_default_congestion_control(struct net *net, const char *name);
|
|
void tcp_get_default_congestion_control(struct net *net, char *name);
|
|
void tcp_get_available_congestion_control(char *buf, size_t len);
|
|
void tcp_get_allowed_congestion_control(char *buf, size_t len);
|
|
int tcp_set_allowed_congestion_control(char *allowed);
|
|
int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
|
|
bool cap_net_admin);
|
|
u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
|
|
void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
|
|
|
|
u32 tcp_reno_ssthresh(struct sock *sk);
|
|
u32 tcp_reno_undo_cwnd(struct sock *sk);
|
|
void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
|
|
extern struct tcp_congestion_ops tcp_reno;
|
|
|
|
struct tcp_congestion_ops *tcp_ca_find(const char *name);
|
|
struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
|
|
u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
|
|
#ifdef CONFIG_INET
|
|
char *tcp_ca_get_name_by_key(u32 key, char *buffer);
|
|
#else
|
|
static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static inline bool tcp_ca_needs_ecn(const struct sock *sk)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
|
|
}
|
|
|
|
static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
if (icsk->icsk_ca_ops->cwnd_event)
|
|
icsk->icsk_ca_ops->cwnd_event(sk, event);
|
|
}
|
|
|
|
/* From tcp_cong.c */
|
|
void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
|
|
|
|
/* From tcp_rate.c */
|
|
void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
|
|
struct rate_sample *rs);
|
|
void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
|
|
bool is_sack_reneg, struct rate_sample *rs);
|
|
void tcp_rate_check_app_limited(struct sock *sk);
|
|
|
|
static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
|
|
{
|
|
return t1 > t2 || (t1 == t2 && after(seq1, seq2));
|
|
}
|
|
|
|
/* These functions determine how the current flow behaves in respect of SACK
|
|
* handling. SACK is negotiated with the peer, and therefore it can vary
|
|
* between different flows.
|
|
*
|
|
* tcp_is_sack - SACK enabled
|
|
* tcp_is_reno - No SACK
|
|
*/
|
|
static inline int tcp_is_sack(const struct tcp_sock *tp)
|
|
{
|
|
return likely(tp->rx_opt.sack_ok);
|
|
}
|
|
|
|
static inline bool tcp_is_reno(const struct tcp_sock *tp)
|
|
{
|
|
return !tcp_is_sack(tp);
|
|
}
|
|
|
|
static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
|
|
{
|
|
return tp->sacked_out + tp->lost_out;
|
|
}
|
|
|
|
/* This determines how many packets are "in the network" to the best
|
|
* of our knowledge. In many cases it is conservative, but where
|
|
* detailed information is available from the receiver (via SACK
|
|
* blocks etc.) we can make more aggressive calculations.
|
|
*
|
|
* Use this for decisions involving congestion control, use just
|
|
* tp->packets_out to determine if the send queue is empty or not.
|
|
*
|
|
* Read this equation as:
|
|
*
|
|
* "Packets sent once on transmission queue" MINUS
|
|
* "Packets left network, but not honestly ACKed yet" PLUS
|
|
* "Packets fast retransmitted"
|
|
*/
|
|
static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
|
|
{
|
|
return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
|
|
}
|
|
|
|
#define TCP_INFINITE_SSTHRESH 0x7fffffff
|
|
|
|
static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
|
|
{
|
|
return tp->snd_cwnd;
|
|
}
|
|
|
|
static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
|
|
{
|
|
WARN_ON_ONCE((int)val <= 0);
|
|
tp->snd_cwnd = val;
|
|
}
|
|
|
|
static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
|
|
{
|
|
return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
|
|
}
|
|
|
|
static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
|
|
{
|
|
return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
|
|
}
|
|
|
|
static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
|
|
{
|
|
return (TCPF_CA_CWR | TCPF_CA_Recovery) &
|
|
(1 << inet_csk(sk)->icsk_ca_state);
|
|
}
|
|
|
|
/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
|
|
* The exception is cwnd reduction phase, when cwnd is decreasing towards
|
|
* ssthresh.
|
|
*/
|
|
static inline __u32 tcp_current_ssthresh(const struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (tcp_in_cwnd_reduction(sk))
|
|
return tp->snd_ssthresh;
|
|
else
|
|
return max(tp->snd_ssthresh,
|
|
((tcp_snd_cwnd(tp) >> 1) +
|
|
(tcp_snd_cwnd(tp) >> 2)));
|
|
}
|
|
|
|
/* Use define here intentionally to get WARN_ON location shown at the caller */
|
|
#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
|
|
|
|
void tcp_enter_cwr(struct sock *sk);
|
|
__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
|
|
|
|
/* The maximum number of MSS of available cwnd for which TSO defers
|
|
* sending if not using sysctl_tcp_tso_win_divisor.
|
|
*/
|
|
static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
/* Returns end sequence number of the receiver's advertised window */
|
|
static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
|
|
{
|
|
return tp->snd_una + tp->snd_wnd;
|
|
}
|
|
|
|
/* We follow the spirit of RFC2861 to validate cwnd but implement a more
|
|
* flexible approach. The RFC suggests cwnd should not be raised unless
|
|
* it was fully used previously. And that's exactly what we do in
|
|
* congestion avoidance mode. But in slow start we allow cwnd to grow
|
|
* as long as the application has used half the cwnd.
|
|
* Example :
|
|
* cwnd is 10 (IW10), but application sends 9 frames.
|
|
* We allow cwnd to reach 18 when all frames are ACKed.
|
|
* This check is safe because it's as aggressive as slow start which already
|
|
* risks 100% overshoot. The advantage is that we discourage application to
|
|
* either send more filler packets or data to artificially blow up the cwnd
|
|
* usage, and allow application-limited process to probe bw more aggressively.
|
|
*/
|
|
static inline bool tcp_is_cwnd_limited(const struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (tp->is_cwnd_limited)
|
|
return true;
|
|
|
|
/* If in slow start, ensure cwnd grows to twice what was ACKed. */
|
|
if (tcp_in_slow_start(tp))
|
|
return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* BBR congestion control needs pacing.
|
|
* Same remark for SO_MAX_PACING_RATE.
|
|
* sch_fq packet scheduler is efficiently handling pacing,
|
|
* but is not always installed/used.
