mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-14 17:14:09 +00:00
8f347c4232
->fail_addr and ->addr can be updated no matter the result of parent->_erase(), we just need to remove the code doing the same thing in mtd_erase_callback() to avoid adjusting those fields twice. Note that this can be done because all MTD users have been converted to not pass an erase_info->callback() and are thus only taking the ->addr_fail and ->addr fields into account after part_erase() has returned. While we're at it, get rid of the erase_info->mtd field which was only needed to let mtd_erase_callback() get the partition device back. Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Reviewed-by: Richard Weinberger <richard@nod.at>
6582 lines
168 KiB
C
6582 lines
168 KiB
C
/*
|
|
* Overview:
|
|
* This is the generic MTD driver for NAND flash devices. It should be
|
|
* capable of working with almost all NAND chips currently available.
|
|
*
|
|
* Additional technical information is available on
|
|
* http://www.linux-mtd.infradead.org/doc/nand.html
|
|
*
|
|
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
|
|
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
|
|
*
|
|
* Credits:
|
|
* David Woodhouse for adding multichip support
|
|
*
|
|
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
|
|
* rework for 2K page size chips
|
|
*
|
|
* TODO:
|
|
* Enable cached programming for 2k page size chips
|
|
* Check, if mtd->ecctype should be set to MTD_ECC_HW
|
|
* if we have HW ECC support.
|
|
* BBT table is not serialized, has to be fixed
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/nand_bch.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of.h>
|
|
|
|
static int nand_get_device(struct mtd_info *mtd, int new_state);
|
|
|
|
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops);
|
|
|
|
/* Define default oob placement schemes for large and small page devices */
|
|
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 0;
|
|
if (mtd->oobsize == 16)
|
|
oobregion->length = 4;
|
|
else
|
|
oobregion->length = 3;
|
|
} else {
|
|
if (mtd->oobsize == 8)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = 6;
|
|
oobregion->length = ecc->total - 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (mtd->oobsize == 16) {
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = 8;
|
|
oobregion->offset = 8;
|
|
} else {
|
|
oobregion->length = 2;
|
|
if (!section)
|
|
oobregion->offset = 3;
|
|
else
|
|
oobregion->offset = 6;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
|
|
.ecc = nand_ooblayout_ecc_sp,
|
|
.free = nand_ooblayout_free_sp,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
|
|
|
|
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section || !ecc->total)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = ecc->total;
|
|
oobregion->offset = mtd->oobsize - oobregion->length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = mtd->oobsize - ecc->total - 2;
|
|
oobregion->offset = 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
|
|
.ecc = nand_ooblayout_ecc_lp,
|
|
.free = nand_ooblayout_free_lp,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
|
|
|
|
/*
|
|
* Support the old "large page" layout used for 1-bit Hamming ECC where ECC
|
|
* are placed at a fixed offset.
|
|
*/
|
|
static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
switch (mtd->oobsize) {
|
|
case 64:
|
|
oobregion->offset = 40;
|
|
break;
|
|
case 128:
|
|
oobregion->offset = 80;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
oobregion->length = ecc->total;
|
|
if (oobregion->offset + oobregion->length > mtd->oobsize)
|
|
return -ERANGE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int ecc_offset = 0;
|
|
|
|
if (section < 0 || section > 1)
|
|
return -ERANGE;
|
|
|
|
switch (mtd->oobsize) {
|
|
case 64:
|
|
ecc_offset = 40;
|
|
break;
|
|
case 128:
|
|
ecc_offset = 80;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (section == 0) {
|
|
oobregion->offset = 2;
|
|
oobregion->length = ecc_offset - 2;
|
|
} else {
|
|
oobregion->offset = ecc_offset + ecc->total;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
|
|
.ecc = nand_ooblayout_ecc_lp_hamming,
|
|
.free = nand_ooblayout_free_lp_hamming,
|
|
};
|
|
|
|
static int check_offs_len(struct mtd_info *mtd,
|
|
loff_t ofs, uint64_t len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
|
|
/* Start address must align on block boundary */
|
|
if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
|
|
pr_debug("%s: unaligned address\n", __func__);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* Length must align on block boundary */
|
|
if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
|
|
pr_debug("%s: length not block aligned\n", __func__);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_release_device - [GENERIC] release chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Release chip lock and wake up anyone waiting on the device.
|
|
*/
|
|
static void nand_release_device(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
/* Release the controller and the chip */
|
|
spin_lock(&chip->controller->lock);
|
|
chip->controller->active = NULL;
|
|
chip->state = FL_READY;
|
|
wake_up(&chip->controller->wq);
|
|
spin_unlock(&chip->controller->lock);
|
|
}
|
|
|
|
/**
|
|
* nand_read_byte - [DEFAULT] read one byte from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 8bit buswidth
|
|
*/
|
|
static uint8_t nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
return readb(chip->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 16bit buswidth with endianness conversion.
|
|
*
|
|
*/
|
|
static uint8_t nand_read_byte16(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
|
|
}
|
|
|
|
/**
|
|
* nand_read_word - [DEFAULT] read one word from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 16bit buswidth without endianness conversion.
|
|
*/
|
|
static u16 nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
return readw(chip->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_select_chip - [DEFAULT] control CE line
|
|
* @mtd: MTD device structure
|
|
* @chipnr: chipnumber to select, -1 for deselect
|
|
*
|
|
* Default select function for 1 chip devices.
|
|
*/
|
|
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
switch (chipnr) {
|
|
case -1:
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
|
|
break;
|
|
case 0:
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_write_byte - [DEFAULT] write single byte to chip
|
|
* @mtd: MTD device structure
|
|
* @byte: value to write
|
|
*
|
|
* Default function to write a byte to I/O[7:0]
|
|
*/
|
|
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
chip->write_buf(mtd, &byte, 1);
|
|
}
|
|
|
|
/**
|
|
* nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
|
|
* @mtd: MTD device structure
|
|
* @byte: value to write
|
|
*
|
|
* Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
|
|
*/
|
|
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
uint16_t word = byte;
|
|
|
|
/*
|
|
* It's not entirely clear what should happen to I/O[15:8] when writing
|
|
* a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
|
|
*
|
|
* When the host supports a 16-bit bus width, only data is
|
|
* transferred at the 16-bit width. All address and command line
|
|
* transfers shall use only the lower 8-bits of the data bus. During
|
|
* command transfers, the host may place any value on the upper
|
|
* 8-bits of the data bus. During address transfers, the host shall
|
|
* set the upper 8-bits of the data bus to 00h.
|
|
*
|
|
* One user of the write_byte callback is nand_onfi_set_features. The
|
|
* four parameters are specified to be written to I/O[7:0], but this is
|
|
* neither an address nor a command transfer. Let's assume a 0 on the
|
|
* upper I/O lines is OK.
|
|
*/
|
|
chip->write_buf(mtd, (uint8_t *)&word, 2);
|
|
}
|
|
|
|
/**
|
|
* nand_write_buf - [DEFAULT] write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* Default write function for 8bit buswidth.
|
|
*/
|
|
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
iowrite8_rep(chip->IO_ADDR_W, buf, len);
|
|
}
|
|
|
|
/**
|
|
* nand_read_buf - [DEFAULT] read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* Default read function for 8bit buswidth.
|
|
*/
|
|
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
ioread8_rep(chip->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
/**
|
|
* nand_write_buf16 - [DEFAULT] write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* Default write function for 16bit buswidth.
|
|
*/
|
|
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u16 *p = (u16 *) buf;
|
|
|
|
iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
|
|
}
|
|
|
|
/**
|
|
* nand_read_buf16 - [DEFAULT] read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* Default read function for 16bit buswidth.
|
|
*/
|
|
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u16 *p = (u16 *) buf;
|
|
|
|
ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
|
|
}
|
|
|
|
/**
|
|
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* Check, if the block is bad.
|
|
*/
|
|
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
int page, page_end, res;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u8 bad;
|
|
|
|
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
|
|
ofs += mtd->erasesize - mtd->writesize;
|
|
|
|
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
|
|
page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
|
|
|
|
for (; page < page_end; page++) {
|
|
res = chip->ecc.read_oob(mtd, chip, page);
|
|
if (res)
|
|
return res;
|
|
|
|
bad = chip->oob_poi[chip->badblockpos];
|
|
|
|
if (likely(chip->badblockbits == 8))
|
|
res = bad != 0xFF;
|
|
else
|
|
res = hweight8(bad) < chip->badblockbits;
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* This is the default implementation, which can be overridden by a hardware
|
|
* specific driver. It provides the details for writing a bad block marker to a
|
|
* block.
|
|
*/
|
|
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtd_oob_ops ops;
|
|
uint8_t buf[2] = { 0, 0 };
|
|
int ret = 0, res, i = 0;
|
|
|
|
memset(&ops, 0, sizeof(ops));
|
|
ops.oobbuf = buf;
|
|
ops.ooboffs = chip->badblockpos;
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
ops.ooboffs &= ~0x01;
|
|
ops.len = ops.ooblen = 2;
|
|
} else {
|
|
ops.len = ops.ooblen = 1;
|
|
}
|
|
ops.mode = MTD_OPS_PLACE_OOB;
|
|
|
|
/* Write to first/last page(s) if necessary */
|
|
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
|
|
ofs += mtd->erasesize - mtd->writesize;
|
|
do {
|
|
res = nand_do_write_oob(mtd, ofs, &ops);
|
|
if (!ret)
|
|
ret = res;
|
|
|
|
i++;
|
|
ofs += mtd->writesize;
|
|
} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_block_markbad_lowlevel - mark a block bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* This function performs the generic NAND bad block marking steps (i.e., bad
|
|
* block table(s) and/or marker(s)). We only allow the hardware driver to
|
|
* specify how to write bad block markers to OOB (chip->block_markbad).
|
|
*
|
|
* We try operations in the following order:
|
|
*
|
|
* (1) erase the affected block, to allow OOB marker to be written cleanly
|
|
* (2) write bad block marker to OOB area of affected block (unless flag
|
|
* NAND_BBT_NO_OOB_BBM is present)
|
|
* (3) update the BBT
|
|
*
|
|
* Note that we retain the first error encountered in (2) or (3), finish the
|
|
* procedures, and dump the error in the end.
|
|
*/
|
|
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int res, ret = 0;
|
|
|
|
if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
|
|
struct erase_info einfo;
|
|
|
|
/* Attempt erase before marking OOB */
|
|
memset(&einfo, 0, sizeof(einfo));
|
|
einfo.addr = ofs;
|
|
einfo.len = 1ULL << chip->phys_erase_shift;
|
|
nand_erase_nand(mtd, &einfo, 0);
|
|
|
|
/* Write bad block marker to OOB */
|
|
nand_get_device(mtd, FL_WRITING);
|
|
ret = chip->block_markbad(mtd, ofs);
|
|
nand_release_device(mtd);
|
|
}
|
|
|
|
/* Mark block bad in BBT */
|
|
if (chip->bbt) {
|
|
res = nand_markbad_bbt(mtd, ofs);
|
|
if (!ret)
|
|
ret = res;
|
|
}
|
|
|
|
if (!ret)
|
|
mtd->ecc_stats.badblocks++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_check_wp - [GENERIC] check if the chip is write protected
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Check, if the device is write protected. The function expects, that the
|
|
* device is already selected.
|
|
*/
|
|
static int nand_check_wp(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u8 status;
|
|
int ret;
|
|
|
|
/* Broken xD cards report WP despite being writable */
|
|
if (chip->options & NAND_BROKEN_XD)
|
|
return 0;
|
|
|
|
/* Check the WP bit */
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return status & NAND_STATUS_WP ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* Check if the block is marked as reserved.
|
|
*/
|
|
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (!chip->bbt)
|
|
return 0;
|
|
/* Return info from the table */
|
|
return nand_isreserved_bbt(mtd, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
* @allowbbt: 1, if its allowed to access the bbt area
|
|
*
|
|
* Check, if the block is bad. Either by reading the bad block table or
|
|
* calling of the scan function.
|
|
*/
|
|
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (!chip->bbt)
|
|
return chip->block_bad(mtd, ofs);
|
|
|
|
/* Return info from the table */
|
|
return nand_isbad_bbt(mtd, ofs, allowbbt);
|
|
}
|
|
|
|
/**
|
|
* panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
|
|
* @mtd: MTD device structure
|
|
* @timeo: Timeout
|
|
*
|
|
* Helper function for nand_wait_ready used when needing to wait in interrupt
|
|
* context.
|
|
*/
|
|
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int i;
|
|
|
|
/* Wait for the device to get ready */
|
|
for (i = 0; i < timeo; i++) {
|
|
if (chip->dev_ready(mtd))
|
|
break;
|
|
touch_softlockup_watchdog();
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Wait for the ready pin after a command, and warn if a timeout occurs.
|
|
*/
|
|
void nand_wait_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
unsigned long timeo = 400;
|
|
|
|
if (in_interrupt() || oops_in_progress)
|
|
return panic_nand_wait_ready(mtd, timeo);
|
|
|
|
/* Wait until command is processed or timeout occurs */
|
|
timeo = jiffies + msecs_to_jiffies(timeo);
|
|
do {
|
|
if (chip->dev_ready(mtd))
|
|
return;
|
|
cond_resched();
|
|
} while (time_before(jiffies, timeo));
|
|
|
|
if (!chip->dev_ready(mtd))
|
|
pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_wait_ready);
|
|
|
|
/**
|
|
* nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
|
|
* @mtd: MTD device structure
|
|
* @timeo: Timeout in ms
|
|
*
|
|
* Wait for status ready (i.e. command done) or timeout.
|
|
*/
|
|
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
|
|
{
|
|
register struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret;
|
|
|
|
timeo = jiffies + msecs_to_jiffies(timeo);
|
|
do {
|
|
u8 status;
|
|
|
|
ret = nand_read_data_op(chip, &status, sizeof(status), true);
|
|
if (ret)
|
|
return;
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
touch_softlockup_watchdog();
|
|
} while (time_before(jiffies, timeo));
|
|
};
|
|
|
|
/**
|
|
* nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
|
|
* @chip: NAND chip structure
|
|
* @timeout_ms: Timeout in ms
|
|
*
|
|
* Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
|
|
* If that does not happen whitin the specified timeout, -ETIMEDOUT is
|
|
* returned.
|
|
*
|
|
* This helper is intended to be used when the controller does not have access
|
|
* to the NAND R/B pin.
|
|
*
|
|
* Be aware that calling this helper from an ->exec_op() implementation means
|
|
* ->exec_op() must be re-entrant.
|
|
*
|
|
* Return 0 if the NAND chip is ready, a negative error otherwise.
|
|
*/
|
|
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
|
|
{
|
|
u8 status = 0;
|
|
int ret;
|
|
|
|
if (!chip->exec_op)
|
|
return -ENOTSUPP;
|
|
|
|
ret = nand_status_op(chip, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
|
|
do {
|
|
ret = nand_read_data_op(chip, &status, sizeof(status), true);
|
|
if (ret)
|
|
break;
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
|
|
/*
|
|
* Typical lowest execution time for a tR on most NANDs is 10us,
|
|
* use this as polling delay before doing something smarter (ie.
|
|
* deriving a delay from the timeout value, timeout_ms/ratio).
|
|
*/
|
|
udelay(10);
|
|
} while (time_before(jiffies, timeout_ms));
|
|
|
|
/*
|
|
* We have to exit READ_STATUS mode in order to read real data on the
|
|
* bus in case the WAITRDY instruction is preceding a DATA_IN
|
|
* instruction.
|
|
*/
|
|
nand_exit_status_op(chip);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
|
|
|
|
/**
|
|
* nand_command - [DEFAULT] Send command to NAND device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*
|
|
* Send command to NAND device. This function is used for small page devices
|
|
* (512 Bytes per page).
