mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-08 14:23:19 +00:00
b675df0257
[BUG] After commite02ee89baa
("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure"), scrub no longer works for zoned device at all. Even an empty zoned btrfs cannot be replaced: # mkfs.btrfs -f /dev/nvme0n1 # mount /dev/nvme0n1 /mnt/btrfs # btrfs replace start -Bf 1 /dev/nvme0n2 /mnt/btrfs Resetting device zones /dev/nvme1n1 (160 zones) ... ERROR: ioctl(DEV_REPLACE_START) failed on "/mnt/btrfs/": Input/output error And we can hit kernel crash related to that: BTRFS info (device nvme1n1): host-managed zoned block device /dev/nvme3n1, 160 zones of 134217728 bytes BTRFS info (device nvme1n1): dev_replace from /dev/nvme2n1 (devid 2) to /dev/nvme3n1 started nvme3n1: Zone Management Append(0x7d) @ LBA 65536, 4 blocks, Zone Is Full (sct 0x1 / sc 0xb9) DNR I/O error, dev nvme3n1, sector 786432 op 0xd:(ZONE_APPEND) flags 0x4000 phys_seg 3 prio class 2 BTRFS error (device nvme1n1): bdev /dev/nvme3n1 errs: wr 1, rd 0, flush 0, corrupt 0, gen 0 BUG: kernel NULL pointer dereference, address: 00000000000000a8 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:_raw_spin_lock_irqsave+0x1e/0x40 Call Trace: <IRQ> btrfs_lookup_ordered_extent+0x31/0x190 btrfs_record_physical_zoned+0x18/0x40 btrfs_simple_end_io+0xaf/0xc0 blk_update_request+0x153/0x4c0 blk_mq_end_request+0x15/0xd0 nvme_poll_cq+0x1d3/0x360 nvme_irq+0x39/0x80 __handle_irq_event_percpu+0x3b/0x190 handle_irq_event+0x2f/0x70 handle_edge_irq+0x7c/0x210 __common_interrupt+0x34/0xa0 common_interrupt+0x7d/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 [CAUSE] Dev-replace reuses scrub code to iterate all extents and write the existing content back to the new device. And for zoned devices, we call fill_writer_pointer_gap() to make sure all the writes into the zoned device is sequential, even if there may be some gaps between the writes. However we have several different bugs all related to zoned dev-replace: - We are using ZONE_APPEND operation for metadata style write back For zoned devices, btrfs has two ways to write data: * ZONE_APPEND for data This allows higher queue depth, but will not be able to know where the write would land. Thus needs to grab the real on-disk physical location in it's endio. * WRITE for metadata This requires single queue depth (new writes can only be submitted after previous one finished), and all writes must be sequential. For scrub, we go single queue depth, but still goes with ZONE_APPEND, which requires btrfs_bio::inode being populated. This is the cause of that crash. - No correct tracing of write_pointer After a write finished, we should forward sctx->write_pointer, or fill_writer_pointer_gap() would not work properly and cause more than necessary zero out, and fill the whole zone prematurely. - Incorrect physical bytenr passed to fill_writer_pointer_gap() In scrub_write_sectors(), one call site passes logical address, which is completely wrong. The other call site passes physical address of current sector, but we should pass the physical address of the btrfs_bio we're submitting. This is the cause of the -EIO errors. [FIX] - Do not use ZONE_APPEND for btrfs_submit_repair_write(). - Manually forward sctx->write_pointer after successful writeback - Use the physical address of the to-be-submitted btrfs_bio for fill_writer_pointer_gap() Now zoned device replace would work as expected. Reported-by: Christoph Hellwig <hch@lst.de> Fixes:e02ee89baa
("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure") Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
859 lines
24 KiB
C
859 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
* Copyright (C) 2022 Christoph Hellwig.
|
|
*/
|
|
|
|
#include <linux/bio.h>
|
|
#include "bio.h"
|
|
#include "ctree.h"
|
|
#include "volumes.h"
|
|
#include "raid56.h"
|
|
#include "async-thread.h"
|
|
#include "check-integrity.h"
|
|
#include "dev-replace.h"
|
|
#include "rcu-string.h"
|
|
#include "zoned.h"
|
|
#include "file-item.h"
|
|
|
|
static struct bio_set btrfs_bioset;
|
|
static struct bio_set btrfs_clone_bioset;
|
|
static struct bio_set btrfs_repair_bioset;
|
|
static mempool_t btrfs_failed_bio_pool;
|
|
|
|
struct btrfs_failed_bio {
|
|
struct btrfs_bio *bbio;
|
|
int num_copies;
|
|
atomic_t repair_count;
|
|
};
|
|
|
|
/*
|
|
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
|
|
* is already initialized by the block layer.