|
|
* Return true if TCP stack should pace packets itself.
|
|
*/
|
|
static inline bool tcp_needs_internal_pacing(const struct sock *sk)
|
|
{
|
|
return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
|
|
}
|
|
|
|
/* Estimates in how many jiffies next packet for this flow can be sent.
|
|
* Scheduling a retransmit timer too early would be silly.
|
|
*/
|
|
static inline unsigned long tcp_pacing_delay(const struct sock *sk)
|
|
{
|
|
s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
|
|
|
|
return delay > 0 ? nsecs_to_jiffies(delay) : 0;
|
|
}
|
|
|
|
static inline void tcp_reset_xmit_timer(struct sock *sk,
|
|
const int what,
|
|
unsigned long when,
|
|
const unsigned long max_when)
|
|
{
|
|
inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
|
|
max_when);
|
|
}
|
|
|
|
/* Something is really bad, we could not queue an additional packet,
|
|
* because qdisc is full or receiver sent a 0 window, or we are paced.
|
|
* We do not want to add fuel to the fire, or abort too early,
|
|
* so make sure the timer we arm now is at least 200ms in the future,
|
|
* regardless of current icsk_rto value (as it could be ~2ms)
|
|
*/
|
|
static inline unsigned long tcp_probe0_base(const struct sock *sk)
|
|
{
|
|
return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
|
|
}
|
|
|
|
/* Variant of inet_csk_rto_backoff() used for zero window probes */
|
|
static inline unsigned long tcp_probe0_when(const struct sock *sk,
|
|
unsigned long max_when)
|
|
{
|
|
u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
|
|
inet_csk(sk)->icsk_backoff);
|
|
u64 when = (u64)tcp_probe0_base(sk) << backoff;
|
|
|
|
return (unsigned long)min_t(u64, when, max_when);
|
|
}
|
|
|
|
static inline void tcp_check_probe_timer(struct sock *sk)
|
|
{
|
|
if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
|
|
tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
|
|
tcp_probe0_base(sk), TCP_RTO_MAX);
|
|
}
|
|
|
|
static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
|
|
{
|
|
tp->snd_wl1 = seq;
|
|
}
|
|
|
|
static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
|
|
{
|
|
tp->snd_wl1 = seq;
|
|
}
|
|
|
|
/*
|
|
* Calculate(/check) TCP checksum
|
|
*/
|
|
static inline __sum16 tcp_v4_check(int len, __be32 saddr,
|
|
__be32 daddr, __wsum base)
|
|
{
|
|
return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
|
|
}
|
|
|
|
static inline bool tcp_checksum_complete(struct sk_buff *skb)
|
|
{
|
|
return !skb_csum_unnecessary(skb) &&
|
|
__skb_checksum_complete(skb);
|
|
}
|
|
|
|
bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
|
|
enum skb_drop_reason *reason);
|
|
|
|
|
|
int tcp_filter(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_set_state(struct sock *sk, int state);
|
|
void tcp_done(struct sock *sk);
|
|
int tcp_abort(struct sock *sk, int err);
|
|
|
|
static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
|
|
{
|
|
rx_opt->dsack = 0;
|
|
rx_opt->num_sacks = 0;
|
|
}
|
|
|
|
void tcp_cwnd_restart(struct sock *sk, s32 delta);
|
|
|
|
static inline void tcp_slow_start_after_idle_check(struct sock *sk)
|
|
{
|
|
const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
s32 delta;
|
|
|
|
if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
|
|
tp->packets_out || ca_ops->cong_control)
|
|
return;
|
|
delta = tcp_jiffies32 - tp->lsndtime;
|
|
if (delta > inet_csk(sk)->icsk_rto)
|
|
tcp_cwnd_restart(sk, delta);
|
|
}
|
|
|
|
/* Determine a window scaling and initial window to offer. */
|
|
void tcp_select_initial_window(const struct sock *sk, int __space,
|
|
__u32 mss, __u32 *rcv_wnd,
|
|
__u32 *window_clamp, int wscale_ok,
|
|
__u8 *rcv_wscale, __u32 init_rcv_wnd);
|
|
|
|
static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
|
|
{
|
|
s64 scaled_space = (s64)space * scaling_ratio;
|
|
|
|
return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
|
|
}
|
|
|
|
static inline int tcp_win_from_space(const struct sock *sk, int space)
|
|
{
|
|
return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
|
|
}
|
|
|
|
/* inverse of __tcp_win_from_space() */
|
|
static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
|
|
{
|
|
u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
|
|
|
|
do_div(val, scaling_ratio);
|
|
return val;
|
|
}
|
|
|
|
static inline int tcp_space_from_win(const struct sock *sk, int win)
|
|
{
|
|
return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
|
|
}
|
|
|
|
/* Assume a 50% default for skb->len/skb->truesize ratio.
|
|
* This may be adjusted later in tcp_measure_rcv_mss().
|
|
*/
|
|
#define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
|
|
|
|
static inline void tcp_scaling_ratio_init(struct sock *sk)
|
|
{
|
|
tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
|
|
}
|
|
|
|
/* Note: caller must be prepared to deal with negative returns */
|
|
static inline int tcp_space(const struct sock *sk)
|
|
{
|
|
return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
|
|
READ_ONCE(sk->sk_backlog.len) -
|
|
atomic_read(&sk->sk_rmem_alloc));
|
|
}
|
|
|
|
static inline int tcp_full_space(const struct sock *sk)
|
|
{
|
|
return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
|
|
}
|
|
|
|
static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
|
|
{
|
|
int unused_mem = sk_unused_reserved_mem(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
|
|
if (unused_mem)
|
|
tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
|
|
tcp_win_from_space(sk, unused_mem));
|
|
}
|
|
|
|
static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
|
|
{
|
|
__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
|
|
}
|
|
|
|
void tcp_cleanup_rbuf(struct sock *sk, int copied);
|
|
void __tcp_cleanup_rbuf(struct sock *sk, int copied);
|
|
|
|
|
|
/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
|
|
* If 87.5 % (7/8) of the space has been consumed, we want to override
|
|
* SO_RCVLOWAT constraint, since we are receiving skbs with too small
|
|
* len/truesize ratio.
