mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 02:15:57 +00:00
Paolo Valente
8cacc5ab3e
block, bfq: do not merge queues on flash storage with queueing
To boost throughput with a set of processes doing interleaved I/O (i.e., a set of processes whose individual I/O is random, but whose merged cumulative I/O is sequential), BFQ merges the queues associated with these processes, i.e., redirects the I/O of these processes into a common, shared queue. In the shared queue, I/O requests are ordered by their position on the medium, thus sequential I/O gets dispatched to the device when the shared queue is served. Queue merging costs execution time, because, to detect which queues to merge, BFQ must maintain a list of the head I/O requests of active queues, ordered by request positions. Measurements showed that this costs about 10% of BFQ's total per-request processing time. Request processing time becomes more and more critical as the speed of the underlying storage device grows. Yet, fortunately, queue merging is basically useless on the very devices that are so fast to make request processing time critical. To reach a high throughput, these devices must have many requests queued at the same time. But, in this configuration, the internal scheduling algorithms of these devices do also the job of queue merging: they reorder requests so as to obtain as much as possible a sequential I/O pattern. As a consequence, with processes doing interleaved I/O, the throughput reached by one such device is likely to be the same, with and without queue merging. In view of this fact, this commit disables queue merging, and all related housekeeping, for non-rotational devices with internal queueing. The total, single-lock-protected, per-request processing time of BFQ drops to, e.g., 1.9 us on an Intel Core i7-2760QM@2.40GHz (time measured with simple code instrumentation, and using the throughput-sync.sh script of the S suite [1], in performance-profiling mode). To put this result into context, the total, single-lock-protected, per-request execution time of the lightest I/O scheduler available in blk-mq, mq-deadline, is 0.7 us (mq-deadline is ~800 LOC, against ~10500 LOC for BFQ). Disabling merging provides a further, remarkable benefit in terms of throughput. Merging tends to make many workloads artificially more uneven, mainly because of shared queues remaining non empty for incomparably more time than normal queues. So, if, e.g., one of the queues in a set of merged queues has a higher weight than a normal queue, then the shared queue may inherit such a high weight and, by staying almost always active, may force BFQ to perform I/O plugging most of the time. This evidently makes it harder for BFQ to let the device reach a high throughput. As a practical example of this problem, and of the benefits of this commit, we measured again the throughput in the nasty scenario considered in previous commit messages: dbench test (in the Phoronix suite), with 6 clients, on a filesystem with journaling, and with the journaling daemon enjoying a higher weight than normal processes. With this commit, the throughput grows from ~150 MB/s to ~200 MB/s on a PLEXTOR PX-256M5 SSD. This is the same peak throughput reached by any of the other I/O schedulers. As such, this is also likely to be the maximum possible throughput reachable with this workload on this device, because I/O is mostly random, and the other schedulers basically just pass I/O requests to the drive as fast as possible. [1] https://github.com/Algodev-github/S Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Francesco Pollicino <fra.fra.800@gmail.com> Signed-off-by: Alessio Masola <alessio.masola@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.5%
Assembly
1%
Shell
0.6%
Python
0.3%
Makefile
0.3%