|
|
*/
|
|
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
|
|
btrfs_bio_end_io_t end_io, void *private)
|
|
{
|
|
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
|
|
bbio->fs_info = fs_info;
|
|
bbio->end_io = end_io;
|
|
bbio->private = private;
|
|
atomic_set(&bbio->pending_ios, 1);
|
|
}
|
|
|
|
/*
|
|
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
|
|
* btrfs, and is used for all I/O submitted through btrfs_submit_bio.
|
|
*
|
|
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
|
|
* a mempool.
|
|
*/
|
|
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
|
|
struct btrfs_fs_info *fs_info,
|
|
btrfs_bio_end_io_t end_io, void *private)
|
|
{
|
|
struct btrfs_bio *bbio;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
|
|
bbio = btrfs_bio(bio);
|
|
btrfs_bio_init(bbio, fs_info, end_io, private);
|
|
return bbio;
|
|
}
|
|
|
|
static blk_status_t btrfs_bio_extract_ordered_extent(struct btrfs_bio *bbio)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
int ret;
|
|
|
|
ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset);
|
|
if (WARN_ON_ONCE(!ordered))
|
|
return BLK_STS_IOERR;
|
|
ret = btrfs_extract_ordered_extent(bbio, ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
return errno_to_blk_status(ret);
|
|
}
|
|
|
|
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_bio *orig_bbio,
|
|
u64 map_length, bool use_append)
|
|
{
|
|
struct btrfs_bio *bbio;
|
|
struct bio *bio;
|
|
|
|
if (use_append) {
|
|
unsigned int nr_segs;
|
|
|
|
bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
|
|
&btrfs_clone_bioset, map_length);
|
|
} else {
|
|
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
|
|
GFP_NOFS, &btrfs_clone_bioset);
|
|
}
|
|
bbio = btrfs_bio(bio);
|
|
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
|
|
bbio->inode = orig_bbio->inode;
|
|
bbio->file_offset = orig_bbio->file_offset;
|
|
if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED))
|
|
orig_bbio->file_offset += map_length;
|
|
|
|
atomic_inc(&orig_bbio->pending_ios);
|
|
return bbio;
|
|
}
|
|
|
|
static void btrfs_orig_write_end_io(struct bio *bio);
|
|
|
|
static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
|
|
struct btrfs_bio *orig_bbio)
|
|
{
|
|
/*
|
|
* For writes we tolerate nr_mirrors - 1 write failures, so we can't
|
|
* just blindly propagate a write failure here. Instead increment the
|
|
* error count in the original I/O context so that it is guaranteed to
|
|
* be larger than the error tolerance.