|
|
*/
|
|
static inline bool tcp_rmem_pressure(const struct sock *sk)
|
|
{
|
|
int rcvbuf, threshold;
|
|
|
|
if (tcp_under_memory_pressure(sk))
|
|
return true;
|
|
|
|
rcvbuf = READ_ONCE(sk->sk_rcvbuf);
|
|
threshold = rcvbuf - (rcvbuf >> 3);
|
|
|
|
return atomic_read(&sk->sk_rmem_alloc) > threshold;
|
|
}
|
|
|
|
static inline bool tcp_epollin_ready(const struct sock *sk, int target)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
|
|
|
|
if (avail <= 0)
|
|
return false;
|
|
|
|
return (avail >= target) || tcp_rmem_pressure(sk) ||
|
|
(tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
|
|
}
|
|
|
|
extern void tcp_openreq_init_rwin(struct request_sock *req,
|
|
const struct sock *sk_listener,
|
|
const struct dst_entry *dst);
|
|
|
|
void tcp_enter_memory_pressure(struct sock *sk);
|
|
void tcp_leave_memory_pressure(struct sock *sk);
|
|
|
|
static inline int keepalive_intvl_when(const struct tcp_sock *tp)
|
|
{
|
|
struct net *net = sock_net((struct sock *)tp);
|
|
int val;
|
|
|
|
/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
|
|
* and do_tcp_setsockopt().
|
|
*/
|
|
val = READ_ONCE(tp->keepalive_intvl);
|
|
|
|
return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
|
|
}
|
|
|
|
static inline int keepalive_time_when(const struct tcp_sock *tp)
|
|
{
|
|
struct net *net = sock_net((struct sock *)tp);
|
|
int val;
|
|
|
|
/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
|
|
val = READ_ONCE(tp->keepalive_time);
|
|
|
|
return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
|
|
}
|
|
|
|
static inline int keepalive_probes(const struct tcp_sock *tp)
|
|
{
|
|
struct net *net = sock_net((struct sock *)tp);
|
|
int val;
|
|
|
|
/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
|
|
* and do_tcp_setsockopt().
|
|
*/
|
|
val = READ_ONCE(tp->keepalive_probes);
|
|
|
|
return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
|
|
}
|
|
|
|
static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
|
|
{
|
|
const struct inet_connection_sock *icsk = &tp->inet_conn;
|
|
|
|
return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
|
|
tcp_jiffies32 - tp->rcv_tstamp);
|
|
}
|
|
|
|
static inline int tcp_fin_time(const struct sock *sk)
|
|
{
|
|
int fin_timeout = tcp_sk(sk)->linger2 ? :
|
|
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
|
|
const int rto = inet_csk(sk)->icsk_rto;
|
|
|
|
if (fin_timeout < (rto << 2) - (rto >> 1))
|
|
fin_timeout = (rto << 2) - (rto >> 1);
|
|
|
|
return fin_timeout;
|
|
}
|
|
|
|
static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
|
|
int paws_win)
|
|
{
|
|
if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
|
|
return true;
|
|
if (unlikely(!time_before32(ktime_get_seconds(),
|
|
rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
|
|
return true;
|
|
/*
|
|
* Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
|
|
* then following tcp messages have valid values. Ignore 0 value,
|
|
* or else 'negative' tsval might forbid us to accept their packets.
|
|
*/
|
|
if (!rx_opt->ts_recent)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
|
|
int rst)
|
|
{
|
|
if (tcp_paws_check(rx_opt, 0))
|
|
return false;
|
|
|
|
/* RST segments are not recommended to carry timestamp,
|
|
and, if they do, it is recommended to ignore PAWS because
|
|
"their cleanup function should take precedence over timestamps."
|
|
Certainly, it is mistake. It is necessary to understand the reasons
|
|
of this constraint to relax it: if peer reboots, clock may go
|
|
out-of-sync and half-open connections will not be reset.
|
|
Actually, the problem would be not existing if all
|
|
the implementations followed draft about maintaining clock
|
|
via reboots. Linux-2.2 DOES NOT!
|
|
|
|
However, we can relax time bounds for RST segments to MSL.
|
|
*/
|
|
if (rst && !time_before32(ktime_get_seconds(),
|
|
rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
|
|
int mib_idx, u32 *last_oow_ack_time);
|
|
|
|
static inline void tcp_mib_init(struct net *net)
|
|
{
|
|
/* See RFC 2012 */
|
|
TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
|
|
TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
|
|
TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
|
|
TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
|
|
}
|
|
|
|
/* from STCP */
|
|
static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
|
|
{
|
|
tp->lost_skb_hint = NULL;
|
|
}
|
|
|
|
static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
|
|
{
|
|
tcp_clear_retrans_hints_partial(tp);
|
|
tp->retransmit_skb_hint = NULL;
|
|
}
|
|
|
|
#define tcp_md5_addr tcp_ao_addr
|
|
|
|
/* - key database */
|
|
struct tcp_md5sig_key {
|
|
struct hlist_node node;
|
|
u8 keylen;
|
|
u8 family; /* AF_INET or AF_INET6 */
|
|
u8 prefixlen;
|
|
u8 flags;
|
|
union tcp_md5_addr addr;
|
|
int l3index; /* set if key added with L3 scope */
|
|
u8 key[TCP_MD5SIG_MAXKEYLEN];
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
/* - sock block */
|
|
struct tcp_md5sig_info {
|
|
struct hlist_head head;
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
/* - pseudo header */
|
|
struct tcp4_pseudohdr {
|
|
__be32 saddr;
|
|
__be32 daddr;
|
|
__u8 pad;
|
|
__u8 protocol;
|
|
__be16 len;
|
|
};
|
|
|
|
struct tcp6_pseudohdr {
|
|
struct in6_addr saddr;
|
|
struct in6_addr daddr;
|
|
__be32 len;
|
|
__be32 protocol; /* including padding */
|
|
};
|
|
|
|
union tcp_md5sum_block {
|
|
struct tcp4_pseudohdr ip4;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
struct tcp6_pseudohdr ip6;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* struct tcp_sigpool - per-CPU pool of ahash_requests
|
|
* @scratch: per-CPU temporary area, that can be used between
|
|
* tcp_sigpool_start() and tcp_sigpool_end() to perform
|
|
* crypto request
|
|
* @req: pre-allocated ahash request
|
|
*/
|
|
struct tcp_sigpool {
|
|
void *scratch;
|
|
struct ahash_request *req;
|
|
};
|
|
|
|
int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
|
|
void tcp_sigpool_get(unsigned int id);
|
|
void tcp_sigpool_release(unsigned int id);
|
|
int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
|
|
const struct sk_buff *skb,
|
|
unsigned int header_len);
|
|
|
|
/**
|
|
* tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
|
|
* @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
|
|
* @c: returned tcp_sigpool for usage (uninitialized on failure)
|
|
*
|
|
* Returns 0 on success, error otherwise.