|
|
*/
|
|
static void nand_command(struct mtd_info *mtd, unsigned int command,
|
|
int column, int page_addr)
|
|
{
|
|
register struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
|
|
|
|
/* Write out the command to the device */
|
|
if (command == NAND_CMD_SEQIN) {
|
|
int readcmd;
|
|
|
|
if (column >= mtd->writesize) {
|
|
/* OOB area */
|
|
column -= mtd->writesize;
|
|
readcmd = NAND_CMD_READOOB;
|
|
} else if (column < 256) {
|
|
/* First 256 bytes --> READ0 */
|
|
readcmd = NAND_CMD_READ0;
|
|
} else {
|
|
column -= 256;
|
|
readcmd = NAND_CMD_READ1;
|
|
}
|
|
chip->cmd_ctrl(mtd, readcmd, ctrl);
|
|
ctrl &= ~NAND_CTRL_CHANGE;
|
|
}
|
|
if (command != NAND_CMD_NONE)
|
|
chip->cmd_ctrl(mtd, command, ctrl);
|
|
|
|
/* Address cycle, when necessary */
|
|
ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (chip->options & NAND_BUSWIDTH_16 &&
|
|
!nand_opcode_8bits(command))
|
|
column >>= 1;
|
|
chip->cmd_ctrl(mtd, column, ctrl);
|
|
ctrl &= ~NAND_CTRL_CHANGE;
|
|
}
|
|
if (page_addr != -1) {
|
|
chip->cmd_ctrl(mtd, page_addr, ctrl);
|
|
ctrl &= ~NAND_CTRL_CHANGE;
|
|
chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
|
|
}
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
/*
|
|
* Program and erase have their own busy handlers status and sequential
|
|
* in needs no delay
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_NONE:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_SET_FEATURES:
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (chip->dev_ready)
|
|
break;
|
|
udelay(chip->chip_delay);
|
|
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
|
|
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
chip->cmd_ctrl(mtd,
|
|
NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
|
|
nand_wait_status_ready(mtd, 250);
|
|
return;
|
|
|
|
/* This applies to read commands */
|
|
case NAND_CMD_READ0:
|
|
/*
|
|
* READ0 is sometimes used to exit GET STATUS mode. When this
|
|
* is the case no address cycles are requested, and we can use
|
|
* this information to detect that we should not wait for the
|
|
* device to be ready.
|
|
*/
|
|
if (column == -1 && page_addr == -1)
|
|
return;
|
|
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay
|
|
*/
|
|
if (!chip->dev_ready) {
|
|
udelay(chip->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine.
|
|
*/
|
|
ndelay(100);
|
|
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
static void nand_ccs_delay(struct nand_chip *chip)
|
|
{
|
|
/*
|
|
* The controller already takes care of waiting for tCCS when the RNDIN
|
|
* or RNDOUT command is sent, return directly.
|
|
*/
|
|
if (!(chip->options & NAND_WAIT_TCCS))
|
|
return;
|
|
|
|
/*
|
|
* Wait tCCS_min if it is correctly defined, otherwise wait 500ns
|
|
* (which should be safe for all NANDs).
|
|
*/
|
|
if (chip->setup_data_interface)
|
|
ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
|
|
else
|
|
ndelay(500);
|
|
}
|
|
|
|
/**
|
|
* nand_command_lp - [DEFAULT] Send command to NAND large page device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*
|
|
* Send command to NAND device. This is the version for the new large page
|
|
* devices. We don't have the separate regions as we have in the small page
|
|
* devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
|
|
*/
|
|
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
|
|
int column, int page_addr)
|
|
{
|
|
register struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
/* Emulate NAND_CMD_READOOB */
|
|
if (command == NAND_CMD_READOOB) {
|
|
column += mtd->writesize;
|
|
command = NAND_CMD_READ0;
|
|
}
|
|
|
|
/* Command latch cycle */
|
|
if (command != NAND_CMD_NONE)
|
|
chip->cmd_ctrl(mtd, command,
|
|
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
|
|
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (chip->options & NAND_BUSWIDTH_16 &&
|
|
!nand_opcode_8bits(command))
|
|
column >>= 1;
|
|
chip->cmd_ctrl(mtd, column, ctrl);
|
|
ctrl &= ~NAND_CTRL_CHANGE;
|
|
|
|
/* Only output a single addr cycle for 8bits opcodes. */
|
|
if (!nand_opcode_8bits(command))
|
|
chip->cmd_ctrl(mtd, column >> 8, ctrl);
|
|
}
|
|
if (page_addr != -1) {
|
|
chip->cmd_ctrl(mtd, page_addr, ctrl);
|
|
chip->cmd_ctrl(mtd, page_addr >> 8,
|
|
NAND_NCE | NAND_ALE);
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
chip->cmd_ctrl(mtd, page_addr >> 16,
|
|
NAND_NCE | NAND_ALE);
|
|
}
|
|
}
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
/*
|
|
* Program and erase have their own busy handlers status, sequential
|
|
* in and status need no delay.
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_NONE:
|
|
case NAND_CMD_CACHEDPROG:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_SET_FEATURES:
|
|
return;
|
|
|
|
case NAND_CMD_RNDIN:
|
|
nand_ccs_delay(chip);
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (chip->dev_ready)
|
|
break;
|
|
udelay(chip->chip_delay);
|
|
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
|
|
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
|
|
NAND_NCE | NAND_CTRL_CHANGE);
|
|
/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
|
|
nand_wait_status_ready(mtd, 250);
|
|
return;
|
|
|
|
case NAND_CMD_RNDOUT:
|
|
/* No ready / busy check necessary */
|
|
chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
|
|
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
|
|
NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
nand_ccs_delay(chip);
|
|
return;
|
|
|
|
case NAND_CMD_READ0:
|
|
/*
|
|
* READ0 is sometimes used to exit GET STATUS mode. When this
|
|
* is the case no address cycles are requested, and we can use
|
|
* this information to detect that READSTART should not be
|
|
* issued.
|
|
*/
|
|
if (column == -1 && page_addr == -1)
|
|
return;
|
|
|
|
chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
|
|
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
|
|
NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
/* This applies to read commands */
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay.
|
|
*/
|
|
if (!chip->dev_ready) {
|
|
udelay(chip->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine.
|
|
*/
|
|
ndelay(100);
|
|
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
/**
|
|
* panic_nand_get_device - [GENERIC] Get chip for selected access
|
|
* @chip: the nand chip descriptor
|
|
* @mtd: MTD device structure
|
|
* @new_state: the state which is requested
|
|
*
|
|
* Used when in panic, no locks are taken.
|
|
*/
|
|
static void panic_nand_get_device(struct nand_chip *chip,
|
|
struct mtd_info *mtd, int new_state)
|
|
{
|
|
/* Hardware controller shared among independent devices */
|
|
chip->controller->active = chip;
|
|
chip->state = new_state;
|
|
}
|
|
|
|
/**
|
|
* nand_get_device - [GENERIC] Get chip for selected access
|
|
* @mtd: MTD device structure
|
|
* @new_state: the state which is requested
|
|
*
|
|
* Get the device and lock it for exclusive access
|
|
*/
|
|
static int
|
|
nand_get_device(struct mtd_info *mtd, int new_state)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
spinlock_t *lock = &chip->controller->lock;
|
|
wait_queue_head_t *wq = &chip->controller->wq;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
retry:
|
|
spin_lock(lock);
|
|
|
|
/* Hardware controller shared among independent devices */
|
|
if (!chip->controller->active)
|
|
chip->controller->active = chip;
|
|
|
|
if (chip->controller->active == chip && chip->state == FL_READY) {
|
|
chip->state = new_state;
|
|
spin_unlock(lock);
|
|
return 0;
|
|
}
|
|
if (new_state == FL_PM_SUSPENDED) {
|
|
if (chip->controller->active->state == FL_PM_SUSPENDED) {
|
|
chip->state = FL_PM_SUSPENDED;
|
|
spin_unlock(lock);
|
|
return 0;
|
|
}
|
|
}
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(wq, &wait);
|
|
spin_unlock(lock);
|
|
schedule();
|
|
remove_wait_queue(wq, &wait);
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* panic_nand_wait - [GENERIC] wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @chip: NAND chip structure
|
|
* @timeo: timeout
|
|
*
|
|
* Wait for command done. This is a helper function for nand_wait used when
|
|
* we are in interrupt context. May happen when in panic and trying to write
|
|
* an oops through mtdoops.
|
|
*/
|
|
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
|
|
unsigned long timeo)
|
|
{
|
|
int i;
|
|
for (i = 0; i < timeo; i++) {
|
|
if (chip->dev_ready) {
|
|
if (chip->dev_ready(mtd))
|
|
break;
|
|
} else {
|
|
int ret;
|
|
u8 status;
|
|
|
|
ret = nand_read_data_op(chip, &status, sizeof(status),
|
|
true);
|
|
if (ret)
|
|
return;
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
}
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_wait - [DEFAULT] wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @chip: NAND chip structure
|
|
*
|
|
* Wait for command done. This applies to erase and program only.
|
|
*/
|
|
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
|
|
unsigned long timeo = 400;
|
|
u8 status;
|
|
int ret;
|
|
|
|
/*
|
|
* Apply this short delay always to ensure that we do wait tWB in any
|
|
* case on any machine.
|
|
*/
|
|
ndelay(100);
|
|
|
|
ret = nand_status_op(chip, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (in_interrupt() || oops_in_progress)
|
|
panic_nand_wait(mtd, chip, timeo);
|
|
else {
|
|
timeo = jiffies + msecs_to_jiffies(timeo);
|
|
do {
|
|
if (chip->dev_ready) {
|
|
if (chip->dev_ready(mtd))
|
|
break;
|
|
} else {
|
|
ret = nand_read_data_op(chip, &status,
|
|
sizeof(status), true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
}
|
|
cond_resched();
|
|
} while (time_before(jiffies, timeo));
|
|
}
|
|
|
|
ret = nand_read_data_op(chip, &status, sizeof(status), true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* This can happen if in case of timeout or buggy dev_ready */
|
|
WARN_ON(!(status & NAND_STATUS_READY));
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* nand_reset_data_interface - Reset data interface and timings
|
|
* @chip: The NAND chip
|
|
* @chipnr: Internal die id
|
|
*
|
|
* Reset the Data interface and timings to ONFI mode 0.
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
if (!chip->setup_data_interface)
|
|
return 0;
|
|
|
|
/*
|
|
* The ONFI specification says:
|
|
* "
|
|
* To transition from NV-DDR or NV-DDR2 to the SDR data
|
|
* interface, the host shall use the Reset (FFh) command
|
|
* using SDR timing mode 0. A device in any timing mode is
|
|
* required to recognize Reset (FFh) command issued in SDR
|
|
* timing mode 0.
|
|
* "
|
|
*
|
|
* Configure the data interface in SDR mode and set the
|
|
* timings to timing mode 0.
|
|
*/
|
|
|
|
onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
|
|
ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
|
|
if (ret)
|
|
pr_err("Failed to configure data interface to SDR timing mode 0\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_setup_data_interface - Setup the best data interface and timings
|
|
* @chip: The NAND chip
|
|
* @chipnr: Internal die id
|
|
*
|
|
* Find and configure the best data interface and NAND timings supported by
|
|
* the chip and the driver.
|
|
* First tries to retrieve supported timing modes from ONFI information,
|
|
* and if the NAND chip does not support ONFI, relies on the
|
|
* ->onfi_timing_mode_default specified in the nand_ids table.
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
if (!chip->setup_data_interface)
|
|
return 0;
|
|
|
|
/*
|
|
* Ensure the timing mode has been changed on the chip side
|
|
* before changing timings on the controller side.
|
|
*/
|
|
if (chip->onfi_version &&
|
|
(le16_to_cpu(chip->onfi_params.opt_cmd) &
|
|
ONFI_OPT_CMD_SET_GET_FEATURES)) {
|
|
u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
|
|
chip->onfi_timing_mode_default,
|
|
};
|
|
|
|
ret = chip->onfi_set_features(mtd, chip,
|
|
ONFI_FEATURE_ADDR_TIMING_MODE,
|
|
tmode_param);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_init_data_interface - find the best data interface and timings
|
|
* @chip: The NAND chip
|
|
*
|
|
* Find the best data interface and NAND timings supported by the chip
|
|
* and the driver.
|
|
* First tries to retrieve supported timing modes from ONFI information,
|
|
* and if the NAND chip does not support ONFI, relies on the
|
|
* ->onfi_timing_mode_default specified in the nand_ids table. After this
|
|
* function nand_chip->data_interface is initialized with the best timing mode
|
|
* available.
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_init_data_interface(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int modes, mode, ret;
|
|
|
|
if (!chip->setup_data_interface)
|
|
return 0;
|
|
|
|
/*
|
|
* First try to identify the best timings from ONFI parameters and
|
|
* if the NAND does not support ONFI, fallback to the default ONFI
|
|
* timing mode.
|
|
*/
|
|
modes = onfi_get_async_timing_mode(chip);
|
|
if (modes == ONFI_TIMING_MODE_UNKNOWN) {
|
|
if (!chip->onfi_timing_mode_default)
|
|
return 0;
|
|
|
|
modes = GENMASK(chip->onfi_timing_mode_default, 0);
|
|
}
|
|
|
|
|
|
for (mode = fls(modes) - 1; mode >= 0; mode--) {
|
|
ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
|
|
if (ret)
|
|
continue;
|
|
|
|
/*
|
|
* Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
|
|
* controller supports the requested timings.
|
|
*/
|
|
ret = chip->setup_data_interface(mtd,
|
|
NAND_DATA_IFACE_CHECK_ONLY,
|
|
&chip->data_interface);
|
|
if (!ret) {
|
|
chip->onfi_timing_mode_default = mode;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_fill_column_cycles - fill the column cycles of an address
|
|
* @chip: The NAND chip
|
|
* @addrs: Array of address cycles to fill
|
|
* @offset_in_page: The offset in the page
|
|
*
|
|
* Fills the first or the first two bytes of the @addrs field depending
|
|
* on the NAND bus width and the page size.
|
|
*
|
|
* Returns the number of cycles needed to encode the column, or a negative
|
|
* error code in case one of the arguments is invalid.
|
|
*/
|
|
static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
|
|
unsigned int offset_in_page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/* Make sure the offset is less than the actual page size. */
|
|
if (offset_in_page > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* On small page NANDs, there's a dedicated command to access the OOB
|
|
* area, and the column address is relative to the start of the OOB
|
|
* area, not the start of the page. Asjust the address accordingly.
|
|
*/
|
|
if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
|
|
offset_in_page -= mtd->writesize;
|
|
|
|
/*
|
|
* The offset in page is expressed in bytes, if the NAND bus is 16-bit
|
|
* wide, then it must be divided by 2.
|
|
*/
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
if (WARN_ON(offset_in_page % 2))
|
|
return -EINVAL;
|
|
|
|
offset_in_page /= 2;
|
|
}
|
|
|
|
addrs[0] = offset_in_page;
|
|
|
|
/*
|
|
* Small page NANDs use 1 cycle for the columns, while large page NANDs
|
|
* need 2
|
|
*/
|
|
if (mtd->writesize <= 512)
|
|
return 1;
|
|
|
|
addrs[1] = offset_in_page >> 8;
|
|
|
|
return 2;
|
|
}
|
|
|
|
static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
u8 addrs[4];
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
int ret;
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
if (offset_in_page >= mtd->writesize)
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
|
|
else if (offset_in_page >= 256 &&
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
addrs[1] = page;
|
|
addrs[2] = page >> 8;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
addrs[3] = page >> 16;
|
|
instrs[1].ctx.addr.naddrs++;
|
|
}
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, void *buf,
|
|
unsigned int len)
|
|
{
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
u8 addrs[5];
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
NAND_OP_ADDR(4, addrs, 0),
|
|
NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
int ret;
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
addrs[2] = page;
|
|
addrs[3] = page >> 8;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
addrs[4] = page >> 16;
|
|
instrs[1].ctx.addr.naddrs++;
|
|
}
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_op - Do a READ PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: page to read
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a READ PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, void *buf, unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op) {
|
|
if (mtd->writesize > 512)
|
|
return nand_lp_exec_read_page_op(chip, page,
|
|
offset_in_page, buf,
|
|
len);
|
|
|
|
return nand_sp_exec_read_page_op(chip, page, offset_in_page,
|
|
buf, len);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
|
|
if (len)
|
|
chip->read_buf(mtd, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_read_page_op);
|
|
|
|
/**
|
|
* nand_read_param_page_op - Do a READ PARAMETER PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: parameter page to read
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a READ PARAMETER PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int i;
|
|
u8 *p = buf;
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_PARAM, 0),
|
|
NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_8BIT_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
|
|
for (i = 0; i < len; i++)
|
|
p[i] = chip->read_byte(mtd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_change_read_column_op - Do a CHANGE READ COLUMN operation
|
|
* @chip: The NAND chip
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function issues a CHANGE READ COLUMN operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_change_read_column_op(struct nand_chip *chip,
|
|
unsigned int offset_in_page, void *buf,
|
|
unsigned int len, bool force_8bit)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
/* Small page NANDs do not support column change. */
|
|
if (mtd->writesize <= 512)
|
|
return -ENOTSUPP;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
u8 addrs[2] = {};
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
|
|
NAND_OP_ADDR(2, addrs, 0),
|
|
NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
|
|
PSEC_TO_NSEC(sdr->tCCS_min)),
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
int ret;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
instrs[3].ctx.data.force_8bit = force_8bit;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
|
|
if (len)
|
|
chip->read_buf(mtd, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_change_read_column_op);
|
|
|
|
/**
|
|
* nand_read_oob_op - Do a READ OOB operation
|
|
* @chip: The NAND chip
|
|
* @page: page to read
|
|
* @offset_in_oob: offset within the OOB area
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a READ OOB operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_oob, void *buf, unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_oob + len > mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op)
|
|
return nand_read_page_op(chip, page,
|
|
mtd->writesize + offset_in_oob,
|
|
buf, len);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
|
|
if (len)
|
|
chip->read_buf(mtd, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_read_oob_op);
|
|
|
|
static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, const void *buf,
|
|
unsigned int len, bool prog)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
u8 addrs[5] = {};
|
|
struct nand_op_instr instrs[] = {
|
|
/*
|
|
* The first instruction will be dropped if we're dealing
|
|
* with a large page NAND and adjusted if we're dealing
|
|
* with a small page NAND and the page offset is > 255.