|
|
*/
|
|
if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
|
|
struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
|
|
struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
|
|
|
|
atomic_add(orig_bioc->max_errors, &orig_bioc->error);
|
|
} else {
|
|
orig_bbio->bio.bi_status = bbio->bio.bi_status;
|
|
}
|
|
}
|
|
|
|
static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
|
|
{
|
|
if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
|
|
struct btrfs_bio *orig_bbio = bbio->private;
|
|
|
|
if (bbio->bio.bi_status)
|
|
btrfs_bbio_propagate_error(bbio, orig_bbio);
|
|
bio_put(&bbio->bio);
|
|
bbio = orig_bbio;
|
|
}
|
|
|
|
if (atomic_dec_and_test(&bbio->pending_ios))
|
|
bbio->end_io(bbio);
|
|
}
|
|
|
|
static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
|
|
{
|
|
if (cur_mirror == fbio->num_copies)
|
|
return cur_mirror + 1 - fbio->num_copies;
|
|
return cur_mirror + 1;
|
|
}
|
|
|
|
static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
|
|
{
|
|
if (cur_mirror == 1)
|
|
return fbio->num_copies;
|
|
return cur_mirror - 1;
|
|
}
|
|
|
|
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
|
|
{
|
|
if (atomic_dec_and_test(&fbio->repair_count)) {
|
|
btrfs_orig_bbio_end_io(fbio->bbio);
|
|
mempool_free(fbio, &btrfs_failed_bio_pool);
|
|
}
|
|
}
|
|
|
|
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
|
|
struct btrfs_device *dev)
|
|
{
|
|
struct btrfs_failed_bio *fbio = repair_bbio->private;
|
|
struct btrfs_inode *inode = repair_bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
|
|
int mirror = repair_bbio->mirror_num;
|
|
|
|
if (repair_bbio->bio.bi_status ||
|
|
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
|
|
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
|
|
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
|
|
|
|
mirror = next_repair_mirror(fbio, mirror);
|
|
if (mirror == fbio->bbio->mirror_num) {
|
|
btrfs_debug(fs_info, "no mirror left");
|
|
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
|
|
goto done;
|
|
}
|
|
|
|
btrfs_submit_bio(repair_bbio, mirror);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
mirror = prev_repair_mirror(fbio, mirror);
|
|
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
|
|
repair_bbio->file_offset, fs_info->sectorsize,
|
|
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
|
|
bv->bv_page, bv->bv_offset, mirror);
|
|
} while (mirror != fbio->bbio->mirror_num);
|
|
|
|
done:
|
|
btrfs_repair_done(fbio);
|
|
bio_put(&repair_bbio->bio);
|
|
}
|
|
|
|
/*
|
|
* Try to kick off a repair read to the next available mirror for a bad sector.
|
|
*
|
|
* This primarily tries to recover good data to serve the actual read request,
|
|
* but also tries to write the good data back to the bad mirror(s) when a
|
|
* read succeeded to restore the redundancy.
|
|
*/
|
|
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
|
|
u32 bio_offset,
|
|
struct bio_vec *bv,
|
|
struct btrfs_failed_bio *fbio)
|
|
{
|
|
struct btrfs_inode *inode = failed_bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
|
|
struct btrfs_bio *repair_bbio;
|
|
struct bio *repair_bio;
|
|
int num_copies;
|
|
int mirror;
|
|
|
|
btrfs_debug(fs_info, "repair read error: read error at %llu",
|
|
failed_bbio->file_offset + bio_offset);
|
|
|
|
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
|
|
if (num_copies == 1) {
|
|
btrfs_debug(fs_info, "no copy to repair from");
|
|
failed_bbio->bio.bi_status = BLK_STS_IOERR;
|
|
return fbio;
|
|
}
|
|
|
|
if (!fbio) {
|
|
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
|
|
fbio->bbio = failed_bbio;
|
|
fbio->num_copies = num_copies;
|
|
atomic_set(&fbio->repair_count, 1);
|
|
}
|
|
|
|
atomic_inc(&fbio->repair_count);
|
|
|
|
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
|
|
&btrfs_repair_bioset);
|
|
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
|
|
__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
|
|
|
|
repair_bbio = btrfs_bio(repair_bio);
|
|
btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
|
|
repair_bbio->inode = failed_bbio->inode;
|
|
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
|
|
|
|
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
|
|
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
|
|
btrfs_submit_bio(repair_bbio, mirror);
|
|
return fbio;
|
|
}
|
|
|
|
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
|
|
{
|
|
struct btrfs_inode *inode = bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
struct bvec_iter *iter = &bbio->saved_iter;
|
|
blk_status_t status = bbio->bio.bi_status;
|
|
struct btrfs_failed_bio *fbio = NULL;
|
|
u32 offset = 0;
|
|
|
|
/* Read-repair requires the inode field to be set by the submitter. */
|
|
ASSERT(inode);
|
|
|
|
/*
|
|
* Hand off repair bios to the repair code as there is no upper level
|
|
* submitter for them.