|
|
*/
|
|
int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
|
|
/**
|
|
* tcp_sigpool_end - enable bh and stop using tcp_sigpool
|
|
* @c: tcp_sigpool context that was returned by tcp_sigpool_start()
|
|
*/
|
|
void tcp_sigpool_end(struct tcp_sigpool *c);
|
|
size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
|
|
/* - functions */
|
|
int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
|
|
const struct sock *sk, const struct sk_buff *skb);
|
|
int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
|
|
int family, u8 prefixlen, int l3index, u8 flags,
|
|
const u8 *newkey, u8 newkeylen);
|
|
int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
|
|
int family, u8 prefixlen, int l3index,
|
|
struct tcp_md5sig_key *key);
|
|
|
|
int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
|
|
int family, u8 prefixlen, int l3index, u8 flags);
|
|
void tcp_clear_md5_list(struct sock *sk);
|
|
struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
|
|
const struct sock *addr_sk);
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
|
|
const union tcp_md5_addr *addr,
|
|
int family, bool any_l3index);
|
|
static inline struct tcp_md5sig_key *
|
|
tcp_md5_do_lookup(const struct sock *sk, int l3index,
|
|
const union tcp_md5_addr *addr, int family)
|
|
{
|
|
if (!static_branch_unlikely(&tcp_md5_needed.key))
|
|
return NULL;
|
|
return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
|
|
}
|
|
|
|
static inline struct tcp_md5sig_key *
|
|
tcp_md5_do_lookup_any_l3index(const struct sock *sk,
|
|
const union tcp_md5_addr *addr, int family)
|
|
{
|
|
if (!static_branch_unlikely(&tcp_md5_needed.key))
|
|
return NULL;
|
|
return __tcp_md5_do_lookup(sk, 0, addr, family, true);
|
|
}
|
|
|
|
#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
|
|
#else
|
|
static inline struct tcp_md5sig_key *
|
|
tcp_md5_do_lookup(const struct sock *sk, int l3index,
|
|
const union tcp_md5_addr *addr, int family)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct tcp_md5sig_key *
|
|
tcp_md5_do_lookup_any_l3index(const struct sock *sk,
|
|
const union tcp_md5_addr *addr, int family)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#define tcp_twsk_md5_key(twsk) NULL
|
|
#endif
|
|
|
|
int tcp_md5_alloc_sigpool(void);
|
|
void tcp_md5_release_sigpool(void);
|
|
void tcp_md5_add_sigpool(void);
|
|
extern int tcp_md5_sigpool_id;
|
|
|
|
int tcp_md5_hash_key(struct tcp_sigpool *hp,
|
|
const struct tcp_md5sig_key *key);
|
|
|
|
/* From tcp_fastopen.c */
|
|
void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
|
|
struct tcp_fastopen_cookie *cookie);
|
|
void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
|
|
struct tcp_fastopen_cookie *cookie, bool syn_lost,
|
|
u16 try_exp);
|
|
struct tcp_fastopen_request {
|
|
/* Fast Open cookie. Size 0 means a cookie request */
|
|
struct tcp_fastopen_cookie cookie;
|
|
struct msghdr *data; /* data in MSG_FASTOPEN */
|
|
size_t size;
|
|
int copied; /* queued in tcp_connect() */
|
|
struct ubuf_info *uarg;
|
|
};
|
|
void tcp_free_fastopen_req(struct tcp_sock *tp);
|
|
void tcp_fastopen_destroy_cipher(struct sock *sk);
|
|
void tcp_fastopen_ctx_destroy(struct net *net);
|
|
int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
|
|
void *primary_key, void *backup_key);
|
|
int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
|
|
u64 *key);
|
|
void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
|
|
struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req,
|
|
struct tcp_fastopen_cookie *foc,
|
|
const struct dst_entry *dst);
|
|
void tcp_fastopen_init_key_once(struct net *net);
|
|
bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
|
|
struct tcp_fastopen_cookie *cookie);
|
|
bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
|
|
#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
|
|
#define TCP_FASTOPEN_KEY_MAX 2
|
|
#define TCP_FASTOPEN_KEY_BUF_LENGTH \
|
|
(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
|
|
|
|
/* Fastopen key context */
|
|
struct tcp_fastopen_context {
|
|
siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
|
|
int num;
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
void tcp_fastopen_active_disable(struct sock *sk);
|
|
bool tcp_fastopen_active_should_disable(struct sock *sk);
|
|
void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
|
|
void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
|
|
|
|
/* Caller needs to wrap with rcu_read_(un)lock() */
|
|
static inline
|
|
struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
|
|
{
|
|
struct tcp_fastopen_context *ctx;
|
|
|
|
ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
|
|
if (!ctx)
|
|
ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
|
|
return ctx;
|
|
}
|
|
|
|
static inline
|
|
bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
|
|
const struct tcp_fastopen_cookie *orig)
|
|
{
|
|
if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
|
|
orig->len == foc->len &&
|
|
!memcmp(orig->val, foc->val, foc->len))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline
|
|
int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
|
|
{
|
|
return ctx->num;
|
|
}
|
|
|
|
/* Latencies incurred by various limits for a sender. They are
|
|
* chronograph-like stats that are mutually exclusive.