|
|
*/
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
NAND_OP_CMD(NAND_CMD_SEQIN, 0),
|
|
NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
int ret;
|
|
u8 status;
|
|
|
|
if (naddrs < 0)
|
|
return naddrs;
|
|
|
|
addrs[naddrs++] = page;
|
|
addrs[naddrs++] = page >> 8;
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
addrs[naddrs++] = page >> 16;
|
|
|
|
instrs[2].ctx.addr.naddrs = naddrs;
|
|
|
|
/* Drop the last two instructions if we're not programming the page. */
|
|
if (!prog) {
|
|
op.ninstrs -= 2;
|
|
/* Also drop the DATA_OUT instruction if empty. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
}
|
|
|
|
if (mtd->writesize <= 512) {
|
|
/*
|
|
* Small pages need some more tweaking: we have to adjust the
|
|
* first instruction depending on the page offset we're trying
|
|
* to access.
|
|
*/
|
|
if (offset_in_page >= mtd->writesize)
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
|
|
else if (offset_in_page >= 256 &&
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
|
|
} else {
|
|
/*
|
|
* Drop the first command if we're dealing with a large page
|
|
* NAND.
|
|
*/
|
|
op.instrs++;
|
|
op.ninstrs--;
|
|
}
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (!prog || ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* nand_prog_page_begin_op - starts a PROG PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: page to write
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer containing the data to write to the page
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues the first half of a PROG PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, const void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op)
|
|
return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
|
|
len, false);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
|
|
|
|
if (buf)
|
|
chip->write_buf(mtd, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
|
|
|
|
/**
|
|
* nand_prog_page_end_op - ends a PROG PAGE operation
|
|
* @chip: The NAND chip
|
|
*
|
|
* This function issues the second half of a PROG PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_prog_page_end_op(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
u8 status;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_PAGEPROG,
|
|
PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
ret = chip->waitfunc(mtd, chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
status = ret;
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
|
|
|
|
/**
|
|
* nand_prog_page_op - Do a full PROG PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: page to write
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer containing the data to write to the page
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a full PROG PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, const void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status;
|
|
|
|
if (!len || !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op) {
|
|
status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
|
|
len, true);
|
|
} else {
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
|
|
chip->write_buf(mtd, buf, len);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_op);
|
|
|
|
/**
|
|
* nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
|
|
* @chip: The NAND chip
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer containing the data to send to the NAND
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function issues a CHANGE WRITE COLUMN operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_change_write_column_op(struct nand_chip *chip,
|
|
unsigned int offset_in_page,
|
|
const void *buf, unsigned int len,
|
|
bool force_8bit)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
/* Small page NANDs do not support column change. */
|
|
if (mtd->writesize <= 512)
|
|
return -ENOTSUPP;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
u8 addrs[2];
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_RNDIN, 0),
|
|
NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
int ret;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
instrs[2].ctx.data.force_8bit = force_8bit;
|
|
|
|
/* Drop the DATA_OUT instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
|
|
if (len)
|
|
chip->write_buf(mtd, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_change_write_column_op);
|
|
|
|
/**
|
|
* nand_readid_op - Do a READID operation
|
|
* @chip: The NAND chip
|
|
* @addr: address cycle to pass after the READID command
|
|
* @buf: buffer used to store the ID
|
|
* @len: length of the buffer
|
|
*
|
|
* This function sends a READID command and reads back the ID returned by the
|
|
* NAND.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int i;
|
|
u8 *id = buf;
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READID, 0),
|
|
NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_8BIT_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
|
|
|
|
for (i = 0; i < len; i++)
|
|
id[i] = chip->read_byte(mtd);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_readid_op);
|
|
|
|
/**
|
|
* nand_status_op - Do a STATUS operation
|
|
* @chip: The NAND chip
|
|
* @status: out variable to store the NAND status
|
|
*
|
|
* This function sends a STATUS command and reads back the status returned by
|
|
* the NAND.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_status_op(struct nand_chip *chip, u8 *status)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_STATUS,
|
|
PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_8BIT_DATA_IN(1, status, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
if (!status)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
|
|
if (status)
|
|
*status = chip->read_byte(mtd);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_status_op);
|
|
|
|
/**
|
|
* nand_exit_status_op - Exit a STATUS operation
|
|
* @chip: The NAND chip
|
|
*
|
|
* This function sends a READ0 command to cancel the effect of the STATUS
|
|
* command to avoid reading only the status until a new read command is sent.
|
|
*
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_exit_status_op(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (chip->exec_op) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_exit_status_op);
|
|
|
|
/**
|
|
* nand_erase_op - Do an erase operation
|
|
* @chip: The NAND chip
|
|
* @eraseblock: block to erase
|
|
*
|
|
* This function sends an ERASE command and waits for the NAND to be ready
|
|
* before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int page = eraseblock <<
|
|
(chip->phys_erase_shift - chip->page_shift);
|
|
int ret;
|
|
u8 status;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
u8 addrs[3] = { page, page >> 8, page >> 16 };
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_ERASE1, 0),
|
|
NAND_OP_ADDR(2, addrs, 0),
|
|
NAND_OP_CMD(NAND_CMD_ERASE2,
|
|
PSEC_TO_MSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
instrs[1].ctx.addr.naddrs++;
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
|
|
|
|
ret = chip->waitfunc(mtd, chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
status = ret;
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_erase_op);
|
|
|
|
/**
|
|
* nand_set_features_op - Do a SET FEATURES operation
|
|
* @chip: The NAND chip
|
|
* @feature: feature id
|
|
* @data: 4 bytes of data
|
|
*
|
|
* This function sends a SET FEATURES command and waits for the NAND to be
|
|
* ready before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
|
|
const void *data)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const u8 *params = data;
|
|
int i, ret;
|
|
u8 status;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
|
|
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
|
|
PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
|
chip->write_byte(mtd, params[i]);
|
|
|
|
ret = chip->waitfunc(mtd, chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
status = ret;
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_get_features_op - Do a GET FEATURES operation
|
|
* @chip: The NAND chip
|
|
* @feature: feature id
|
|
* @data: 4 bytes of data
|
|
*
|
|
* This function sends a GET FEATURES command and waits for the NAND to be
|
|
* ready before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
|
|
void *data)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u8 *params = data;
|
|
int i;
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
|
|
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
|
|
data, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
|
params[i] = chip->read_byte(mtd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_reset_op - Do a reset operation
|
|
* @chip: The NAND chip
|
|
*
|
|
* This function sends a RESET command and waits for the NAND to be ready
|
|
* before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_reset_op(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (chip->exec_op) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_reset_op);
|
|
|
|
/**
|
|
* nand_read_data_op - Read data from the NAND
|
|
* @chip: The NAND chip
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function does a raw data read on the bus. Usually used after launching
|
|
* another NAND operation like nand_read_page_op().
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
|
|
bool force_8bit)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (!len || !buf)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
instrs[0].ctx.data.force_8bit = force_8bit;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
if (force_8bit) {
|
|
u8 *p = buf;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
p[i] = chip->read_byte(mtd);
|
|
} else {
|
|
chip->read_buf(mtd, buf, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_read_data_op);
|
|
|
|
/**
|
|
* nand_write_data_op - Write data from the NAND
|
|
* @chip: The NAND chip
|
|
* @buf: buffer containing the data to send on the bus
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function does a raw data write on the bus. Usually used after launching
|
|
* another NAND operation like nand_write_page_begin_op().
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_write_data_op(struct nand_chip *chip, const void *buf,
|
|
unsigned int len, bool force_8bit)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (!len || !buf)
|
|
return -EINVAL;
|
|
|
|
if (chip->exec_op) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
instrs[0].ctx.data.force_8bit = force_8bit;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
if (force_8bit) {
|
|
const u8 *p = buf;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
chip->write_byte(mtd, p[i]);
|
|
} else {
|
|
chip->write_buf(mtd, buf, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_write_data_op);
|
|
|
|
/**
|
|
* struct nand_op_parser_ctx - Context used by the parser
|
|
* @instrs: array of all the instructions that must be addressed
|
|
* @ninstrs: length of the @instrs array
|
|
* @subop: Sub-operation to be passed to the NAND controller
|
|
*
|
|
* This structure is used by the core to split NAND operations into
|
|
* sub-operations that can be handled by the NAND controller.
|
|
*/
|
|
struct nand_op_parser_ctx {
|
|
const struct nand_op_instr *instrs;
|
|
unsigned int ninstrs;
|
|
struct nand_subop subop;
|
|
};
|
|
|
|
/**
|
|
* nand_op_parser_must_split_instr - Checks if an instruction must be split
|
|
* @pat: the parser pattern element that matches @instr
|
|
* @instr: pointer to the instruction to check
|
|
* @start_offset: this is an in/out parameter. If @instr has already been
|
|
* split, then @start_offset is the offset from which to start
|
|
* (either an address cycle or an offset in the data buffer).
|
|
* Conversely, if the function returns true (ie. instr must be
|
|
* split), this parameter is updated to point to the first
|
|
* data/address cycle that has not been taken care of.
|
|
*
|
|
* Some NAND controllers are limited and cannot send X address cycles with a
|
|
* unique operation, or cannot read/write more than Y bytes at the same time.
|
|
* In this case, split the instruction that does not fit in a single
|
|
* controller-operation into two or more chunks.
|
|
*
|
|
* Returns true if the instruction must be split, false otherwise.
|
|
* The @start_offset parameter is also updated to the offset at which the next
|
|
* bundle of instruction must start (if an address or a data instruction).
|
|
*/
|
|
static bool
|
|
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
|
|
const struct nand_op_instr *instr,
|
|
unsigned int *start_offset)
|
|
{
|
|
switch (pat->type) {
|
|
case NAND_OP_ADDR_INSTR:
|
|
if (!pat->ctx.addr.maxcycles)
|
|
break;
|
|
|
|
if (instr->ctx.addr.naddrs - *start_offset >
|
|
pat->ctx.addr.maxcycles) {
|
|
*start_offset += pat->ctx.addr.maxcycles;
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
if (!pat->ctx.data.maxlen)
|
|
break;
|
|
|
|
if (instr->ctx.data.len - *start_offset >
|
|
pat->ctx.data.maxlen) {
|
|
*start_offset += pat->ctx.data.maxlen;
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* nand_op_parser_match_pat - Checks if a pattern matches the instructions
|
|
* remaining in the parser context
|
|
* @pat: the pattern to test
|
|
* @ctx: the parser context structure to match with the pattern @pat
|
|
*
|
|
* Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
|
|
* Returns true if this is the case, false ortherwise. When true is returned,
|
|
* @ctx->subop is updated with the set of instructions to be passed to the
|
|
* controller driver.
|
|
*/
|
|
static bool
|
|
nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
|
|
struct nand_op_parser_ctx *ctx)
|
|
{
|
|
unsigned int instr_offset = ctx->subop.first_instr_start_off;
|
|
const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
|
|
const struct nand_op_instr *instr = ctx->subop.instrs;
|
|
unsigned int i, ninstrs;
|
|
|
|
for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
|
|
/*
|
|
* The pattern instruction does not match the operation
|
|
* instruction. If the instruction is marked optional in the
|
|
* pattern definition, we skip the pattern element and continue
|
|
* to the next one. If the element is mandatory, there's no
|
|
* match and we can return false directly.
|
|
*/
|
|
if (instr->type != pat->elems[i].type) {
|
|
if (!pat->elems[i].optional)
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now check the pattern element constraints. If the pattern is
|
|
* not able to handle the whole instruction in a single step,
|
|
* we have to split it.
|
|
* The last_instr_end_off value comes back updated to point to
|
|
* the position where we have to split the instruction (the
|
|
* start of the next subop chunk).
|
|
*/
|
|
if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
|
|
&instr_offset)) {
|
|
ninstrs++;
|
|
i++;
|
|
break;
|
|
}
|
|
|
|
instr++;
|
|
ninstrs++;
|
|
instr_offset = 0;
|
|
}
|
|
|
|
/*
|
|
* This can happen if all instructions of a pattern are optional.
|
|
* Still, if there's not at least one instruction handled by this
|
|
* pattern, this is not a match, and we should try the next one (if
|
|
* any).
|
|
*/
|
|
if (!ninstrs)
|
|
return false;
|
|
|
|
/*
|
|
* We had a match on the pattern head, but the pattern may be longer
|
|
* than the instructions we're asked to execute. We need to make sure
|
|
* there's no mandatory elements in the pattern tail.
|
|
*/
|
|
for (; i < pat->nelems; i++) {
|
|
if (!pat->elems[i].optional)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We have a match: update the subop structure accordingly and return
|
|
* true.
|
|
*/
|
|
ctx->subop.ninstrs = ninstrs;
|
|
ctx->subop.last_instr_end_off = instr_offset;
|
|
|
|
return true;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
|
|
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
|
|
{
|
|
const struct nand_op_instr *instr;
|
|
char *prefix = " ";
|
|
unsigned int i;
|
|
|
|
pr_debug("executing subop:\n");
|
|
|
|
for (i = 0; i < ctx->ninstrs; i++) {
|
|
instr = &ctx->instrs[i];
|
|
|
|
if (instr == &ctx->subop.instrs[0])
|
|
prefix = " ->";
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
pr_debug("%sCMD [0x%02x]\n", prefix,
|
|
instr->ctx.cmd.opcode);
|
|
break;
|
|
case NAND_OP_ADDR_INSTR:
|
|
pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
|
|
instr->ctx.addr.naddrs,
|
|
instr->ctx.addr.naddrs < 64 ?
|
|
instr->ctx.addr.naddrs : 64,
|
|
instr->ctx.addr.addrs);
|
|
break;
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
pr_debug("%sDATA_IN [%d B%s]\n", prefix,
|
|
instr->ctx.data.len,
|
|
instr->ctx.data.force_8bit ?
|
|
", force 8-bit" : "");
|
|
break;
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
|
|
instr->ctx.data.len,
|
|
instr->ctx.data.force_8bit ?
|
|
", force 8-bit" : "");
|
|
break;
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
pr_debug("%sWAITRDY [max %d ms]\n", prefix,
|
|
instr->ctx.waitrdy.timeout_ms);
|
|
break;
|
|
}
|
|
|
|
if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
|
|
prefix = " ";
|
|
}
|
|
}
|
|
#else
|
|
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
|
|
{
|
|
/* NOP */
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* nand_op_parser_exec_op - exec_op parser
|
|
* @chip: the NAND chip
|
|
* @parser: patterns description provided by the controller driver
|
|
* @op: the NAND operation to address
|
|
* @check_only: when true, the function only checks if @op can be handled but
|
|
* does not execute the operation
|
|
*
|
|
* Helper function designed to ease integration of NAND controller drivers that
|
|
* only support a limited set of instruction sequences. The supported sequences
|
|
* are described in @parser, and the framework takes care of splitting @op into
|
|
* multiple sub-operations (if required) and pass them back to the ->exec()
|
|
* callback of the matching pattern if @check_only is set to false.
|
|
*
|
|
* NAND controller drivers should call this function from their own ->exec_op()
|
|
* implementation.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise. A failure can be
|
|
* caused by an unsupported operation (none of the supported patterns is able
|
|
* to handle the requested operation), or an error returned by one of the
|
|
* matching pattern->exec() hook.