|
|
*/
|
|
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
|
|
btrfs_end_repair_bio(bbio, dev);
|
|
return;
|
|
}
|
|
|
|
/* Clear the I/O error. A failed repair will reset it. */
|
|
bbio->bio.bi_status = BLK_STS_OK;
|
|
|
|
while (iter->bi_size) {
|
|
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
|
|
|
|
bv.bv_len = min(bv.bv_len, sectorsize);
|
|
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
|
|
fbio = repair_one_sector(bbio, offset, &bv, fbio);
|
|
|
|
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
|
|
offset += sectorsize;
|
|
}
|
|
|
|
if (bbio->csum != bbio->csum_inline)
|
|
kfree(bbio->csum);
|
|
|
|
if (fbio)
|
|
btrfs_repair_done(fbio);
|
|
else
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
}
|
|
|
|
static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
|
|
{
|
|
if (!dev || !dev->bdev)
|
|
return;
|
|
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
|
|
return;
|
|
|
|
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
|
|
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
else if (!(bio->bi_opf & REQ_RAHEAD))
|
|
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
|
|
if (bio->bi_opf & REQ_PREFLUSH)
|
|
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
|
|
}
|
|
|
|
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
|
|
struct bio *bio)
|
|
{
|
|
if (bio->bi_opf & REQ_META)
|
|
return fs_info->endio_meta_workers;
|
|
return fs_info->endio_workers;
|
|
}
|
|
|
|
static void btrfs_end_bio_work(struct work_struct *work)
|
|
{
|
|
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
|
|
|
|
/* Metadata reads are checked and repaired by the submitter. */
|
|
if (bbio->inode && !(bbio->bio.bi_opf & REQ_META))
|
|
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
|
|
else
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
}
|
|
|
|
static void btrfs_simple_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
struct btrfs_device *dev = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
|
|
btrfs_bio_counter_dec(fs_info);
|
|
|
|
if (bio->bi_status)
|
|
btrfs_log_dev_io_error(bio, dev);
|
|
|
|
if (bio_op(bio) == REQ_OP_READ) {
|
|
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
|
|
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
|
|
} else {
|
|
if (bio_op(bio) == REQ_OP_ZONE_APPEND)
|
|
btrfs_record_physical_zoned(bbio);
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
}
|
|
}
|
|
|
|
static void btrfs_raid56_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_io_context *bioc = bio->bi_private;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
|
|
btrfs_bio_counter_dec(bioc->fs_info);
|
|
bbio->mirror_num = bioc->mirror_num;
|
|
if (bio_op(bio) == REQ_OP_READ && bbio->inode &&
|
|
!(bbio->bio.bi_opf & REQ_META))
|
|
btrfs_check_read_bio(bbio, NULL);
|
|
else
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
|
|
btrfs_put_bioc(bioc);
|
|
}
|
|
|
|
static void btrfs_orig_write_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_io_stripe *stripe = bio->bi_private;
|
|
struct btrfs_io_context *bioc = stripe->bioc;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
|
|
btrfs_bio_counter_dec(bioc->fs_info);
|
|
|
|
if (bio->bi_status) {
|
|
atomic_inc(&bioc->error);
|
|
btrfs_log_dev_io_error(bio, stripe->dev);
|
|
}
|
|
|
|
/*
|
|
* Only send an error to the higher layers if it is beyond the tolerance
|
|
* threshold.
|
|
*/
|
|
if (atomic_read(&bioc->error) > bioc->max_errors)
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
else
|
|
bio->bi_status = BLK_STS_OK;
|
|
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
btrfs_put_bioc(bioc);
|
|
}
|
|
|
|
static void btrfs_clone_write_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_io_stripe *stripe = bio->bi_private;
|
|
|
|
if (bio->bi_status) {
|
|
atomic_inc(&stripe->bioc->error);
|
|
btrfs_log_dev_io_error(bio, stripe->dev);
|
|
}
|
|
|
|
/* Pass on control to the original bio this one was cloned from */
|
|
bio_endio(stripe->bioc->orig_bio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
|
|
{
|
|
if (!dev || !dev->bdev ||
|
|
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
|
|
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
|
|
bio_io_error(bio);
|
|
return;
|
|
}
|
|
|
|
bio_set_dev(bio, dev->bdev);
|
|
|
|
/*
|
|
* For zone append writing, bi_sector must point the beginning of the
|
|
* zone
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
|
|
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
|
|
|
|
ASSERT(btrfs_dev_is_sequential(dev, physical));
|
|
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
|
|
}
|
|
btrfs_debug_in_rcu(dev->fs_info,
|
|