|
|
*/
|
|
enum tcp_chrono {
|
|
TCP_CHRONO_UNSPEC,
|
|
TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
|
|
TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
|
|
TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
|
|
__TCP_CHRONO_MAX,
|
|
};
|
|
|
|
void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
|
|
void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
|
|
|
|
/* This helper is needed, because skb->tcp_tsorted_anchor uses
|
|
* the same memory storage than skb->destructor/_skb_refdst
|
|
*/
|
|
static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
|
|
{
|
|
skb->destructor = NULL;
|
|
skb->_skb_refdst = 0UL;
|
|
}
|
|
|
|
#define tcp_skb_tsorted_save(skb) { \
|
|
unsigned long _save = skb->_skb_refdst; \
|
|
skb->_skb_refdst = 0UL;
|
|
|
|
#define tcp_skb_tsorted_restore(skb) \
|
|
skb->_skb_refdst = _save; \
|
|
}
|
|
|
|
void tcp_write_queue_purge(struct sock *sk);
|
|
|
|
static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
|
|
{
|
|
return skb_rb_first(&sk->tcp_rtx_queue);
|
|
}
|
|
|
|
static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
|
|
{
|
|
return skb_rb_last(&sk->tcp_rtx_queue);
|
|
}
|
|
|
|
static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
|
|
{
|
|
return skb_peek_tail(&sk->sk_write_queue);
|
|
}
|
|
|
|
#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
|
|
skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
|
|
|
|
static inline struct sk_buff *tcp_send_head(const struct sock *sk)
|
|
{
|
|
return skb_peek(&sk->sk_write_queue);
|
|
}
|
|
|
|
static inline bool tcp_skb_is_last(const struct sock *sk,
|
|
const struct sk_buff *skb)
|
|
{
|
|
return skb_queue_is_last(&sk->sk_write_queue, skb);
|
|
}
|
|
|
|
/**
|
|
* tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
|
|
* @sk: socket
|
|
*
|
|
* Since the write queue can have a temporary empty skb in it,
|
|
* we must not use "return skb_queue_empty(&sk->sk_write_queue)"
|
|
*/
|
|
static inline bool tcp_write_queue_empty(const struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
return tp->write_seq == tp->snd_nxt;
|
|
}
|
|
|
|
static inline bool tcp_rtx_queue_empty(const struct sock *sk)
|
|
{
|
|
return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
|
|
}
|
|
|
|
static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
|
|
{
|
|
return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
|
|
}
|
|
|
|
static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
__skb_queue_tail(&sk->sk_write_queue, skb);
|
|
|
|
/* Queue it, remembering where we must start sending. */
|
|
if (sk->sk_write_queue.next == skb)
|
|
tcp_chrono_start(sk, TCP_CHRONO_BUSY);
|
|
}
|
|
|
|
/* Insert new before skb on the write queue of sk. */
|
|
static inline void tcp_insert_write_queue_before(struct sk_buff *new,
|
|
struct sk_buff *skb,
|
|
struct sock *sk)
|
|
{
|
|
__skb_queue_before(&sk->sk_write_queue, skb, new);
|
|
}
|
|
|
|
static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
tcp_skb_tsorted_anchor_cleanup(skb);
|
|
__skb_unlink(skb, &sk->sk_write_queue);
|
|
}
|
|
|
|
void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
|
|
|
|
static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
tcp_skb_tsorted_anchor_cleanup(skb);
|
|
rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
|
|
}
|
|
|
|
static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
list_del(&skb->tcp_tsorted_anchor);
|
|
tcp_rtx_queue_unlink(skb, sk);
|
|
tcp_wmem_free_skb(sk, skb);
|
|
}
|
|
|
|
static inline void tcp_write_collapse_fence(struct sock *sk)
|
|
{
|
|
struct sk_buff *skb = tcp_write_queue_tail(sk);
|
|
|
|
if (skb)
|
|
TCP_SKB_CB(skb)->eor = 1;
|
|
}
|
|
|
|
static inline void tcp_push_pending_frames(struct sock *sk)
|
|
{
|
|
if (tcp_send_head(sk)) {
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
|
|
}
|
|
}
|
|
|
|
/* Start sequence of the skb just after the highest skb with SACKed
|
|
* bit, valid only if sacked_out > 0 or when the caller has ensured
|
|
* validity by itself.
|
|
*/
|
|
static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
|
|
{
|
|
if (!tp->sacked_out)
|
|
return tp->snd_una;
|
|
|
|
if (tp->highest_sack == NULL)
|
|
return tp->snd_nxt;
|
|
|
|
return TCP_SKB_CB(tp->highest_sack)->seq;
|
|
}
|
|
|
|
static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
tcp_sk(sk)->highest_sack = skb_rb_next(skb);
|
|
}
|
|
|
|
static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
|
|
{
|
|
return tcp_sk(sk)->highest_sack;
|
|
}
|
|
|
|
static inline void tcp_highest_sack_reset(struct sock *sk)
|
|
{
|
|
tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
|
|
}
|
|
|
|
/* Called when old skb is about to be deleted and replaced by new skb */
|
|
static inline void tcp_highest_sack_replace(struct sock *sk,
|
|
struct sk_buff *old,
|
|
struct sk_buff *new)
|
|
{
|
|
if (old == tcp_highest_sack(sk))
|
|
tcp_sk(sk)->highest_sack = new;
|
|
}
|
|
|
|
/* This helper checks if socket has IP_TRANSPARENT set */
|
|
static inline bool inet_sk_transparent(const struct sock *sk)
|
|
{
|
|
switch (sk->sk_state) {
|
|
case TCP_TIME_WAIT:
|
|
return inet_twsk(sk)->tw_transparent;
|
|
case TCP_NEW_SYN_RECV:
|
|
return inet_rsk(inet_reqsk(sk))->no_srccheck;
|
|
}
|
|
return inet_test_bit(TRANSPARENT, sk);
|
|
}
|
|
|
|
/* Determines whether this is a thin stream (which may suffer from
|
|
* increased latency). Used to trigger latency-reducing mechanisms.