|
|
*/
|
|
int nand_op_parser_exec_op(struct nand_chip *chip,
|
|
const struct nand_op_parser *parser,
|
|
const struct nand_operation *op, bool check_only)
|
|
{
|
|
struct nand_op_parser_ctx ctx = {
|
|
.subop.instrs = op->instrs,
|
|
.instrs = op->instrs,
|
|
.ninstrs = op->ninstrs,
|
|
};
|
|
unsigned int i;
|
|
|
|
while (ctx.subop.instrs < op->instrs + op->ninstrs) {
|
|
int ret;
|
|
|
|
for (i = 0; i < parser->npatterns; i++) {
|
|
const struct nand_op_parser_pattern *pattern;
|
|
|
|
pattern = &parser->patterns[i];
|
|
if (!nand_op_parser_match_pat(pattern, &ctx))
|
|
continue;
|
|
|
|
nand_op_parser_trace(&ctx);
|
|
|
|
if (check_only)
|
|
break;
|
|
|
|
ret = pattern->exec(chip, &ctx.subop);
|
|
if (ret)
|
|
return ret;
|
|
|
|
break;
|
|
}
|
|
|
|
if (i == parser->npatterns) {
|
|
pr_debug("->exec_op() parser: pattern not found!\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* Update the context structure by pointing to the start of the
|
|
* next subop.
|
|
*/
|
|
ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
|
|
if (ctx.subop.last_instr_end_off)
|
|
ctx.subop.instrs -= 1;
|
|
|
|
ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
|
|
|
|
static bool nand_instr_is_data(const struct nand_op_instr *instr)
|
|
{
|
|
return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
|
|
instr->type == NAND_OP_DATA_OUT_INSTR);
|
|
}
|
|
|
|
static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
return subop && instr_idx < subop->ninstrs;
|
|
}
|
|
|
|
static int nand_subop_get_start_off(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
if (instr_idx)
|
|
return 0;
|
|
|
|
return subop->first_instr_start_off;
|
|
}
|
|
|
|
/**
|
|
* nand_subop_get_addr_start_off - Get the start offset in an address array
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->addr.addrs field of address instructions. This is wrong as address
|
|
* instructions might be split.
|
|
*
|
|
* Given an address instruction, returns the offset of the first cycle to issue.
|
|
*/
|
|
int nand_subop_get_addr_start_off(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
if (!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
|
|
return -EINVAL;
|
|
|
|
return nand_subop_get_start_off(subop, instr_idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
|
|
|
|
/**
|
|
* nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->addr->naddrs field of a data instruction. This is wrong as instructions
|
|
* might be split.
|
|
*
|
|
* Given an address instruction, returns the number of address cycle to issue.
|
|
*/
|
|
int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
int start_off, end_off;
|
|
|
|
if (!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
|
|
return -EINVAL;
|
|
|
|
start_off = nand_subop_get_addr_start_off(subop, instr_idx);
|
|
|
|
if (instr_idx == subop->ninstrs - 1 &&
|
|
subop->last_instr_end_off)
|
|
end_off = subop->last_instr_end_off;
|
|
else
|
|
end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
|
|
|
|
return end_off - start_off;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
|
|
|
|
/**
|
|
* nand_subop_get_data_start_off - Get the start offset in a data array
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->data->buf.{in,out} field of data instructions. This is wrong as data
|
|
* instructions might be split.
|
|
*
|
|
* Given a data instruction, returns the offset to start from.
|
|
*/
|
|
int nand_subop_get_data_start_off(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
if (!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
!nand_instr_is_data(&subop->instrs[instr_idx]))
|
|
return -EINVAL;
|
|
|
|
return nand_subop_get_start_off(subop, instr_idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
|
|
|
|
/**
|
|
* nand_subop_get_data_len - Get the number of bytes to retrieve
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->data->len field of a data instruction. This is wrong as data instructions
|
|
* might be split.
|
|
*
|
|
* Returns the length of the chunk of data to send/receive.
|
|
*/
|
|
int nand_subop_get_data_len(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
int start_off = 0, end_off;
|
|
|
|
if (!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
!nand_instr_is_data(&subop->instrs[instr_idx]))
|
|
return -EINVAL;
|
|
|
|
start_off = nand_subop_get_data_start_off(subop, instr_idx);
|
|
|
|
if (instr_idx == subop->ninstrs - 1 &&
|
|
subop->last_instr_end_off)
|
|
end_off = subop->last_instr_end_off;
|
|
else
|
|
end_off = subop->instrs[instr_idx].ctx.data.len;
|
|
|
|
return end_off - start_off;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
|
|
|
|
/**
|
|
* nand_reset - Reset and initialize a NAND device
|
|
* @chip: The NAND chip
|
|
* @chipnr: Internal die id
|
|
*
|
|
* Save the timings data structure, then apply SDR timings mode 0 (see
|
|
* nand_reset_data_interface for details), do the reset operation, and
|
|
* apply back the previous timings.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_reset(struct nand_chip *chip, int chipnr)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_data_interface saved_data_intf = chip->data_interface;
|
|
int ret;
|
|
|
|
ret = nand_reset_data_interface(chip, chipnr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The CS line has to be released before we can apply the new NAND
|
|
* interface settings, hence this weird ->select_chip() dance.
|
|
*/
|
|
chip->select_chip(mtd, chipnr);
|
|
ret = nand_reset_op(chip);
|
|
chip->select_chip(mtd, -1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->select_chip(mtd, chipnr);
|
|
chip->data_interface = saved_data_intf;
|
|
ret = nand_setup_data_interface(chip, chipnr);
|
|
chip->select_chip(mtd, -1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_reset);
|
|
|
|
/**
|
|
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
|
|
* @buf: buffer to test
|
|
* @len: buffer length
|
|
* @bitflips_threshold: maximum number of bitflips
|
|
*
|
|
* Check if a buffer contains only 0xff, which means the underlying region
|
|
* has been erased and is ready to be programmed.
|
|
* The bitflips_threshold specify the maximum number of bitflips before
|
|
* considering the region is not erased.
|
|
* Note: The logic of this function has been extracted from the memweight
|
|
* implementation, except that nand_check_erased_buf function exit before
|
|
* testing the whole buffer if the number of bitflips exceed the
|
|
* bitflips_threshold value.
|
|
*
|
|
* Returns a positive number of bitflips less than or equal to
|
|
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
|
|
* threshold.
|
|
*/
|
|
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
|
|
{
|
|
const unsigned char *bitmap = buf;
|
|
int bitflips = 0;
|
|
int weight;
|
|
|
|
for (; len && ((uintptr_t)bitmap) % sizeof(long);
|
|
len--, bitmap++) {
|
|
weight = hweight8(*bitmap);
|
|
bitflips += BITS_PER_BYTE - weight;
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
return -EBADMSG;
|
|
}
|
|
|
|
for (; len >= sizeof(long);
|
|
len -= sizeof(long), bitmap += sizeof(long)) {
|
|
unsigned long d = *((unsigned long *)bitmap);
|
|
if (d == ~0UL)
|
|
continue;
|
|
weight = hweight_long(d);
|
|
bitflips += BITS_PER_LONG - weight;
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
return -EBADMSG;
|
|
}
|
|
|
|
for (; len > 0; len--, bitmap++) {
|
|
weight = hweight8(*bitmap);
|
|
bitflips += BITS_PER_BYTE - weight;
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
|
|
* 0xff data
|
|
* @data: data buffer to test
|
|
* @datalen: data length
|
|
* @ecc: ECC buffer
|
|
* @ecclen: ECC length
|
|
* @extraoob: extra OOB buffer
|
|
* @extraooblen: extra OOB length
|
|
* @bitflips_threshold: maximum number of bitflips
|
|
*
|
|
* Check if a data buffer and its associated ECC and OOB data contains only
|
|
* 0xff pattern, which means the underlying region has been erased and is
|
|
* ready to be programmed.
|
|
* The bitflips_threshold specify the maximum number of bitflips before
|
|
* considering the region as not erased.
|
|
*
|
|
* Note:
|
|
* 1/ ECC algorithms are working on pre-defined block sizes which are usually
|
|
* different from the NAND page size. When fixing bitflips, ECC engines will
|
|
* report the number of errors per chunk, and the NAND core infrastructure
|
|
* expect you to return the maximum number of bitflips for the whole page.
|
|
* This is why you should always use this function on a single chunk and
|
|
* not on the whole page. After checking each chunk you should update your
|
|
* max_bitflips value accordingly.
|
|
* 2/ When checking for bitflips in erased pages you should not only check
|
|
* the payload data but also their associated ECC data, because a user might
|
|
* have programmed almost all bits to 1 but a few. In this case, we
|
|
* shouldn't consider the chunk as erased, and checking ECC bytes prevent
|
|
* this case.
|
|
* 3/ The extraoob argument is optional, and should be used if some of your OOB
|
|
* data are protected by the ECC engine.
|
|
* It could also be used if you support subpages and want to attach some
|
|
* extra OOB data to an ECC chunk.
|
|
*
|
|
* Returns a positive number of bitflips less than or equal to
|
|
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
|
|
* threshold. In case of success, the passed buffers are filled with 0xff.
|
|
*/
|
|
int nand_check_erased_ecc_chunk(void *data, int datalen,
|
|
void *ecc, int ecclen,
|
|
void *extraoob, int extraooblen,
|
|
int bitflips_threshold)
|
|
{
|
|
int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
|
|
|
|
data_bitflips = nand_check_erased_buf(data, datalen,
|
|
bitflips_threshold);
|
|
if (data_bitflips < 0)
|
|
return data_bitflips;
|
|
|
|
bitflips_threshold -= data_bitflips;
|
|
|
|
ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
|
|
if (ecc_bitflips < 0)
|
|
return ecc_bitflips;
|
|
|
|
bitflips_threshold -= ecc_bitflips;
|
|
|
|
extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
|
|
bitflips_threshold);
|
|
if (extraoob_bitflips < 0)
|
|
return extraoob_bitflips;
|
|
|
|
if (data_bitflips)
|
|
memset(data, 0xff, datalen);
|
|
|
|
if (ecc_bitflips)
|
|
memset(ecc, 0xff, ecclen);
|
|
|
|
if (extraoob_bitflips)
|
|
memset(extraoob, 0xff, extraooblen);
|
|
|
|
return data_bitflips + ecc_bitflips + extraoob_bitflips;
|
|
}
|
|
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
|
|
|
|
/**
|
|
* nand_read_page_raw - [INTERN] read raw page data without ecc
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* Not for syndrome calculating ECC controllers, which use a special oob layout.
|
|
*/
|
|
int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oob_required) {
|
|
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nand_read_page_raw);
|
|
|
|
/**
|
|
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* We need a special oob layout and handling even when OOB isn't used.
|
|
*/
|
|
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int steps, size, ret;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (steps = chip->ecc.steps; steps > 0; steps--) {
|
|
ret = nand_read_data_op(chip, buf, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += eccsize;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
ret = nand_read_data_op(chip, oob, eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (size) {
|
|
ret = nand_read_data_op(chip, oob, size, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*/
|
|
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @data_offs: offset of requested data within the page
|
|
* @readlen: data length
|
|
* @bufpoi: buffer to store read data
|
|
* @page: page number to read
|
|
*/
|
|
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
|
|
int page)
|
|
{
|
|
int start_step, end_step, num_steps, ret;
|
|
uint8_t *p;
|
|
int data_col_addr, i, gaps = 0;
|
|
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
|
|
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
|
|
int index, section = 0;
|
|
unsigned int max_bitflips = 0;
|
|
struct mtd_oob_region oobregion = { };
|
|
|
|
/* Column address within the page aligned to ECC size (256bytes) */
|
|
start_step = data_offs / chip->ecc.size;
|
|
end_step = (data_offs + readlen - 1) / chip->ecc.size;
|
|
num_steps = end_step - start_step + 1;
|
|
index = start_step * chip->ecc.bytes;
|
|
|
|
/* Data size aligned to ECC ecc.size */
|
|
datafrag_len = num_steps * chip->ecc.size;
|
|
eccfrag_len = num_steps * chip->ecc.bytes;
|
|
|
|
data_col_addr = start_step * chip->ecc.size;
|
|
/* If we read not a page aligned data */
|
|
p = bufpoi + data_col_addr;
|
|
ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Calculate ECC */
|
|
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
|
|
chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
|
|
|
|
/*
|
|
* The performance is faster if we position offsets according to
|
|
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
|
|
*/
|
|
ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oobregion.length < eccfrag_len)
|
|
gaps = 1;
|
|
|
|
if (gaps) {
|
|
ret = nand_change_read_column_op(chip, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* Send the command to read the particular ECC bytes take care
|
|
* about buswidth alignment in read_buf.
|
|
*/
|
|
aligned_pos = oobregion.offset & ~(busw - 1);
|
|
aligned_len = eccfrag_len;
|
|
if (oobregion.offset & (busw - 1))
|
|
aligned_len++;
|
|
if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
|
|
(busw - 1))
|
|
aligned_len++;
|
|
|
|
ret = nand_change_read_column_op(chip,
|
|
mtd->writesize + aligned_pos,
|
|
&chip->oob_poi[aligned_pos],
|
|
aligned_len, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
|
|
chip->oob_poi, index, eccfrag_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
p = bufpoi + data_col_addr;
|
|
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
|
|
&chip->ecc.calc_buf[i]);
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
|
|
&chip->ecc.code_buf[i],
|
|
chip->ecc.bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* Not for syndrome calculating ECC controllers which need a special oob layout.
|
|
*/
|
|
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
}
|
|
|
|
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, eccsize,
|
|
&ecc_code[i], eccbytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* Hardware ECC for large page chips, require OOB to be read first. For this
|
|
* ECC mode, the write_page method is re-used from ECC_HW. These methods
|
|
* read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
|
|
* multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
|
|
* the data area, by overwriting the NAND manufacturer bad block markings.
|
|
*/
|
|
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
/* Read the OOB area first */
|
|
ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, eccsize,
|
|
&ecc_code[i], eccbytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* The hw generator calculates the error syndrome automatically. Therefore we
|
|
* need a special oob layout and handling.
|
|
*/
|
|
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int ret, i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
|
|
|
|
ret = nand_read_data_op(chip, oob, eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stat = chip->ecc.correct(mtd, p, oob, NULL);
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
|
|
oob - eccpadbytes,
|
|
eccpadbytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
/* Calculate remaining oob bytes */
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (i) {
|
|
ret = nand_read_data_op(chip, oob, i, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
|
|
* @mtd: mtd info structure
|
|
* @oob: oob destination address
|
|
* @ops: oob ops structure
|
|
* @len: size of oob to transfer
|
|
*/
|
|
static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
|
|
struct mtd_oob_ops *ops, size_t len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret;
|
|
|
|
switch (ops->mode) {
|
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
case MTD_OPS_RAW:
|
|
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
|
|
return oob + len;
|
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
|
|
ops->ooboffs, len);
|
|
BUG_ON(ret);
|
|
return oob + len;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* nand_setup_read_retry - [INTERN] Set the READ RETRY mode
|
|
* @mtd: MTD device structure
|
|
* @retry_mode: the retry mode to use
|
|
*
|
|
* Some vendors supply a special command to shift the Vt threshold, to be used
|
|
* when there are too many bitflips in a page (i.e., ECC error). After setting
|
|
* a new threshold, the host should retry reading the page.
|
|
*/
|
|
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
pr_debug("setting READ RETRY mode %d\n", retry_mode);
|
|
|
|
if (retry_mode >= chip->read_retries)
|
|
return -EINVAL;
|
|
|
|
if (!chip->setup_read_retry)
|
|
return -EOPNOTSUPP;
|
|
|
|
return chip->setup_read_retry(mtd, retry_mode);
|
|
}
|
|
|
|
/**
|
|
* nand_do_read_ops - [INTERN] Read data with ECC
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @ops: oob ops structure
|
|
*
|
|
* Internal function. Called with chip held.