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
|
|
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
|
|
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
|
|
dev->devid, bio->bi_iter.bi_size);
|
|
|
|
btrfsic_check_bio(bio);
|
|
|
|
if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
|
|
blkcg_punt_bio_submit(bio);
|
|
else
|
|
submit_bio(bio);
|
|
}
|
|
|
|
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
|
|
{
|
|
struct bio *orig_bio = bioc->orig_bio, *bio;
|
|
|
|
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
|
|
|
|
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
|
|
if (dev_nr == bioc->num_stripes - 1) {
|
|
bio = orig_bio;
|
|
bio->bi_end_io = btrfs_orig_write_end_io;
|
|
} else {
|
|
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
|
|
bio_inc_remaining(orig_bio);
|
|
bio->bi_end_io = btrfs_clone_write_end_io;
|
|
}
|
|
|
|
bio->bi_private = &bioc->stripes[dev_nr];
|
|
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
|
|
bioc->stripes[dev_nr].bioc = bioc;
|
|
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
|
|
}
|
|
|
|
static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
|
|
struct btrfs_io_stripe *smap, int mirror_num)
|
|
{
|
|
/* Do not leak our private flag into the block layer. */
|
|
bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
|
|
|
|
if (!bioc) {
|
|
/* Single mirror read/write fast path. */
|
|
btrfs_bio(bio)->mirror_num = mirror_num;
|
|
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
|
|
bio->bi_private = smap->dev;
|
|
bio->bi_end_io = btrfs_simple_end_io;
|
|
btrfs_submit_dev_bio(smap->dev, bio);
|
|
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
/* Parity RAID write or read recovery. */
|
|
bio->bi_private = bioc;
|
|
bio->bi_end_io = btrfs_raid56_end_io;
|
|
if (bio_op(bio) == REQ_OP_READ)
|
|
raid56_parity_recover(bio, bioc, mirror_num);
|
|
else
|
|
raid56_parity_write(bio, bioc);
|
|
} else {
|
|
/* Write to multiple mirrors. */
|
|
int total_devs = bioc->num_stripes;
|
|
|
|
bioc->orig_bio = bio;
|
|
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
|
|
btrfs_submit_mirrored_bio(bioc, dev_nr);
|
|
}
|
|
}
|
|
|
|
static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
|
|
{
|
|
if (bbio->bio.bi_opf & REQ_META)
|
|
return btree_csum_one_bio(bbio);
|
|
return btrfs_csum_one_bio(bbio);
|
|
}
|
|
|
|
/*
|
|
* Async submit bios are used to offload expensive checksumming onto the worker
|
|
* threads.
|
|
*/
|
|
struct async_submit_bio {
|
|
struct btrfs_bio *bbio;
|
|
struct btrfs_io_context *bioc;
|
|
struct btrfs_io_stripe smap;
|
|
int mirror_num;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
/*
|
|
* In order to insert checksums into the metadata in large chunks, we wait
|
|
* until bio submission time. All the pages in the bio are checksummed and
|
|
* sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the csums attached on the ordered extent record are
|
|
* inserted into the btree.
|
|
*/
|
|
static void run_one_async_start(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async =
|
|
container_of(work, struct async_submit_bio, work);
|
|
blk_status_t ret;
|
|
|
|
ret = btrfs_bio_csum(async->bbio);
|
|
if (ret)
|
|
async->bbio->bio.bi_status = ret;
|
|
}
|
|
|
|
/*
|
|
* In order to insert checksums into the metadata in large chunks, we wait
|
|
* until bio submission time. All the pages in the bio are checksummed and
|
|
* sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the csums attached on the ordered extent record are
|
|
* inserted into the tree.
|
|
*/
|
|
static void run_one_async_done(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async =
|
|
container_of(work, struct async_submit_bio, work);
|
|
struct bio *bio = &async->bbio->bio;
|
|
|
|
/* If an error occurred we just want to clean up the bio and move on. */
|
|
if (bio->bi_status) {
|
|
btrfs_orig_bbio_end_io(async->bbio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* All of the bios that pass through here are from async helpers.
|
|
* Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
|
|
* context. This changes nothing when cgroups aren't in use.
|
|
*/
|
|
bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
|
|
__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
|
|
}
|
|
|
|
static void run_one_async_free(struct btrfs_work *work)
|
|
{
|
|
kfree(container_of(work, struct async_submit_bio, work));
|
|
}
|
|
|
|
static bool should_async_write(struct btrfs_bio *bbio)
|
|
{
|
|
/*
|
|
* If the I/O is not issued by fsync and friends, (->sync_writers != 0),
|
|
* then try to defer the submission to a workqueue to parallelize the
|
|
* checksum calculation.