|
|
*/
|
|
static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
|
|
{
|
|
return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
|
|
}
|
|
|
|
/* /proc */
|
|
enum tcp_seq_states {
|
|
TCP_SEQ_STATE_LISTENING,
|
|
TCP_SEQ_STATE_ESTABLISHED,
|
|
};
|
|
|
|
void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
|
|
void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
|
|
void tcp_seq_stop(struct seq_file *seq, void *v);
|
|
|
|
struct tcp_seq_afinfo {
|
|
sa_family_t family;
|
|
};
|
|
|
|
struct tcp_iter_state {
|
|
struct seq_net_private p;
|
|
enum tcp_seq_states state;
|
|
struct sock *syn_wait_sk;
|
|
int bucket, offset, sbucket, num;
|
|
loff_t last_pos;
|
|
};
|
|
|
|
extern struct request_sock_ops tcp_request_sock_ops;
|
|
extern struct request_sock_ops tcp6_request_sock_ops;
|
|
|
|
void tcp_v4_destroy_sock(struct sock *sk);
|
|
|
|
struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
|
|
netdev_features_t features);
|
|
struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
|
|
struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
|
|
struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
|
|
struct tcphdr *th);
|
|
INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
|
|
INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
|
|
INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
|
|
INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
|
|
#ifdef CONFIG_INET
|
|
void tcp_gro_complete(struct sk_buff *skb);
|
|
#else
|
|
static inline void tcp_gro_complete(struct sk_buff *skb) { }
|
|
#endif
|
|
|
|
void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
|
|
|
|
static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
|
|
{
|
|
struct net *net = sock_net((struct sock *)tp);
|
|
u32 val;
|
|
|
|
val = READ_ONCE(tp->notsent_lowat);
|
|
|
|
return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
|
|
}
|
|
|
|
bool tcp_stream_memory_free(const struct sock *sk, int wake);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
int tcp4_proc_init(void);
|
|
void tcp4_proc_exit(void);
|
|
#endif
|
|
|
|
int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
|
|
int tcp_conn_request(struct request_sock_ops *rsk_ops,
|
|
const struct tcp_request_sock_ops *af_ops,
|
|
struct sock *sk, struct sk_buff *skb);
|
|
|
|
/* TCP af-specific functions */
|
|
struct tcp_sock_af_ops {
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
|
|
const struct sock *addr_sk);
|
|
int (*calc_md5_hash)(char *location,
|
|
const struct tcp_md5sig_key *md5,
|
|
const struct sock *sk,
|
|
const struct sk_buff *skb);
|
|
int (*md5_parse)(struct sock *sk,
|
|
int optname,
|
|
sockptr_t optval,
|
|
int optlen);
|
|
#endif
|
|
#ifdef CONFIG_TCP_AO
|
|
int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
|
|
struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
|
|
struct sock *addr_sk,
|
|
int sndid, int rcvid);
|
|
int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
|
|
const struct sock *sk,
|
|
__be32 sisn, __be32 disn, bool send);
|
|
int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
|
|
const struct sock *sk, const struct sk_buff *skb,
|
|
const u8 *tkey, int hash_offset, u32 sne);
|
|
#endif
|
|
};
|
|
|
|
struct tcp_request_sock_ops {
|
|
u16 mss_clamp;
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
|
|
const struct sock *addr_sk);
|
|
int (*calc_md5_hash) (char *location,
|
|
const struct tcp_md5sig_key *md5,
|
|
const struct sock *sk,
|
|
const struct sk_buff *skb);
|
|
#endif
|
|
#ifdef CONFIG_TCP_AO
|
|
struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
|
|
struct request_sock *req,
|
|
int sndid, int rcvid);
|
|
int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
|
|
int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
|
|
struct request_sock *req, const struct sk_buff *skb,
|
|
int hash_offset, u32 sne);
|
|
#endif
|
|
#ifdef CONFIG_SYN_COOKIES
|
|
__u32 (*cookie_init_seq)(const struct sk_buff *skb,
|
|
__u16 *mss);
|
|
#endif
|
|
struct dst_entry *(*route_req)(const struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct flowi *fl,
|
|
struct request_sock *req,
|
|
u32 tw_isn);
|
|
u32 (*init_seq)(const struct sk_buff *skb);
|
|
u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
|
|
int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
|
|
struct flowi *fl, struct request_sock *req,
|
|
struct tcp_fastopen_cookie *foc,
|
|
enum tcp_synack_type synack_type,
|
|
struct sk_buff *syn_skb);
|
|
};
|
|
|
|
extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SYN_COOKIES
|
|
static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
|
|
const struct sock *sk, struct sk_buff *skb,
|
|
__u16 *mss)
|
|
{
|
|
tcp_synq_overflow(sk);
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
|
|
return ops->cookie_init_seq(skb, mss);
|
|
}
|
|
#else
|
|
static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
|
|
const struct sock *sk, struct sk_buff *skb,
|
|
__u16 *mss)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
struct tcp_key {
|
|
union {
|
|
struct {
|
|
struct tcp_ao_key *ao_key;
|
|
char *traffic_key;
|
|
u32 sne;
|
|
u8 rcv_next;
|
|
};
|
|
struct tcp_md5sig_key *md5_key;
|
|
};
|
|
enum {
|
|
TCP_KEY_NONE = 0,
|
|
TCP_KEY_MD5,
|
|
TCP_KEY_AO,
|
|
} type;
|
|
};
|
|
|
|
static inline void tcp_get_current_key(const struct sock *sk,
|
|
struct tcp_key *out)
|
|
{
|
|
#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
#endif
|
|
|
|
#ifdef CONFIG_TCP_AO
|
|
if (static_branch_unlikely(&tcp_ao_needed.key)) {
|
|
struct tcp_ao_info *ao;
|
|
|
|
ao = rcu_dereference_protected(tp->ao_info,
|
|
lockdep_sock_is_held(sk));
|
|