|
|
*/
|
|
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int chipnr, page, realpage, col, bytes, aligned, oob_required;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
uint32_t readlen = ops->len;
|
|
uint32_t oobreadlen = ops->ooblen;
|
|
uint32_t max_oobsize = mtd_oobavail(mtd, ops);
|
|
|
|
uint8_t *bufpoi, *oob, *buf;
|
|
int use_bufpoi;
|
|
unsigned int max_bitflips = 0;
|
|
int retry_mode = 0;
|
|
bool ecc_fail = false;
|
|
|
|
chipnr = (int)(from >> chip->chip_shift);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
realpage = (int)(from >> chip->page_shift);
|
|
page = realpage & chip->pagemask;
|
|
|
|
col = (int)(from & (mtd->writesize - 1));
|
|
|
|
buf = ops->datbuf;
|
|
oob = ops->oobbuf;
|
|
oob_required = oob ? 1 : 0;
|
|
|
|
while (1) {
|
|
unsigned int ecc_failures = mtd->ecc_stats.failed;
|
|
|
|
bytes = min(mtd->writesize - col, readlen);
|
|
aligned = (bytes == mtd->writesize);
|
|
|
|
if (!aligned)
|
|
use_bufpoi = 1;
|
|
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
|
|
use_bufpoi = !virt_addr_valid(buf) ||
|
|
!IS_ALIGNED((unsigned long)buf,
|
|
chip->buf_align);
|
|
else
|
|
use_bufpoi = 0;
|
|
|
|
/* Is the current page in the buffer? */
|
|
if (realpage != chip->pagebuf || oob) {
|
|
bufpoi = use_bufpoi ? chip->data_buf : buf;
|
|
|
|
if (use_bufpoi && aligned)
|
|
pr_debug("%s: using read bounce buffer for buf@%p\n",
|
|
__func__, buf);
|
|
|
|
read_retry:
|
|
/*
|
|
* Now read the page into the buffer. Absent an error,
|
|
* the read methods return max bitflips per ecc step.
|
|
*/
|
|
if (unlikely(ops->mode == MTD_OPS_RAW))
|
|
ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
|
|
oob_required,
|
|
page);
|
|
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
|
|
!oob)
|
|
ret = chip->ecc.read_subpage(mtd, chip,
|
|
col, bytes, bufpoi,
|
|
page);
|
|
else
|
|
ret = chip->ecc.read_page(mtd, chip, bufpoi,
|
|
oob_required, page);
|
|
if (ret < 0) {
|
|
if (use_bufpoi)
|
|
/* Invalidate page cache */
|
|
chip->pagebuf = -1;
|
|
break;
|
|
}
|
|
|
|
/* Transfer not aligned data */
|
|
if (use_bufpoi) {
|
|
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
|
|
!(mtd->ecc_stats.failed - ecc_failures) &&
|
|
(ops->mode != MTD_OPS_RAW)) {
|
|
chip->pagebuf = realpage;
|
|
chip->pagebuf_bitflips = ret;
|
|
} else {
|
|
/* Invalidate page cache */
|
|
chip->pagebuf = -1;
|
|
}
|
|
memcpy(buf, chip->data_buf + col, bytes);
|
|
}
|
|
|
|
if (unlikely(oob)) {
|
|
int toread = min(oobreadlen, max_oobsize);
|
|
|
|
if (toread) {
|
|
oob = nand_transfer_oob(mtd,
|
|
oob, ops, toread);
|
|
oobreadlen -= toread;
|
|
}
|
|
}
|
|
|
|
if (chip->options & NAND_NEED_READRDY) {
|
|
/* Apply delay or wait for ready/busy pin */
|
|
if (!chip->dev_ready)
|
|
udelay(chip->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
if (mtd->ecc_stats.failed - ecc_failures) {
|
|
if (retry_mode + 1 < chip->read_retries) {
|
|
retry_mode++;
|
|
ret = nand_setup_read_retry(mtd,
|
|
retry_mode);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
/* Reset failures; retry */
|
|
mtd->ecc_stats.failed = ecc_failures;
|
|
goto read_retry;
|
|
} else {
|
|
/* No more retry modes; real failure */
|
|
ecc_fail = true;
|
|
}
|
|
}
|
|
|
|
buf += bytes;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
|
} else {
|
|
memcpy(buf, chip->data_buf + col, bytes);
|
|
buf += bytes;
|
|
max_bitflips = max_t(unsigned int, max_bitflips,
|
|
chip->pagebuf_bitflips);
|
|
}
|
|
|
|
readlen -= bytes;
|
|
|
|
/* Reset to retry mode 0 */
|
|
if (retry_mode) {
|
|
ret = nand_setup_read_retry(mtd, 0);
|
|
if (ret < 0)
|
|
break;
|
|
retry_mode = 0;
|
|
}
|
|
|
|
if (!readlen)
|
|
break;
|
|
|
|
/* For subsequent reads align to page boundary */
|
|
col = 0;
|
|
/* Increment page address */
|
|
realpage++;
|
|
|
|
page = realpage & chip->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
chip->select_chip(mtd, -1);
|
|
chip->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
chip->select_chip(mtd, -1);
|
|
|
|
ops->retlen = ops->len - (size_t) readlen;
|
|
if (oob)
|
|
ops->oobretlen = ops->ooblen - oobreadlen;
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ecc_fail)
|
|
return -EBADMSG;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @page: page number to read
|
|
*/
|
|
int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
|
|
{
|
|
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
|
|
}
|
|
EXPORT_SYMBOL(nand_read_oob_std);
|
|
|
|
/**
|
|
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
|
|
* with syndromes
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @page: page number to read
|
|
*/
|
|
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
int length = mtd->oobsize;
|
|
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int eccsize = chip->ecc.size;
|
|
uint8_t *bufpoi = chip->oob_poi;
|
|
int i, toread, sndrnd = 0, pos, ret;
|
|
|
|
ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
if (sndrnd) {
|
|
int ret;
|
|
|
|
pos = eccsize + i * (eccsize + chunk);
|
|
if (mtd->writesize > 512)
|
|
ret = nand_change_read_column_op(chip, pos,
|
|
NULL, 0,
|
|
false);
|
|
else
|
|
ret = nand_read_page_op(chip, page, pos, NULL,
|
|
0);
|
|
|
|
if (ret)
|
|
return ret;
|
|
} else
|
|
sndrnd = 1;
|
|
toread = min_t(int, length, chunk);
|
|
|
|
ret = nand_read_data_op(chip, bufpoi, toread, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bufpoi += toread;
|
|
length -= toread;
|
|
}
|
|
if (length > 0) {
|
|
ret = nand_read_data_op(chip, bufpoi, length, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nand_read_oob_syndrome);
|
|
|
|
/**
|
|
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @page: page number to write
|
|
*/
|
|
int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
|
|
{
|
|
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
|
|
mtd->oobsize);
|
|
}
|
|
EXPORT_SYMBOL(nand_write_oob_std);
|
|
|
|
/**
|
|
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
|
|
* with syndrome - only for large page flash
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @page: page number to write
|
|
*/
|
|
int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int eccsize = chip->ecc.size, length = mtd->oobsize;
|
|
int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
|
|
const uint8_t *bufpoi = chip->oob_poi;
|
|
|
|
/*
|
|
* data-ecc-data-ecc ... ecc-oob
|
|
* or
|
|
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
|
|
*/
|
|
if (!chip->ecc.prepad && !chip->ecc.postpad) {
|
|
pos = steps * (eccsize + chunk);
|
|
steps = 0;
|
|
} else
|
|
pos = eccsize;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < steps; i++) {
|
|
if (sndcmd) {
|
|
if (mtd->writesize <= 512) {
|
|
uint32_t fill = 0xFFFFFFFF;
|
|
|
|
len = eccsize;
|
|
while (len > 0) {
|
|
int num = min_t(int, len, 4);
|
|
|
|
ret = nand_write_data_op(chip, &fill,
|
|
num, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
len -= num;
|
|
}
|
|
} else {
|
|
pos = eccsize + i * (eccsize + chunk);
|
|
ret = nand_change_write_column_op(chip, pos,
|
|
NULL, 0,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
} else
|
|
sndcmd = 1;
|
|
len = min_t(int, length, chunk);
|
|
|
|
ret = nand_write_data_op(chip, bufpoi, len, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bufpoi += len;
|
|
length -= len;
|
|
}
|
|
if (length > 0) {
|
|
ret = nand_write_data_op(chip, bufpoi, length, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
EXPORT_SYMBOL(nand_write_oob_syndrome);
|
|
|
|
/**
|
|
* nand_do_read_oob - [INTERN] NAND read out-of-band
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @ops: oob operations description structure
|
|
*
|
|
* NAND read out-of-band data from the spare area.
|
|
*/
|
|
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
unsigned int max_bitflips = 0;
|
|
int page, realpage, chipnr;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtd_ecc_stats stats;
|
|
int readlen = ops->ooblen;
|
|
int len;
|
|
uint8_t *buf = ops->oobbuf;
|
|
int ret = 0;
|
|
|
|
pr_debug("%s: from = 0x%08Lx, len = %i\n",
|
|
__func__, (unsigned long long)from, readlen);
|
|
|
|
stats = mtd->ecc_stats;
|
|
|
|
len = mtd_oobavail(mtd, ops);
|
|
|
|
chipnr = (int)(from >> chip->chip_shift);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
/* Shift to get page */
|
|
realpage = (int)(from >> chip->page_shift);
|
|
page = realpage & chip->pagemask;
|
|
|
|
while (1) {
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
ret = chip->ecc.read_oob_raw(mtd, chip, page);
|
|
else
|
|
ret = chip->ecc.read_oob(mtd, chip, page);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
len = min(len, readlen);
|
|
buf = nand_transfer_oob(mtd, buf, ops, len);
|
|
|
|
if (chip->options & NAND_NEED_READRDY) {
|
|
/* Apply delay or wait for ready/busy pin */
|
|
if (!chip->dev_ready)
|
|
udelay(chip->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
|
|
|
readlen -= len;
|
|
if (!readlen)
|
|
break;
|
|
|
|
/* Increment page address */
|
|
realpage++;
|
|
|
|
page = realpage & chip->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
chip->select_chip(mtd, -1);
|
|
chip->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
chip->select_chip(mtd, -1);
|
|
|
|
ops->oobretlen = ops->ooblen - readlen;
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mtd->ecc_stats.failed - stats.failed)
|
|
return -EBADMSG;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @ops: oob operation description structure
|
|
*
|
|
* NAND read data and/or out-of-band data.
|
|
*/
|
|
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int ret;
|
|
|
|
ops->retlen = 0;
|
|
|
|
if (ops->mode != MTD_OPS_PLACE_OOB &&
|
|
ops->mode != MTD_OPS_AUTO_OOB &&
|
|
ops->mode != MTD_OPS_RAW)
|
|
return -ENOTSUPP;
|
|
|
|
nand_get_device(mtd, FL_READING);
|
|
|
|
if (!ops->datbuf)
|
|
ret = nand_do_read_oob(mtd, from, ops);
|
|
else
|
|
ret = nand_do_read_ops(mtd, from, ops);
|
|
|
|
nand_release_device(mtd);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_page_raw - [INTERN] raw page write function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* Not for syndrome calculating ECC controllers, which use a special oob layout.
|
|
*/
|
|
int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oob_required) {
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
EXPORT_SYMBOL(nand_write_page_raw);
|
|
|
|
/**
|
|
* nand_write_page_raw_syndrome - [INTERN] raw page write function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* We need a special oob layout and handling even when ECC isn't checked.
|
|
*/
|
|
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int steps, size, ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (steps = chip->ecc.steps; steps > 0; steps--) {
|
|
ret = nand_write_data_op(chip, buf, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += eccsize;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
ret = nand_write_data_op(chip, oob, eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (size) {
|
|
ret = nand_write_data_op(chip, oob, size, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
/**
|
|
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
const uint8_t *p = buf;
|
|
|
|
/* Software ECC calculation */
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
|
|
}
|
|
|
|
/**
|
|
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
const uint8_t *p = buf;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
ret = nand_write_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
}
|
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @offset: column address of subpage within the page
|
|
* @data_len: data length
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint32_t offset,
|
|
uint32_t data_len, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
uint8_t *oob_buf = chip->oob_poi;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
int ecc_steps = chip->ecc.steps;
|
|
uint32_t start_step = offset / ecc_size;
|
|
uint32_t end_step = (offset + data_len - 1) / ecc_size;
|
|
int oob_bytes = mtd->oobsize / ecc_steps;
|
|
int step, ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (step = 0; step < ecc_steps; step++) {
|
|
/* configure controller for WRITE access */
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
/* write data (untouched subpages already masked by 0xFF) */
|
|
ret = nand_write_data_op(chip, buf, ecc_size, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* mask ECC of un-touched subpages by padding 0xFF */
|
|
if ((step < start_step) || (step > end_step))
|
|
memset(ecc_calc, 0xff, ecc_bytes);
|
|
else
|
|
chip->ecc.calculate(mtd, buf, ecc_calc);
|
|
|
|
/* mask OOB of un-touched subpages by padding 0xFF */
|
|
/* if oob_required, preserve OOB metadata of written subpage */
|
|
if (!oob_required || (step < start_step) || (step > end_step))
|
|
memset(oob_buf, 0xff, oob_bytes);
|
|
|
|
buf += ecc_size;
|
|
ecc_calc += ecc_bytes;
|
|
oob_buf += oob_bytes;
|
|
}
|
|
|
|
/* copy calculated ECC for whole page to chip->buffer->oob */
|
|
/* this include masked-value(0xFF) for unwritten subpages */
|
|
ecc_calc = chip->ecc.calc_buf;
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* write OOB buffer to NAND device */
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* The hw generator calculates the error syndrome automatically. Therefore we
|
|
* need a special oob layout and handling.
|
|
*/
|
|
static int nand_write_page_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
const uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
ret = nand_write_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
chip->ecc.calculate(mtd, p, oob);
|
|
|
|
ret = nand_write_data_op(chip, oob, eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
/* Calculate remaining oob bytes */
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (i) {
|
|
ret = nand_write_data_op(chip, oob, i, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/**
|
|
* nand_write_page - write one page
|
|
* @mtd: MTD device structure
|
|
* @chip: NAND chip descriptor
|
|
* @offset: address offset within the page
|
|
* @data_len: length of actual data to be written
|
|
* @buf: the data to write
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
* @raw: use _raw version of write_page
|
|
*/
|
|
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint32_t offset, int data_len, const uint8_t *buf,
|
|
int oob_required, int page, int raw)
|
|
{
|
|
int status, subpage;
|
|
|
|
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
|
|
chip->ecc.write_subpage)
|
|
subpage = offset || (data_len < mtd->writesize);
|
|
else
|
|
subpage = 0;
|
|
|
|
if (unlikely(raw))
|
|
status = chip->ecc.write_page_raw(mtd, chip, buf,
|
|
oob_required, page);
|
|
else if (subpage)
|
|
status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
|
|
buf, oob_required, page);
|
|
else
|
|
status = chip->ecc.write_page(mtd, chip, buf, oob_required,
|
|
page);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_fill_oob - [INTERN] Transfer client buffer to oob
|
|
* @mtd: MTD device structure
|
|
* @oob: oob data buffer
|
|
* @len: oob data write length
|
|
* @ops: oob ops structure
|
|
*/
|
|
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret;
|
|
|
|
/*
|
|
* Initialise to all 0xFF, to avoid the possibility of left over OOB
|
|
* data from a previous OOB read.
|
|
*/
|
|
memset(chip->oob_poi, 0xff, mtd->oobsize);
|
|
|
|
switch (ops->mode) {
|
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
case MTD_OPS_RAW:
|
|
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
|
|
return oob + len;
|
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
|
|
ops->ooboffs, len);
|
|
BUG_ON(ret);
|
|
return oob + len;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
|
|
|
|
/**
|
|
* nand_do_write_ops - [INTERN] NAND write with ECC
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @ops: oob operations description structure
|
|
*
|
|
* NAND write with ECC.