|
|
*/
|
|
if (atomic_read(&bbio->inode->sync_writers))
|
|
return false;
|
|
|
|
/*
|
|
* Submit metadata writes synchronously if the checksum implementation
|
|
* is fast, or we are on a zoned device that wants I/O to be submitted
|
|
* in order.
|
|
*/
|
|
if (bbio->bio.bi_opf & REQ_META) {
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
|
|
if (btrfs_is_zoned(fs_info))
|
|
return false;
|
|
if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Submit bio to an async queue.
|
|
*
|
|
* Return true if the work has been succesfuly submitted, else false.
|
|
*/
|
|
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
|
|
struct btrfs_io_context *bioc,
|
|
struct btrfs_io_stripe *smap, int mirror_num)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
struct async_submit_bio *async;
|
|
|
|
async = kmalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
return false;
|
|
|
|
async->bbio = bbio;
|
|
async->bioc = bioc;
|
|
async->smap = *smap;
|
|
async->mirror_num = mirror_num;
|
|
|
|
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
|
|
run_one_async_free);
|
|
if (op_is_sync(bbio->bio.bi_opf))
|
|
btrfs_queue_work(fs_info->hipri_workers, &async->work);
|
|
else
|
|
btrfs_queue_work(fs_info->workers, &async->work);
|
|
return true;
|
|
}
|
|
|
|
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
|
|
{
|
|
struct btrfs_inode *inode = bbio->inode;
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
struct btrfs_bio *orig_bbio = bbio;
|
|
struct bio *bio = &bbio->bio;
|
|
u64 logical = bio->bi_iter.bi_sector << 9;
|
|
u64 length = bio->bi_iter.bi_size;
|
|
u64 map_length = length;
|
|
bool use_append = btrfs_use_zone_append(bbio);
|
|
struct btrfs_io_context *bioc = NULL;
|
|
struct btrfs_io_stripe smap;
|
|
blk_status_t ret;
|
|
int error;
|
|
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
|
|
&bioc, &smap, &mirror_num, 1);
|
|
if (error) {
|
|
ret = errno_to_blk_status(error);
|
|
goto fail;
|
|
}
|
|
|
|
map_length = min(map_length, length);
|
|
if (use_append)
|
|
map_length = min(map_length, fs_info->max_zone_append_size);
|
|
|
|
if (map_length < length) {
|
|
bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
|
|
bio = &bbio->bio;
|
|
}
|
|
|
|
/*
|
|
* Save the iter for the end_io handler and preload the checksums for
|
|
* data reads.
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_READ && inode && !(bio->bi_opf & REQ_META)) {
|
|
bbio->saved_iter = bio->bi_iter;
|
|
ret = btrfs_lookup_bio_sums(bbio);
|
|
if (ret)
|
|
goto fail_put_bio;
|
|
}
|
|
|
|
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
|
|
if (use_append) {
|
|
bio->bi_opf &= ~REQ_OP_WRITE;
|
|
bio->bi_opf |= REQ_OP_ZONE_APPEND;
|
|
ret = btrfs_bio_extract_ordered_extent(bbio);
|
|
if (ret)
|
|
goto fail_put_bio;
|
|
}
|
|
|
|
/*
|
|
* Csum items for reloc roots have already been cloned at this
|
|
* point, so they are handled as part of the no-checksum case.
|
|
*/
|
|
if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
|
|
!test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
|
|
!btrfs_is_data_reloc_root(inode->root)) {
|
|
if (should_async_write(bbio) &&
|
|
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
|
|
goto done;
|
|
|
|
ret = btrfs_bio_csum(bbio);
|
|
if (ret)
|
|
goto fail_put_bio;
|
|
}
|
|
}
|
|
|
|
__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
|
|
done:
|
|
return map_length == length;
|
|
|
|
fail_put_bio:
|
|
if (map_length < length)
|
|
bio_put(bio);
|
|
fail:
|
|
btrfs_bio_counter_dec(fs_info);
|
|
btrfs_bio_end_io(orig_bbio, ret);
|
|
/* Do not submit another chunk */
|
|
return true;
|
|
}
|
|
|
|
void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
|
|
{
|
|
/* If bbio->inode is not populated, its file_offset must be 0. */
|
|
ASSERT(bbio->inode || bbio->file_offset == 0);
|
|
|
|
while (!btrfs_submit_chunk(bbio, mirror_num))
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Submit a repair write.