if (ao) {
|
|
out->ao_key = READ_ONCE(ao->current_key);
|
|
out->type = TCP_KEY_AO;
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
if (static_branch_unlikely(&tcp_md5_needed.key) &&
|
|
rcu_access_pointer(tp->md5sig_info)) {
|
|
out->md5_key = tp->af_specific->md5_lookup(sk, sk);
|
|
if (out->md5_key) {
|
|
out->type = TCP_KEY_MD5;
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
out->type = TCP_KEY_NONE;
|
|
}
|
|
|
|
static inline bool tcp_key_is_md5(const struct tcp_key *key)
|
|
{
|
|
if (static_branch_tcp_md5())
|
|
return key->type == TCP_KEY_MD5;
|
|
return false;
|
|
}
|
|
|
|
static inline bool tcp_key_is_ao(const struct tcp_key *key)
|
|
{
|
|
if (static_branch_tcp_ao())
|
|
return key->type == TCP_KEY_AO;
|
|
return false;
|
|
}
|
|
|
|
int tcpv4_offload_init(void);
|
|
|
|
void tcp_v4_init(void);
|
|
void tcp_init(void);
|
|
|
|
/* tcp_recovery.c */
|
|
void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
|
|
void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
|
|
extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
|
|
u32 reo_wnd);
|
|
extern bool tcp_rack_mark_lost(struct sock *sk);
|
|
extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
|
|
u64 xmit_time);
|
|
extern void tcp_rack_reo_timeout(struct sock *sk);
|
|
extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
|
|
|
|
/* tcp_plb.c */
|
|
|
|
/*
|
|
* Scaling factor for fractions in PLB. For example, tcp_plb_update_state
|
|
* expects cong_ratio which represents fraction of traffic that experienced
|
|
* congestion over a single RTT. In order to avoid floating point operations,
|
|
* this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
|
|
*/
|
|
#define TCP_PLB_SCALE 8
|
|
|
|
/* State for PLB (Protective Load Balancing) for a single TCP connection. */
|
|
struct tcp_plb_state {
|
|
u8 consec_cong_rounds:5, /* consecutive congested rounds */
|
|
unused:3;
|
|
u32 pause_until; /* jiffies32 when PLB can resume rerouting */
|
|
};
|
|
|
|
static inline void tcp_plb_init(const struct sock *sk,
|
|
struct tcp_plb_state *plb)
|
|
{
|
|
plb->consec_cong_rounds = 0;
|
|
plb->pause_until = 0;
|
|
}
|
|
void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
|
|
const int cong_ratio);
|
|
void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
|
|
void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
|
|
|
|
static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
|
|
{
|
|
WARN_ONCE(cond,
|
|
"%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
|
|
str,
|
|
tcp_snd_cwnd(tcp_sk(sk)),
|
|
tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
|
|
tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
|
|
tcp_sk(sk)->tlp_high_seq, sk->sk_state,
|
|
inet_csk(sk)->icsk_ca_state,
|
|
tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
|
|
inet_csk(sk)->icsk_pmtu_cookie);
|
|
}
|
|
|
|
/* At how many usecs into the future should the RTO fire? */
|
|
static inline s64 tcp_rto_delta_us(const struct sock *sk)
|
|
{
|
|
const struct sk_buff *skb = tcp_rtx_queue_head(sk);
|
|
u32 rto = inet_csk(sk)->icsk_rto;
|
|
|
|
if (likely(skb)) {
|
|
u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
|
|
|
|
return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
|
|
} else {
|
|
tcp_warn_once(sk, 1, "rtx queue empty: ");
|
|
return jiffies_to_usecs(rto);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Save and compile IPv4 options, return a pointer to it
|
|
*/
|
|
static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
|
|
struct sk_buff *skb)
|
|
{
|
|
const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
|
|
struct ip_options_rcu *dopt = NULL;
|
|
|
|
if (opt->optlen) {
|
|
int opt_size = sizeof(*dopt) + opt->optlen;
|
|
|
|
dopt = kmalloc(opt_size, GFP_ATOMIC);
|
|
if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
|
|
kfree(dopt);
|
|
dopt = NULL;
|
|
}
|
|
}
|
|
return dopt;
|
|
}
|
|
|
|
/* locally generated TCP pure ACKs have skb->truesize == 2
|
|
* (check tcp_send_ack() in net/ipv4/tcp_output.c )
|
|
* This is much faster than dissecting the packet to find out.
|
|
* (Think of GRE encapsulations, IPv4, IPv6, ...)
|
|
*/
|
|
static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
|
|
{
|
|
return skb->truesize == 2;
|
|
}
|
|
|
|
static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
|
|
{
|
|
skb->truesize = 2;
|
|
}
|
|
|
|
static inline int tcp_inq(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int answ;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
|
|
answ = 0;
|
|
} else if (sock_flag(sk, SOCK_URGINLINE) ||
|
|
!tp->urg_data ||
|
|
before(tp->urg_seq, tp->copied_seq) ||
|
|
!before(tp->urg_seq, tp->rcv_nxt)) {
|
|
|
|
answ = tp->rcv_nxt - tp->copied_seq;
|
|
|
|
/* Subtract 1, if FIN was received */
|
|
if (answ && sock_flag(sk, SOCK_DONE))
|
|
answ--;
|
|
} else {
|
|
answ = tp->urg_seq - tp->copied_seq;
|
|
}
|
|
|
|
return answ;
|
|
}
|
|
|
|
int tcp_peek_len(struct socket *sock);
|
|
|
|
static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
|
|
{
|
|
u16 segs_in;
|
|
|
|
segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
|
|
|
|
/* We update these fields while other threads might
|
|
* read them from tcp_get_info()
|
|
*/
|
|
WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
|
|
if (skb->len > tcp_hdrlen(skb))
|
|
WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
|
|
}
|
|
|
|
/*
|
|
* TCP listen path runs lockless.
|
|
* We forced "struct sock" to be const qualified to make sure
|
|
* we don't modify one of its field by mistake.
|
|
* Here, we increment sk_drops which is an atomic_t, so we can safely
|
|
* make sock writable again.