|
|
*/
|
|
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int chipnr, realpage, page, column;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
uint32_t writelen = ops->len;
|
|
|
|
uint32_t oobwritelen = ops->ooblen;
|
|
uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
|
|
|
|
uint8_t *oob = ops->oobbuf;
|
|
uint8_t *buf = ops->datbuf;
|
|
int ret;
|
|
int oob_required = oob ? 1 : 0;
|
|
|
|
ops->retlen = 0;
|
|
if (!writelen)
|
|
return 0;
|
|
|
|
/* Reject writes, which are not page aligned */
|
|
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
|
|
pr_notice("%s: attempt to write non page aligned data\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
column = to & (mtd->writesize - 1);
|
|
|
|
chipnr = (int)(to >> chip->chip_shift);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd)) {
|
|
ret = -EIO;
|
|
goto err_out;
|
|
}
|
|
|
|
realpage = (int)(to >> chip->page_shift);
|
|
page = realpage & chip->pagemask;
|
|
|
|
/* Invalidate the page cache, when we write to the cached page */
|
|
if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
|
|
((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
|
|
chip->pagebuf = -1;
|
|
|
|
/* Don't allow multipage oob writes with offset */
|
|
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
|
|
ret = -EINVAL;
|
|
goto err_out;
|
|
}
|
|
|
|
while (1) {
|
|
int bytes = mtd->writesize;
|
|
uint8_t *wbuf = buf;
|
|
int use_bufpoi;
|
|
int part_pagewr = (column || writelen < mtd->writesize);
|
|
|
|
if (part_pagewr)
|
|
use_bufpoi = 1;
|
|
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
|
|
use_bufpoi = !virt_addr_valid(buf) ||
|
|
!IS_ALIGNED((unsigned long)buf,
|
|
chip->buf_align);
|
|
else
|
|
use_bufpoi = 0;
|
|
|
|
/* Partial page write?, or need to use bounce buffer */
|
|
if (use_bufpoi) {
|
|
pr_debug("%s: using write bounce buffer for buf@%p\n",
|
|
__func__, buf);
|
|
if (part_pagewr)
|
|
bytes = min_t(int, bytes - column, writelen);
|
|
chip->pagebuf = -1;
|
|
memset(chip->data_buf, 0xff, mtd->writesize);
|
|
memcpy(&chip->data_buf[column], buf, bytes);
|
|
wbuf = chip->data_buf;
|
|
}
|
|
|
|
if (unlikely(oob)) {
|
|
size_t len = min(oobwritelen, oobmaxlen);
|
|
oob = nand_fill_oob(mtd, oob, len, ops);
|
|
oobwritelen -= len;
|
|
} else {
|
|
/* We still need to erase leftover OOB data */
|
|
memset(chip->oob_poi, 0xff, mtd->oobsize);
|
|
}
|
|
|
|
ret = nand_write_page(mtd, chip, column, bytes, wbuf,
|
|
oob_required, page,
|
|
(ops->mode == MTD_OPS_RAW));
|
|
if (ret)
|
|
break;
|
|
|
|
writelen -= bytes;
|
|
if (!writelen)
|
|
break;
|
|
|
|
column = 0;
|
|
buf += bytes;
|
|
realpage++;
|
|
|
|
page = realpage & chip->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
chip->select_chip(mtd, -1);
|
|
chip->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
|
|
ops->retlen = ops->len - writelen;
|
|
if (unlikely(oob))
|
|
ops->oobretlen = ops->ooblen;
|
|
|
|
err_out:
|
|
chip->select_chip(mtd, -1);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panic_nand_write - [MTD Interface] NAND write with ECC
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
*
|
|
* NAND write with ECC. Used when performing writes in interrupt context, this
|
|
* may for example be called by mtdoops when writing an oops while in panic.
|
|
*/
|
|
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const uint8_t *buf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int chipnr = (int)(to >> chip->chip_shift);
|
|
struct mtd_oob_ops ops;
|
|
int ret;
|
|
|
|
/* Grab the device */
|
|
panic_nand_get_device(chip, mtd, FL_WRITING);
|
|
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
/* Wait for the device to get ready */
|
|
panic_nand_wait(mtd, chip, 400);
|
|
|
|
memset(&ops, 0, sizeof(ops));
|
|
ops.len = len;
|
|
ops.datbuf = (uint8_t *)buf;
|
|
ops.mode = MTD_OPS_PLACE_OOB;
|
|
|
|
ret = nand_do_write_ops(mtd, to, &ops);
|
|
|
|
*retlen = ops.retlen;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @ops: oob operation description structure
|
|
*
|
|
* NAND write out-of-band.
|
|
*/
|
|
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int chipnr, page, status, len;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
pr_debug("%s: to = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int)to, (int)ops->ooblen);
|
|
|
|
len = mtd_oobavail(mtd, ops);
|
|
|
|
/* Do not allow write past end of page */
|
|
if ((ops->ooboffs + ops->ooblen) > len) {
|
|
pr_debug("%s: attempt to write past end of page\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
chipnr = (int)(to >> chip->chip_shift);
|
|
|
|
/*
|
|
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
|
|
* of my DiskOnChip 2000 test units) will clear the whole data page too
|
|
* if we don't do this. I have no clue why, but I seem to have 'fixed'
|
|
* it in the doc2000 driver in August 1999. dwmw2.
|
|
*/
|
|
nand_reset(chip, chipnr);
|
|
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
/* Shift to get page */
|
|
page = (int)(to >> chip->page_shift);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd)) {
|
|
chip->select_chip(mtd, -1);
|
|
return -EROFS;
|
|
}
|
|
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page == chip->pagebuf)
|
|
chip->pagebuf = -1;
|
|
|
|
nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
|
|
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
|
|
else
|
|
status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
|
|
|
|
chip->select_chip(mtd, -1);
|
|
|
|
if (status)
|
|
return status;
|
|
|
|
ops->oobretlen = ops->ooblen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @ops: oob operation description structure
|
|
*/
|
|
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int ret = -ENOTSUPP;
|
|
|
|
ops->retlen = 0;
|
|
|
|
nand_get_device(mtd, FL_WRITING);
|
|
|
|
switch (ops->mode) {
|
|
case MTD_OPS_PLACE_OOB:
|
|
case MTD_OPS_AUTO_OOB:
|
|
case MTD_OPS_RAW:
|
|
break;
|
|
|
|
default:
|
|
goto out;
|
|
}
|
|
|
|
if (!ops->datbuf)
|
|
ret = nand_do_write_oob(mtd, to, ops);
|
|
else
|
|
ret = nand_do_write_ops(mtd, to, ops);
|
|
|
|
out:
|
|
nand_release_device(mtd);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* single_erase - [GENERIC] NAND standard block erase command function
|
|
* @mtd: MTD device structure
|
|
* @page: the page address of the block which will be erased
|
|
*
|
|
* Standard erase command for NAND chips. Returns NAND status.
|
|
*/
|
|
static int single_erase(struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
unsigned int eraseblock;
|
|
|
|
/* Send commands to erase a block */
|
|
eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
|
|
|
|
return nand_erase_op(chip, eraseblock);
|
|
}
|
|
|
|
/**
|
|
* nand_erase - [MTD Interface] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
*
|
|
* Erase one ore more blocks.
|
|
*/
|
|
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
return nand_erase_nand(mtd, instr, 0);
|
|
}
|
|
|
|
/**
|
|
* nand_erase_nand - [INTERN] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
* @allowbbt: allow erasing the bbt area
|
|
*
|
|
* Erase one ore more blocks.
|
|
*/
|
|
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
|
|
int allowbbt)
|
|
{
|
|
int page, status, pages_per_block, ret, chipnr;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
loff_t len;
|
|
|
|
pr_debug("%s: start = 0x%012llx, len = %llu\n",
|
|
__func__, (unsigned long long)instr->addr,
|
|
(unsigned long long)instr->len);
|
|
|
|
if (check_offs_len(mtd, instr->addr, instr->len))
|
|
return -EINVAL;
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device(mtd, FL_ERASING);
|
|
|
|
/* Shift to get first page */
|
|
page = (int)(instr->addr >> chip->page_shift);
|
|
chipnr = (int)(instr->addr >> chip->chip_shift);
|
|
|
|
/* Calculate pages in each block */
|
|
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
|
|
|
|
/* Select the NAND device */
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd)) {
|
|
pr_debug("%s: device is write protected!\n",
|
|
__func__);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* Loop through the pages */
|
|
len = instr->len;
|
|
|
|
instr->state = MTD_ERASING;
|
|
|
|
while (len) {
|
|
/* Check if we have a bad block, we do not erase bad blocks! */
|
|
if (nand_block_checkbad(mtd, ((loff_t) page) <<
|
|
chip->page_shift, allowbbt)) {
|
|
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
|
|
__func__, page);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/*
|
|
* Invalidate the page cache, if we erase the block which
|
|
* contains the current cached page.
|
|
*/
|
|
if (page <= chip->pagebuf && chip->pagebuf <
|
|
(page + pages_per_block))
|
|
chip->pagebuf = -1;
|
|
|
|
status = chip->erase(mtd, page & chip->pagemask);
|
|
|
|
/* See if block erase succeeded */
|
|
if (status) {
|
|
pr_debug("%s: failed erase, page 0x%08x\n",
|
|
__func__, page);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr =
|
|
((loff_t)page << chip->page_shift);
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* Increment page address and decrement length */
|
|
len -= (1ULL << chip->phys_erase_shift);
|
|
page += pages_per_block;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
if (len && !(page & chip->pagemask)) {
|
|
chipnr++;
|
|
chip->select_chip(mtd, -1);
|
|
chip->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
instr->state = MTD_ERASE_DONE;
|
|
|
|
erase_exit:
|
|
|
|
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
chip->select_chip(mtd, -1);
|
|
nand_release_device(mtd);
|
|
|
|
/* Do call back function */
|
|
if (!ret)
|
|
mtd_erase_callback(instr);
|
|
|
|
/* Return more or less happy */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_sync - [MTD Interface] sync
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Sync is actually a wait for chip ready function.
|
|
*/
|
|
static void nand_sync(struct mtd_info *mtd)
|
|
{
|
|
pr_debug("%s: called\n", __func__);
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device(mtd, FL_SYNCING);
|
|
/* Release it and go back */
|
|
nand_release_device(mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
|
|
* @mtd: MTD device structure
|
|
* @offs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int chipnr = (int)(offs >> chip->chip_shift);
|
|
int ret;
|
|
|
|
/* Select the NAND device */
|
|
nand_get_device(mtd, FL_READING);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
ret = nand_block_checkbad(mtd, offs, 0);
|
|
|
|
chip->select_chip(mtd, -1);
|
|
nand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_block_isbad(mtd, ofs);
|
|
if (ret) {
|
|
/* If it was bad already, return success and do nothing */
|
|
if (ret > 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
return nand_block_markbad_lowlevel(mtd, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
* @len: length of mtd
|
|
*/
|
|
static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u32 part_start_block;
|
|
u32 part_end_block;
|
|
u32 part_start_die;
|
|
u32 part_end_die;
|
|
|
|
/*
|
|
* max_bb_per_die and blocks_per_die used to determine
|
|
* the maximum bad block count.
|
|
*/
|
|
if (!chip->max_bb_per_die || !chip->blocks_per_die)
|
|
return -ENOTSUPP;
|
|
|
|
/* Get the start and end of the partition in erase blocks. */
|
|
part_start_block = mtd_div_by_eb(ofs, mtd);
|
|
part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
|
|
|
|
/* Get the start and end LUNs of the partition. */
|
|
part_start_die = part_start_block / chip->blocks_per_die;
|
|
part_end_die = part_end_block / chip->blocks_per_die;
|
|
|
|
/*
|
|
* Look up the bad blocks per unit and multiply by the number of units
|
|
* that the partition spans.
|
|
*/
|
|
return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
|
|
}
|
|
|
|
/**
|
|
* nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
|
|
* @mtd: MTD device structure
|
|
* @chip: nand chip info structure
|
|
* @addr: feature address.
|
|
* @subfeature_param: the subfeature parameters, a four bytes array.
|
|
*/
|
|
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int addr, uint8_t *subfeature_param)
|
|
{
|
|
if (!chip->onfi_version ||
|
|
!(le16_to_cpu(chip->onfi_params.opt_cmd)
|
|
& ONFI_OPT_CMD_SET_GET_FEATURES))
|
|
return -EINVAL;
|
|
|
|
return nand_set_features_op(chip, addr, subfeature_param);
|
|
}
|
|
|
|
/**
|
|
* nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
|
|
* @mtd: MTD device structure
|
|
* @chip: nand chip info structure
|
|
* @addr: feature address.
|
|
* @subfeature_param: the subfeature parameters, a four bytes array.
|
|
*/
|
|
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int addr, uint8_t *subfeature_param)
|
|
{
|
|
if (!chip->onfi_version ||
|
|
!(le16_to_cpu(chip->onfi_params.opt_cmd)
|
|
& ONFI_OPT_CMD_SET_GET_FEATURES))
|
|
return -EINVAL;
|
|
|
|
return nand_get_features_op(chip, addr, subfeature_param);
|
|
}
|
|
|
|
/**
|
|
* nand_onfi_get_set_features_notsupp - set/get features stub returning
|
|
* -ENOTSUPP
|
|
* @mtd: MTD device structure
|
|
* @chip: nand chip info structure
|
|
* @addr: feature address.
|
|
* @subfeature_param: the subfeature parameters, a four bytes array.
|
|
*
|
|
* Should be used by NAND controller drivers that do not support the SET/GET
|
|
* FEATURES operations.
|
|
*/
|
|
int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
|
|
struct nand_chip *chip, int addr,
|
|
u8 *subfeature_param)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
|
|
|
|
/**
|
|
* nand_suspend - [MTD Interface] Suspend the NAND flash
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static int nand_suspend(struct mtd_info *mtd)
|
|
{
|
|
return nand_get_device(mtd, FL_PM_SUSPENDED);
|
|
}
|
|
|
|
/**
|
|
* nand_resume - [MTD Interface] Resume the NAND flash
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void nand_resume(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED)
|
|
nand_release_device(mtd);
|
|
else
|
|
pr_err("%s called for a chip which is not in suspended state\n",
|
|
__func__);
|
|
}
|
|
|
|
/**
|
|
* nand_shutdown - [MTD Interface] Finish the current NAND operation and
|
|
* prevent further operations
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void nand_shutdown(struct mtd_info *mtd)
|
|
{
|
|
nand_get_device(mtd, FL_PM_SUSPENDED);
|
|
}
|
|
|
|
/* Set default functions */
|
|
static void nand_set_defaults(struct nand_chip *chip)
|
|
{
|
|
unsigned int busw = chip->options & NAND_BUSWIDTH_16;
|
|
|
|
/* check for proper chip_delay setup, set 20us if not */
|
|
if (!chip->chip_delay)
|
|
chip->chip_delay = 20;
|
|
|
|
/* check, if a user supplied command function given */
|
|
if (!chip->cmdfunc && !chip->exec_op)
|
|
chip->cmdfunc = nand_command;
|
|
|
|
/* check, if a user supplied wait function given */
|
|
if (chip->waitfunc == NULL)
|
|
chip->waitfunc = nand_wait;
|
|
|
|
if (!chip->select_chip)
|
|
chip->select_chip = nand_select_chip;
|
|
|
|
/* set for ONFI nand */
|
|
if (!chip->onfi_set_features)
|
|
chip->onfi_set_features = nand_onfi_set_features;
|
|
if (!chip->onfi_get_features)
|
|
chip->onfi_get_features = nand_onfi_get_features;
|
|
|
|
/* If called twice, pointers that depend on busw may need to be reset */
|
|
if (!chip->read_byte || chip->read_byte == nand_read_byte)
|
|
chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
|
|
if (!chip->read_word)
|
|
chip->read_word = nand_read_word;
|
|
if (!chip->block_bad)
|
|
chip->block_bad = nand_block_bad;
|
|
if (!chip->block_markbad)
|
|
chip->block_markbad = nand_default_block_markbad;
|
|
if (!chip->write_buf || chip->write_buf == nand_write_buf)
|
|
chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
|
|
if (!chip->write_byte || chip->write_byte == nand_write_byte)
|
|
chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
|
|
if (!chip->read_buf || chip->read_buf == nand_read_buf)
|
|
chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
|
|
if (!chip->scan_bbt)
|
|
chip->scan_bbt = nand_default_bbt;
|
|
|
|
if (!chip->controller) {
|
|
chip->controller = &chip->hwcontrol;
|
|
nand_hw_control_init(chip->controller);
|
|
}
|
|
|
|
if (!chip->buf_align)
|
|
chip->buf_align = 1;
|
|
}
|
|
|
|
/* Sanitize ONFI strings so we can safely print them */
|
|
static void sanitize_string(uint8_t *s, size_t len)
|
|
{
|
|
ssize_t i;
|
|
|
|
/* Null terminate */
|
|
s[len - 1] = 0;
|
|
|
|
/* Remove non printable chars */
|
|
for (i = 0; i < len - 1; i++) {
|
|
if (s[i] < ' ' || s[i] > 127)
|
|
s[i] = '?';
|
|
}
|
|
|
|
/* Remove trailing spaces */
|
|
strim(s);
|
|
}
|
|
|
|
static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
|
|
{
|
|
int i;
|
|
while (len--) {
|
|
crc ^= *p++ << 8;
|
|
for (i = 0; i < 8; i++)
|
|
crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
|
|
}
|
|
|
|
return crc;
|
|
}
|
|
|
|
/* Parse the Extended Parameter Page. */
|
|
static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
|
|
struct nand_onfi_params *p)
|
|
{
|
|
struct onfi_ext_param_page *ep;
|
|
struct onfi_ext_section *s;
|
|
struct onfi_ext_ecc_info *ecc;
|
|
uint8_t *cursor;
|
|
int ret;
|
|
int len;
|
|
int i;
|
|
|
|
len = le16_to_cpu(p->ext_param_page_length) * 16;
|
|
ep = kmalloc(len, GFP_KERNEL);
|
|
if (!ep)
|
|
return -ENOMEM;
|
|
|
|
/* Send our own NAND_CMD_PARAM. */
|
|
ret = nand_read_param_page_op(chip, 0, NULL, 0);
|
|
if (ret)
|
|
goto ext_out;
|
|
|
|
/* Use the Change Read Column command to skip the ONFI param pages. */
|
|
ret = nand_change_read_column_op(chip,
|
|
sizeof(*p) * p->num_of_param_pages,
|
|
ep, len, true);
|
|
if (ret)
|
|
goto ext_out;
|
|
|
|
ret = -EINVAL;
|
|
if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
|
|
!= le16_to_cpu(ep->crc))) {
|
|
pr_debug("fail in the CRC.\n");
|
|
goto ext_out;
|
|
}
|
|
|
|
/*
|
|
* Check the signature.