|
|
*
|
|
* This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
|
|
* RAID setup. Here we only want to write the one bad copy, so we do the
|
|
* mapping ourselves and submit the bio directly.
|
|
*
|
|
* The I/O is issued synchronously to block the repair read completion from
|
|
* freeing the bio.
|
|
*/
|
|
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
|
|
u64 length, u64 logical, struct page *page,
|
|
unsigned int pg_offset, int mirror_num)
|
|
{
|
|
struct btrfs_io_stripe smap = { 0 };
|
|
struct bio_vec bvec;
|
|
struct bio bio;
|
|
int ret = 0;
|
|
|
|
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
|
|
BUG_ON(!mirror_num);
|
|
|
|
if (btrfs_repair_one_zone(fs_info, logical))
|
|
return 0;
|
|
|
|
/*
|
|
* Avoid races with device replace and make sure our bioc has devices
|
|
* associated to its stripes that don't go away while we are doing the
|
|
* read repair operation.
|
|
*/
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
|
|
if (ret < 0)
|
|
goto out_counter_dec;
|
|
|
|
if (!smap.dev->bdev ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
|
|
ret = -EIO;
|
|
goto out_counter_dec;
|
|
}
|
|
|
|
bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
|
|
bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
|
|
__bio_add_page(&bio, page, length, pg_offset);
|
|
|
|
btrfsic_check_bio(&bio);
|
|
ret = submit_bio_wait(&bio);
|
|
if (ret) {
|
|
/* try to remap that extent elsewhere? */
|
|
btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
goto out_bio_uninit;
|
|
}
|
|
|
|
btrfs_info_rl_in_rcu(fs_info,
|
|
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
|
|
ino, start, btrfs_dev_name(smap.dev),
|
|
smap.physical >> SECTOR_SHIFT);
|
|
ret = 0;
|
|
|
|
out_bio_uninit:
|
|
bio_uninit(&bio);
|
|
out_counter_dec:
|
|
btrfs_bio_counter_dec(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Submit a btrfs_bio based repair write.
|
|
*
|
|
* If @dev_replace is true, the write would be submitted to dev-replace target.
|
|
*/
|
|
void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 length = bbio->bio.bi_iter.bi_size;
|
|
struct btrfs_io_stripe smap = { 0 };
|
|
int ret;
|
|
|
|
ASSERT(fs_info);
|
|
ASSERT(mirror_num > 0);
|
|
ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
|
|
ASSERT(!bbio->inode);
|
|
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
if (dev_replace) {
|
|
ASSERT(smap.dev == fs_info->dev_replace.srcdev);
|
|
smap.dev = fs_info->dev_replace.tgtdev;
|
|
}
|
|
__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
|
|
return;
|
|
|
|
fail:
|
|
btrfs_bio_counter_dec(fs_info);
|
|
btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
|
|
}
|
|
|
|
int __init btrfs_bioset_init(void)
|
|
{
|
|
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
|
|
offsetof(struct btrfs_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
return -ENOMEM;
|
|
if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
|
|
offsetof(struct btrfs_bio, bio), 0))
|
|
goto out_free_bioset;
|
|
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
|
|
offsetof(struct btrfs_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
goto out_free_clone_bioset;
|
|
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
|
|
sizeof(struct btrfs_failed_bio)))
|
|
goto out_free_repair_bioset;
|
|
return 0;
|
|
|
|
out_free_repair_bioset:
|
|
bioset_exit(&btrfs_repair_bioset);
|
|
out_free_clone_bioset:
|
|
bioset_exit(&btrfs_clone_bioset);
|
|
out_free_bioset:
|
|
bioset_exit(&btrfs_bioset);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void __cold btrfs_bioset_exit(void)
|
|
{
|
|
mempool_exit(&btrfs_failed_bio_pool);
|
|
bioset_exit(&btrfs_repair_bioset);
|
|
bioset_exit(&btrfs_clone_bioset);
|
|
bioset_exit(&btrfs_bioset);
|
|
}
|