|
|
*/
|
|
static inline void tcp_listendrop(const struct sock *sk)
|
|
{
|
|
atomic_inc(&((struct sock *)sk)->sk_drops);
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
|
|
}
|
|
|
|
enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
|
|
|
|
/*
|
|
* Interface for adding Upper Level Protocols over TCP
|
|
*/
|
|
|
|
#define TCP_ULP_NAME_MAX 16
|
|
#define TCP_ULP_MAX 128
|
|
#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
|
|
|
|
struct tcp_ulp_ops {
|
|
struct list_head list;
|
|
|
|
/* initialize ulp */
|
|
int (*init)(struct sock *sk);
|
|
/* update ulp */
|
|
void (*update)(struct sock *sk, struct proto *p,
|
|
void (*write_space)(struct sock *sk));
|
|
/* cleanup ulp */
|
|
void (*release)(struct sock *sk);
|
|
/* diagnostic */
|
|
int (*get_info)(struct sock *sk, struct sk_buff *skb);
|
|
size_t (*get_info_size)(const struct sock *sk);
|
|
/* clone ulp */
|
|
void (*clone)(const struct request_sock *req, struct sock *newsk,
|
|
const gfp_t priority);
|
|
|
|
char name[TCP_ULP_NAME_MAX];
|
|
struct module *owner;
|
|
};
|
|
int tcp_register_ulp(struct tcp_ulp_ops *type);
|
|
void tcp_unregister_ulp(struct tcp_ulp_ops *type);
|
|
int tcp_set_ulp(struct sock *sk, const char *name);
|
|
void tcp_get_available_ulp(char *buf, size_t len);
|
|
void tcp_cleanup_ulp(struct sock *sk);
|
|
void tcp_update_ulp(struct sock *sk, struct proto *p,
|
|
void (*write_space)(struct sock *sk));
|
|
|
|
#define MODULE_ALIAS_TCP_ULP(name) \
|
|
__MODULE_INFO(alias, alias_userspace, name); \
|
|
__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
|
|
|
|
#ifdef CONFIG_NET_SOCK_MSG
|
|
struct sk_msg;
|
|
struct sk_psock;
|
|
|
|
#ifdef CONFIG_BPF_SYSCALL
|
|
int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
|
|
void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
|
|
#endif /* CONFIG_BPF_SYSCALL */
|
|
|
|
#ifdef CONFIG_INET
|
|
void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
|
|
#else
|
|
static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
|
|
struct sk_msg *msg, u32 bytes, int flags);
|
|
#endif /* CONFIG_NET_SOCK_MSG */
|
|
|
|
#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
|
|
static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CGROUP_BPF
|
|
static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
|
|
struct sk_buff *skb,
|
|
unsigned int end_offset)
|
|
{
|
|
skops->skb = skb;
|
|
skops->skb_data_end = skb->data + end_offset;
|
|
}
|
|
#else
|
|
static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
|
|
struct sk_buff *skb,
|
|
unsigned int end_offset)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Call BPF_SOCK_OPS program that returns an int. If the return value
|
|
* is < 0, then the BPF op failed (for example if the loaded BPF
|
|
* program does not support the chosen operation or there is no BPF
|
|
* program loaded).
|
|
*/
|
|
#ifdef CONFIG_BPF
|
|
static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
|
|
{
|
|
struct bpf_sock_ops_kern sock_ops;
|
|
int ret;
|
|
|
|
memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
|
|
if (sk_fullsock(sk)) {
|
|
sock_ops.is_fullsock = 1;
|
|
sock_owned_by_me(sk);
|
|
}
|
|
|
|
sock_ops.sk = sk;
|
|
sock_ops.op = op;
|
|
if (nargs > 0)
|
|
memcpy(sock_ops.args, args, nargs * sizeof(*args));
|
|
|
|
ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
|
|
if (ret == 0)
|
|
ret = sock_ops.reply;
|
|
else
|
|
ret = -1;
|
|
return ret;
|
|
}
|
|
|
|
static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
|
|
{
|
|
u32 args[2] = {arg1, arg2};
|
|
|
|
return tcp_call_bpf(sk, op, 2, args);
|
|
}
|
|
|
|
static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
|
|
u32 arg3)
|
|
{
|
|
u32 args[3] = {arg1, arg2, arg3};
|
|
|
|
return tcp_call_bpf(sk, op, 3, args);
|
|
}
|
|
|
|
#else
|
|
static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
|
|
{
|
|
return -EPERM;
|
|
}
|
|
|
|
static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
|
|
{
|
|
return -EPERM;
|
|
}
|
|
|
|
static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
|
|
u32 arg3)
|
|
{
|
|
return -EPERM;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline u32 tcp_timeout_init(struct sock *sk)
|
|
{
|
|
int timeout;
|
|
|
|
timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
|
|
|
|
if (timeout <= 0)
|
|
timeout = TCP_TIMEOUT_INIT;
|
|
return min_t(int, timeout, TCP_RTO_MAX);
|
|
}
|
|
|
|
static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
|
|
{
|
|
int rwnd;
|
|
|
|
rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
|
|
|
|
if (rwnd < 0)
|
|
rwnd = 0;
|
|
return rwnd;
|
|
}
|
|
|
|
static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
|
|
{
|
|
return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
|
|
}
|
|
|
|
static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
|
|
{
|
|
if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
|
|
tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_SMC)
|
|
extern struct static_key_false tcp_have_smc;
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_TLS_DEVICE)
|
|
void clean_acked_data_enable(struct inet_connection_sock *icsk,
|
|
void (*cad)(struct sock *sk, u32 ack_seq));
|
|
void clean_acked_data_disable(struct inet_connection_sock *icsk);
|
|
void clean_acked_data_flush(void);
|
|
#endif
|
|
|
|
DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
|
|
static inline void tcp_add_tx_delay(struct sk_buff *skb,
|
|
const struct tcp_sock *tp)
|
|
{
|
|
if (static_branch_unlikely(&tcp_tx_delay_enabled))
|
|
skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
|
|
}
|
|
|
|
/* Compute Earliest Departure Time for some control packets
|
|
* like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
|
|
*/
|
|
static inline u64 tcp_transmit_time(const struct sock *sk)
|
|
{
|
|
if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
|
|
u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
|
|
tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
|
|
|
|
return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int tcp_parse_auth_options(const struct tcphdr *th,
|
|
const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
|
|
{
|
|
const u8 *md5_tmp, *ao_tmp;
|
|
int ret;
|
|
|
|
ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (md5_hash)
|
|
*md5_hash = md5_tmp;
|
|
|
|
if (aoh) {
|
|
if (!ao_tmp)
|
|
*aoh = NULL;
|
|
else
|
|
*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
|
|
int family, int l3index, bool stat_inc)
|
|
{
|
|
#ifdef CONFIG_TCP_AO
|
|
struct tcp_ao_info *ao_info;
|
|
struct tcp_ao_key *ao_key;
|
|
|
|
if (!static_branch_unlikely(&tcp_ao_needed.key))
|
|
return false;
|
|
|
|
ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
|
|
lockdep_sock_is_held(sk));
|
|
if (!ao_info)
|
|
return false;
|
|
|
|
ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
|
|
if (ao_info->ao_required || ao_key) {
|
|
if (stat_inc) {
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
|
|
atomic64_inc(&ao_info->counters.ao_required);
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
|
|
const struct request_sock *req, const struct sk_buff *skb,
|
|
const void *saddr, const void *daddr,
|
|
int family, int dif, int sdif);
|
|
|
|
#endif /* _TCP_H */
|