|
|
* Do not strictly follow the ONFI spec, maybe changed in future.
|
|
*/
|
|
if (strncmp(ep->sig, "EPPS", 4)) {
|
|
pr_debug("The signature is invalid.\n");
|
|
goto ext_out;
|
|
}
|
|
|
|
/* find the ECC section. */
|
|
cursor = (uint8_t *)(ep + 1);
|
|
for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
|
|
s = ep->sections + i;
|
|
if (s->type == ONFI_SECTION_TYPE_2)
|
|
break;
|
|
cursor += s->length * 16;
|
|
}
|
|
if (i == ONFI_EXT_SECTION_MAX) {
|
|
pr_debug("We can not find the ECC section.\n");
|
|
goto ext_out;
|
|
}
|
|
|
|
/* get the info we want. */
|
|
ecc = (struct onfi_ext_ecc_info *)cursor;
|
|
|
|
if (!ecc->codeword_size) {
|
|
pr_debug("Invalid codeword size\n");
|
|
goto ext_out;
|
|
}
|
|
|
|
chip->ecc_strength_ds = ecc->ecc_bits;
|
|
chip->ecc_step_ds = 1 << ecc->codeword_size;
|
|
ret = 0;
|
|
|
|
ext_out:
|
|
kfree(ep);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
|
|
*/
|
|
static int nand_flash_detect_onfi(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_onfi_params *p = &chip->onfi_params;
|
|
char id[4];
|
|
int i, ret, val;
|
|
|
|
/* Try ONFI for unknown chip or LP */
|
|
ret = nand_readid_op(chip, 0x20, id, sizeof(id));
|
|
if (ret || strncmp(id, "ONFI", 4))
|
|
return 0;
|
|
|
|
ret = nand_read_param_page_op(chip, 0, NULL, 0);
|
|
if (ret)
|
|
return 0;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = nand_read_data_op(chip, p, sizeof(*p), true);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
|
|
le16_to_cpu(p->crc)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == 3) {
|
|
pr_err("Could not find valid ONFI parameter page; aborting\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Check version */
|
|
val = le16_to_cpu(p->revision);
|
|
if (val & (1 << 5))
|
|
chip->onfi_version = 23;
|
|
else if (val & (1 << 4))
|
|
chip->onfi_version = 22;
|
|
else if (val & (1 << 3))
|
|
chip->onfi_version = 21;
|
|
else if (val & (1 << 2))
|
|
chip->onfi_version = 20;
|
|
else if (val & (1 << 1))
|
|
chip->onfi_version = 10;
|
|
|
|
if (!chip->onfi_version) {
|
|
pr_info("unsupported ONFI version: %d\n", val);
|
|
return 0;
|
|
}
|
|
|
|
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
|
|
sanitize_string(p->model, sizeof(p->model));
|
|
if (!mtd->name)
|
|
mtd->name = p->model;
|
|
|
|
mtd->writesize = le32_to_cpu(p->byte_per_page);
|
|
|
|
/*
|
|
* pages_per_block and blocks_per_lun may not be a power-of-2 size
|
|
* (don't ask me who thought of this...). MTD assumes that these
|
|
* dimensions will be power-of-2, so just truncate the remaining area.
|
|
*/
|
|
mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
|
|
mtd->erasesize *= mtd->writesize;
|
|
|
|
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
|
|
|
|
/* See erasesize comment */
|
|
chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
|
|
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
|
|
chip->bits_per_cell = p->bits_per_cell;
|
|
|
|
chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
|
|
chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
|
|
|
|
if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
if (p->ecc_bits != 0xff) {
|
|
chip->ecc_strength_ds = p->ecc_bits;
|
|
chip->ecc_step_ds = 512;
|
|
} else if (chip->onfi_version >= 21 &&
|
|
(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
|
|
|
|
/*
|
|
* The nand_flash_detect_ext_param_page() uses the
|
|
* Change Read Column command which maybe not supported
|
|
* by the chip->cmdfunc. So try to update the chip->cmdfunc
|
|
* now. We do not replace user supplied command function.
|
|
*/
|
|
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
|
|
chip->cmdfunc = nand_command_lp;
|
|
|
|
/* The Extended Parameter Page is supported since ONFI 2.1. */
|
|
if (nand_flash_detect_ext_param_page(chip, p))
|
|
pr_warn("Failed to detect ONFI extended param page\n");
|
|
} else {
|
|
pr_warn("Could not retrieve ONFI ECC requirements\n");
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
|
|
*/
|
|
static int nand_flash_detect_jedec(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_jedec_params *p = &chip->jedec_params;
|
|
struct jedec_ecc_info *ecc;
|
|
char id[5];
|
|
int i, val, ret;
|
|
|
|
/* Try JEDEC for unknown chip or LP */
|
|
ret = nand_readid_op(chip, 0x40, id, sizeof(id));
|
|
if (ret || strncmp(id, "JEDEC", sizeof(id)))
|
|
return 0;
|
|
|
|
ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
|
|
if (ret)
|
|
return 0;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = nand_read_data_op(chip, p, sizeof(*p), true);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
|
|
le16_to_cpu(p->crc))
|
|
break;
|
|
}
|
|
|
|
if (i == 3) {
|
|
pr_err("Could not find valid JEDEC parameter page; aborting\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Check version */
|
|
val = le16_to_cpu(p->revision);
|
|
if (val & (1 << 2))
|
|
chip->jedec_version = 10;
|
|
else if (val & (1 << 1))
|
|
chip->jedec_version = 1; /* vendor specific version */
|
|
|
|
if (!chip->jedec_version) {
|
|
pr_info("unsupported JEDEC version: %d\n", val);
|
|
return 0;
|
|
}
|
|
|
|
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
|
|
sanitize_string(p->model, sizeof(p->model));
|
|
if (!mtd->name)
|
|
mtd->name = p->model;
|
|
|
|
mtd->writesize = le32_to_cpu(p->byte_per_page);
|
|
|
|
/* Please reference to the comment for nand_flash_detect_onfi. */
|
|
mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
|
|
mtd->erasesize *= mtd->writesize;
|
|
|
|
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
|
|
|
|
/* Please reference to the comment for nand_flash_detect_onfi. */
|
|
chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
|
|
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
|
|
chip->bits_per_cell = p->bits_per_cell;
|
|
|
|
if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
/* ECC info */
|
|
ecc = &p->ecc_info[0];
|
|
|
|
if (ecc->codeword_size >= 9) {
|
|
chip->ecc_strength_ds = ecc->ecc_bits;
|
|
chip->ecc_step_ds = 1 << ecc->codeword_size;
|
|
} else {
|
|
pr_warn("Invalid codeword size\n");
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* nand_id_has_period - Check if an ID string has a given wraparound period
|
|
* @id_data: the ID string
|
|
* @arrlen: the length of the @id_data array
|
|
* @period: the period of repitition
|
|
*
|
|
* Check if an ID string is repeated within a given sequence of bytes at
|
|
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
|
|
* period of 3). This is a helper function for nand_id_len(). Returns non-zero
|
|
* if the repetition has a period of @period; otherwise, returns zero.
|
|
*/
|
|
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < period; i++)
|
|
for (j = i + period; j < arrlen; j += period)
|
|
if (id_data[i] != id_data[j])
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* nand_id_len - Get the length of an ID string returned by CMD_READID
|
|
* @id_data: the ID string
|
|
* @arrlen: the length of the @id_data array
|
|
|
|
* Returns the length of the ID string, according to known wraparound/trailing
|
|
* zero patterns. If no pattern exists, returns the length of the array.
|
|
*/
|
|
static int nand_id_len(u8 *id_data, int arrlen)
|
|
{
|
|
int last_nonzero, period;
|
|
|
|
/* Find last non-zero byte */
|
|
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
|
|
if (id_data[last_nonzero])
|
|
break;
|
|
|
|
/* All zeros */
|
|
if (last_nonzero < 0)
|
|
return 0;
|
|
|
|
/* Calculate wraparound period */
|
|
for (period = 1; period < arrlen; period++)
|
|
if (nand_id_has_period(id_data, arrlen, period))
|
|
break;
|
|
|
|
/* There's a repeated pattern */
|
|
if (period < arrlen)
|
|
return period;
|
|
|
|
/* There are trailing zeros */
|
|
if (last_nonzero < arrlen - 1)
|
|
return last_nonzero + 1;
|
|
|
|
/* No pattern detected */
|
|
return arrlen;
|
|
}
|
|
|
|
/* Extract the bits of per cell from the 3rd byte of the extended ID */
|
|
static int nand_get_bits_per_cell(u8 cellinfo)
|
|
{
|
|
int bits;
|
|
|
|
bits = cellinfo & NAND_CI_CELLTYPE_MSK;
|
|
bits >>= NAND_CI_CELLTYPE_SHIFT;
|
|
return bits + 1;
|
|
}
|
|
|
|
/*
|
|
* Many new NAND share similar device ID codes, which represent the size of the
|
|
* chip. The rest of the parameters must be decoded according to generic or
|
|
* manufacturer-specific "extended ID" decoding patterns.
|
|
*/
|
|
void nand_decode_ext_id(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int extid;
|
|
u8 *id_data = chip->id.data;
|
|
/* The 3rd id byte holds MLC / multichip data */
|
|
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
|
|
/* The 4th id byte is the important one */
|
|
extid = id_data[3];
|
|
|
|
/* Calc pagesize */
|
|
mtd->writesize = 1024 << (extid & 0x03);
|
|
extid >>= 2;
|
|
/* Calc oobsize */
|
|
mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
|
|
extid >>= 2;
|
|
/* Calc blocksize. Blocksize is multiples of 64KiB */
|
|
mtd->erasesize = (64 * 1024) << (extid & 0x03);
|
|
extid >>= 2;
|
|
/* Get buswidth information */
|
|
if (extid & 0x1)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_decode_ext_id);
|
|
|
|
/*
|
|
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
|
|
* decodes a matching ID table entry and assigns the MTD size parameters for
|
|
* the chip.
|
|
*/
|
|
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
mtd->erasesize = type->erasesize;
|
|
mtd->writesize = type->pagesize;
|
|
mtd->oobsize = mtd->writesize / 32;
|
|
|
|
/* All legacy ID NAND are small-page, SLC */
|
|
chip->bits_per_cell = 1;
|
|
}
|
|
|
|
/*
|
|
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
|
|
* heuristic patterns using various detected parameters (e.g., manufacturer,
|
|
* page size, cell-type information).
|
|
*/
|
|
static void nand_decode_bbm_options(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/* Set the bad block position */
|
|
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
|
|
chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
|
|
else
|
|
chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
|
|
}
|
|
|
|
static inline bool is_full_id_nand(struct nand_flash_dev *type)
|
|
{
|
|
return type->id_len;
|
|
}
|
|
|
|
static bool find_full_id_nand(struct nand_chip *chip,
|
|
struct nand_flash_dev *type)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u8 *id_data = chip->id.data;
|
|
|
|
if (!strncmp(type->id, id_data, type->id_len)) {
|
|
mtd->writesize = type->pagesize;
|
|
mtd->erasesize = type->erasesize;
|
|
mtd->oobsize = type->oobsize;
|
|
|
|
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
|
|
chip->chipsize = (uint64_t)type->chipsize << 20;
|
|
chip->options |= type->options;
|
|
chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
|
|
chip->ecc_step_ds = NAND_ECC_STEP(type);
|
|
chip->onfi_timing_mode_default =
|
|
type->onfi_timing_mode_default;
|
|
|
|
if (!mtd->name)
|
|
mtd->name = type->name;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
|
|
* compliant and does not have a full-id or legacy-id entry in the nand_ids
|
|
* table.
|
|
*/
|
|
static void nand_manufacturer_detect(struct nand_chip *chip)
|
|
{
|
|
/*
|
|
* Try manufacturer detection if available and use
|
|
* nand_decode_ext_id() otherwise.
|
|
*/
|
|
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
|
|
chip->manufacturer.desc->ops->detect) {
|
|
/* The 3rd id byte holds MLC / multichip data */
|
|
chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
|
|
chip->manufacturer.desc->ops->detect(chip);
|
|
} else {
|
|
nand_decode_ext_id(chip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manufacturer initialization. This function is called for all NANDs including
|
|
* ONFI and JEDEC compliant ones.
|
|
* Manufacturer drivers should put all their specific initialization code in
|
|
* their ->init() hook.
|
|
*/
|
|
static int nand_manufacturer_init(struct nand_chip *chip)
|
|
{
|
|
if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
|
|
!chip->manufacturer.desc->ops->init)
|
|
return 0;
|
|
|
|
return chip->manufacturer.desc->ops->init(chip);
|
|
}
|
|
|
|
/*
|
|
* Manufacturer cleanup. This function is called for all NANDs including
|
|
* ONFI and JEDEC compliant ones.
|
|
* Manufacturer drivers should put all their specific cleanup code in their
|
|
* ->cleanup() hook.
|
|
*/
|
|
static void nand_manufacturer_cleanup(struct nand_chip *chip)
|
|
{
|
|
/* Release manufacturer private data */
|
|
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
|
|
chip->manufacturer.desc->ops->cleanup)
|
|
chip->manufacturer.desc->ops->cleanup(chip);
|
|
}
|
|
|
|
/*
|
|
* Get the flash and manufacturer id and lookup if the type is supported.
|
|
*/
|
|
static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
|
|
{
|
|
const struct nand_manufacturer *manufacturer;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int busw, ret;
|
|
u8 *id_data = chip->id.data;
|
|
u8 maf_id, dev_id;
|
|
|
|
/*
|
|
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
|
|
* after power-up.
|
|
*/
|
|
ret = nand_reset(chip, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Select the device */
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/* Send the command for reading device ID */
|
|
ret = nand_readid_op(chip, 0, id_data, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read manufacturer and device IDs */
|
|
maf_id = id_data[0];
|
|
dev_id = id_data[1];
|
|
|
|
/*
|
|
* Try again to make sure, as some systems the bus-hold or other
|
|
* interface concerns can cause random data which looks like a
|
|
* possibly credible NAND flash to appear. If the two results do
|
|
* not match, ignore the device completely.
|
|
*/
|
|
|
|
/* Read entire ID string */
|
|
ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (id_data[0] != maf_id || id_data[1] != dev_id) {
|
|
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
|
|
maf_id, dev_id, id_data[0], id_data[1]);
|
|
return -ENODEV;
|
|
}
|
|
|
|
chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
|
|
|
|
/* Try to identify manufacturer */
|
|
manufacturer = nand_get_manufacturer(maf_id);
|
|
chip->manufacturer.desc = manufacturer;
|
|
|
|
if (!type)
|
|
type = nand_flash_ids;
|
|
|
|
/*
|
|
* Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
|
|
* override it.
|
|
* This is required to make sure initial NAND bus width set by the
|
|
* NAND controller driver is coherent with the real NAND bus width
|
|
* (extracted by auto-detection code).
|
|
*/
|
|
busw = chip->options & NAND_BUSWIDTH_16;
|
|
|
|
/*
|
|
* The flag is only set (never cleared), reset it to its default value
|
|
* before starting auto-detection.
|
|
*/
|
|
chip->options &= ~NAND_BUSWIDTH_16;
|
|
|
|
for (; type->name != NULL; type++) {
|
|
if (is_full_id_nand(type)) {
|
|
if (find_full_id_nand(chip, type))
|
|
goto ident_done;
|
|
} else if (dev_id == type->dev_id) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
chip->onfi_version = 0;
|
|
if (!type->name || !type->pagesize) {
|
|
/* Check if the chip is ONFI compliant */
|
|
if (nand_flash_detect_onfi(chip))
|
|
goto ident_done;
|
|
|
|
/* Check if the chip is JEDEC compliant */
|
|
if (nand_flash_detect_jedec(chip))
|
|
goto ident_done;
|
|
}
|
|
|
|
if (!type->name)
|
|
return -ENODEV;
|
|
|
|
if (!mtd->name)
|
|
mtd->name = type->name;
|
|
|
|
chip->chipsize = (uint64_t)type->chipsize << 20;
|
|
|
|
if (!type->pagesize)
|
|
nand_manufacturer_detect(chip);
|
|
else
|
|
nand_decode_id(chip, type);
|
|
|
|
/* Get chip options */
|
|
chip->options |= type->options;
|
|
|
|
ident_done:
|
|
|
|
if (chip->options & NAND_BUSWIDTH_AUTO) {
|
|
WARN_ON(busw & NAND_BUSWIDTH_16);
|
|
nand_set_defaults(chip);
|
|
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
|
|
/*
|
|
* Check, if buswidth is correct. Hardware drivers should set
|
|
* chip correct!
|
|
*/
|
|
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
|
|
maf_id, dev_id);
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
|
|
mtd->name);
|
|
pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
|
|
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nand_decode_bbm_options(chip);
|
|
|
|
/* Calculate the address shift from the page size */
|
|
chip->page_shift = ffs(mtd->writesize) - 1;
|
|
/* Convert chipsize to number of pages per chip -1 */
|
|
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
|
|
|
|
chip->bbt_erase_shift = chip->phys_erase_shift =
|
|
ffs(mtd->erasesize) - 1;
|
|
if (chip->chipsize & 0xffffffff)
|
|
chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
|
|
else {
|
|
chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
|
|
chip->chip_shift += 32 - 1;
|
|
}
|
|
|
|
if (chip->chip_shift - chip->page_shift > 16)
|
|
chip->options |= NAND_ROW_ADDR_3;
|
|
|
|
chip->badblockbits = 8;
|
|
chip->erase = single_erase;
|
|
|
|
/* Do not replace user supplied command function! */
|
|
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
|
|
chip->cmdfunc = nand_command_lp;
|
|
|
|
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
|
|
maf_id, dev_id);
|
|
|
|
if (chip->onfi_version)
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
|
|
chip->onfi_params.model);
|
|
else if (chip->jedec_version)
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
|
|
chip->jedec_params.model);
|
|
else
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
|
|
type->name);
|
|
|
|
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
|
|
(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
|
|
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
|
|
return 0;
|
|
}
|
|
|
|
static const char * const nand_ecc_modes[] = {
|
|
[NAND_ECC_NONE] = "none",
|
|
[NAND_ECC_SOFT] = "soft",
|
|
[NAND_ECC_HW] = "hw",
|
|
[NAND_ECC_HW_SYNDROME] = "hw_syndrome",
|
|
[NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
|
|
[NAND_ECC_ON_DIE] = "on-die",
|
|
};
|
|
|
|
static int of_get_nand_ecc_mode(struct device_node *np)
|
|
{
|
|
const char *pm;
|
|
int err, i;
|
|
|
|
err = of_property_read_string(np, "nand-ecc-mode", &pm);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
|
|
if (!strcasecmp(pm, nand_ecc_modes[i]))
|
|
return i;
|
|
|
|
/*
|
|
* For backward compatibility we support few obsoleted values that don't
|
|
* have their mappings into nand_ecc_modes_t anymore (they were merged
|
|
* with other enums).
|
|
*/
|
|
if (!strcasecmp(pm, "soft_bch"))
|
|
return NAND_ECC_SOFT;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static const char * const nand_ecc_algos[] = {
|
|
[NAND_ECC_HAMMING] = "hamming",
|
|
[NAND_ECC_BCH] = "bch",
|
|
};
|
|
|
|
static int of_get_nand_ecc_algo(struct device_node *np)
|
|
{
|
|
const char *pm;
|
|
int err, i;
|
|
|
|
err = of_property_read_string(np, "nand-ecc-algo", &pm);
|
|
if (!err) {
|
|
for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
|
|
if (!strcasecmp(pm, nand_ecc_algos[i]))
|
|
return i;
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* For backward compatibility we also read "nand-ecc-mode" checking
|
|
* for some obsoleted values that were specifying ECC algorithm.
|
|
*/
|
|
err = of_property_read_string(np, "nand-ecc-mode", &pm);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (!strcasecmp(pm, "soft"))
|
|
return NAND_ECC_HAMMING;
|
|
else if (!strcasecmp(pm, "soft_bch"))
|
|
return NAND_ECC_BCH;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int of_get_nand_ecc_step_size(struct device_node *np)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
|
|
return ret ? ret : val;
|
|
}
|
|
|
|
static int of_get_nand_ecc_strength(struct device_node *np)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
ret = of_property_read_u32(np, "nand-ecc-strength", &val);
|
|
return ret ? ret : val;
|
|
}
|
|
|
|
static int of_get_nand_bus_width(struct device_node *np)
|
|
{
|
|
u32 val;
|
|
|
|
if (of_property_read_u32(np, "nand-bus-width", &val))
|
|
return 8;
|
|
|
|
switch (val) {
|
|
case 8:
|
|
case 16:
|
|
return val;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static bool of_get_nand_on_flash_bbt(struct device_node *np)
|
|
{
|
|
return of_property_read_bool(np, "nand-on-flash-bbt");
|
|
}
|
|
|
|
static int nand_dt_init(struct nand_chip *chip)
|
|
{
|
|
struct device_node *dn = nand_get_flash_node(chip);
|
|
int ecc_mode, ecc_algo, ecc_strength, ecc_step;
|
|
|
|
if (!dn)
|
|
return 0;
|
|
|
|
if (of_get_nand_bus_width(dn) == 16)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
if (of_get_nand_on_flash_bbt(dn))
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
|
|
ecc_mode = of_get_nand_ecc_mode(dn);
|
|
ecc_algo = of_get_nand_ecc_algo(dn);
|
|
ecc_strength = of_get_nand_ecc_strength(dn);
|
|
ecc_step = of_get_nand_ecc_step_size(dn);
|
|
|
|
if (ecc_mode >= 0)
|
|
chip->ecc.mode = ecc_mode;
|
|
|
|
if (ecc_algo >= 0)
|
|
chip->ecc.algo = ecc_algo;
|
|
|
|
if (ecc_strength >= 0)
|
|
chip->ecc.strength = ecc_strength;
|
|
|
|
if (ecc_step > 0)
|
|
chip->ecc.size = ecc_step;
|
|
|
|
if (of_property_read_bool(dn, "nand-ecc-maximize"))
|
|
chip->ecc.options |= NAND_ECC_MAXIMIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_scan_ident - [NAND Interface] Scan for the NAND device
|
|
* @mtd: MTD device structure
|
|
* @maxchips: number of chips to scan for
|
|
* @table: alternative NAND ID table
|
|
*
|
|
* This is the first phase of the normal nand_scan() function. It reads the
|
|
* flash ID and sets up MTD fields accordingly.
|
|
*
|
|
*/
|
|
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
|
|
struct nand_flash_dev *table)
|
|
{
|
|
int i, nand_maf_id, nand_dev_id;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret;
|
|
|
|
/* Enforce the right timings for reset/detection */
|
|
onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
|
|
|
|
ret = nand_dt_init(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!mtd->name && mtd->dev.parent)
|
|
mtd->name = dev_name(mtd->dev.parent);
|
|
|
|
/*
|
|
* ->cmdfunc() is legacy and will only be used if ->exec_op() is not
|
|
* populated.
|
|
*/
|
|
if (!chip->exec_op) {
|
|
/*
|
|
* Default functions assigned for ->cmdfunc() and
|
|
* ->select_chip() both expect ->cmd_ctrl() to be populated.
|
|
*/
|
|
if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
|
|
pr_err("->cmd_ctrl() should be provided\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Set the default functions */
|
|
nand_set_defaults(chip);
|
|
|
|
/* Read the flash type */
|
|
ret = nand_detect(chip, table);
|
|
if (ret) {
|
|
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
|
|
pr_warn("No NAND device found\n");
|
|
chip->select_chip(mtd, -1);
|
|
return ret;
|
|
}
|
|
|
|
nand_maf_id = chip->id.data[0];
|
|
nand_dev_id = chip->id.data[1];
|
|
|
|
chip->select_chip(mtd, -1);
|
|
|
|
/* Check for a chip array */
|
|
for (i = 1; i < maxchips; i++) {
|
|
u8 id[2];
|
|
|
|
/* See comment in nand_get_flash_type for reset */
|
|
nand_reset(chip, i);
|
|
|
|
chip->select_chip(mtd, i);
|
|
/* Send the command for reading device ID */
|
|
nand_readid_op(chip, 0, id, sizeof(id));
|
|
/* Read manufacturer and device IDs */
|
|
if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
|
|
chip->select_chip(mtd, -1);
|
|
break;
|
|
}
|
|
chip->select_chip(mtd, -1);
|
|
}
|
|
if (i > 1)
|
|
pr_info("%d chips detected\n", i);
|
|
|
|
/* Store the number of chips and calc total size for mtd */
|
|
chip->numchips = i;
|
|
mtd->size = i * chip->chipsize;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nand_scan_ident);
|
|
|
|
static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
|
|
return -EINVAL;
|
|
|
|
switch (ecc->algo) {
|
|
case NAND_ECC_HAMMING:
|
|
ecc->calculate = nand_calculate_ecc;
|
|
ecc->correct = nand_correct_data;
|
|
ecc->read_page = nand_read_page_swecc;
|
|
ecc->read_subpage = nand_read_subpage;
|
|
ecc->write_page = nand_write_page_swecc;
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
ecc->read_oob = nand_read_oob_std;
|
|
ecc->write_oob = nand_write_oob_std;
|
|
if (!ecc->size)
|
|
ecc->size = 256;
|
|
ecc->bytes = 3;
|
|
ecc->strength = 1;
|
|
return 0;
|
|
case NAND_ECC_BCH:
|
|
if (!mtd_nand_has_bch()) {
|
|
WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
ecc->calculate = nand_bch_calculate_ecc;
|
|
ecc->correct = nand_bch_correct_data;
|
|
ecc->read_page = nand_read_page_swecc;
|
|
ecc->read_subpage = nand_read_subpage;
|
|
ecc->write_page = nand_write_page_swecc;
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
ecc->read_oob = nand_read_oob_std;
|
|
ecc->write_oob = nand_write_oob_std;
|
|
|
|
/*
|
|
* Board driver should supply ecc.size and ecc.strength
|
|
* values to select how many bits are correctable.
|
|
* Otherwise, default to 4 bits for large page devices.
|
|
*/
|
|
if (!ecc->size && (mtd->oobsize >= 64)) {
|
|
ecc->size = 512;
|
|
ecc->strength = 4;
|
|
}
|
|
|
|
/*
|
|
* if no ecc placement scheme was provided pickup the default
|
|
* large page one.
|
|
*/
|
|
if (!mtd->ooblayout) {
|
|
/* handle large page devices only */
|
|
if (mtd->oobsize < 64) {
|
|
WARN(1, "OOB layout is required when using software BCH on small pages\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
|
|
|
|
}
|
|
|
|
/*
|
|
* We can only maximize ECC config when the default layout is
|
|
* used, otherwise we don't know how many bytes can really be
|
|
* used.
|
|
*/
|
|
if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
|
|
ecc->options & NAND_ECC_MAXIMIZE) {
|
|
int steps, bytes;
|
|
|
|
/* Always prefer 1k blocks over 512bytes ones */
|
|
ecc->size = 1024;
|
|
steps = mtd->writesize / ecc->size;
|
|
|
|
/* Reserve 2 bytes for the BBM */
|
|
bytes = (mtd->oobsize - 2) / steps;
|
|
ecc->strength = bytes * 8 / fls(8 * ecc->size);
|
|
}
|
|
|
|
/* See nand_bch_init() for details. */
|
|
ecc->bytes = 0;
|
|
ecc->priv = nand_bch_init(mtd);
|
|
if (!ecc->priv) {
|
|
WARN(1, "BCH ECC initialization failed!\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
default:
|
|
WARN(1, "Unsupported ECC algorithm!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_check_ecc_caps - check the sanity of preset ECC settings
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* When ECC step size and strength are already set, check if they are supported
|
|
* by the controller and the calculated ECC bytes fit within the chip's OOB.
|
|
* On success, the calculated ECC bytes is set.
|
|
*/
|
|
int nand_check_ecc_caps(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
int preset_step = chip->ecc.size;
|
|
int preset_strength = chip->ecc.strength;
|
|
int nsteps, ecc_bytes;
|
|
int i, j;
|
|
|
|
if (WARN_ON(oobavail < 0))
|
|
return -EINVAL;
|
|
|
|
if (!preset_step || !preset_strength)
|
|
return -ENODATA;
|
|
|
|
nsteps = mtd->writesize / preset_step;
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
stepinfo = &caps->stepinfos[i];
|
|
|
|
if (stepinfo->stepsize != preset_step)
|
|
continue;
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
if (stepinfo->strengths[j] != preset_strength)
|
|
continue;
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(preset_step,
|
|
preset_strength);
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
return ecc_bytes;
|
|
|
|
if (ecc_bytes * nsteps > oobavail) {
|
|
pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
|
|
preset_step, preset_strength);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
chip->ecc.bytes = ecc_bytes;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
|
|
preset_step, preset_strength);
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
|
|
|
|
/**
|
|
* nand_match_ecc_req - meet the chip's requirement with least ECC bytes
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC engine caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* If a chip's ECC requirement is provided, try to meet it with the least
|
|
* number of ECC bytes (i.e. with the largest number of OOB-free bytes).
|
|
* On success, the chosen ECC settings are set.
|
|
*/
|
|
int nand_match_ecc_req(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
int req_step = chip->ecc_step_ds;
|
|
int req_strength = chip->ecc_strength_ds;
|
|
int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
|
|
int best_step, best_strength, best_ecc_bytes;
|
|
int best_ecc_bytes_total = INT_MAX;
|
|
int i, j;
|
|
|
|
if (WARN_ON(oobavail < 0))
|
|
return -EINVAL;
|
|
|
|
/* No information provided by the NAND chip */
|
|
if (!req_step || !req_strength)
|
|
return -ENOTSUPP;
|
|
|
|
/* number of correctable bits the chip requires in a page */
|
|
req_corr = mtd->writesize / req_step * req_strength;
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
stepinfo = &caps->stepinfos[i];
|
|
step_size = stepinfo->stepsize;
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
strength = stepinfo->strengths[j];
|
|
|
|
/*
|
|
* If both step size and strength are smaller than the
|
|
* chip's requirement, it is not easy to compare the
|
|
* resulted reliability.
|
|
*/
|
|
if (step_size < req_step && strength < req_strength)
|
|
continue;
|
|
|
|
if (mtd->writesize % step_size)
|
|
continue;
|
|
|
|
nsteps = mtd->writesize / step_size;
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
continue;
|
|
ecc_bytes_total = ecc_bytes * nsteps;
|
|
|
|
if (ecc_bytes_total > oobavail ||
|
|
strength * nsteps < req_corr)
|
|
continue;
|
|
|
|
/*
|
|
* We assume the best is to meet the chip's requrement
|
|
* with the least number of ECC bytes.
|
|
*/
|
|
if (ecc_bytes_total < best_ecc_bytes_total) {
|
|
best_ecc_bytes_total = ecc_bytes_total;
|
|
best_step = step_size;
|
|
best_strength = strength;
|
|
best_ecc_bytes = ecc_bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_ecc_bytes_total == INT_MAX)
|
|
return -ENOTSUPP;
|
|
|
|
chip->ecc.size = best_step;
|
|
chip->ecc.strength = best_strength;
|
|
chip->ecc.bytes = best_ecc_bytes;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_match_ecc_req);
|
|
|
|
/**
|
|
* nand_maximize_ecc - choose the max ECC strength available
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC engine caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* Choose the max ECC strength that is supported on the controller, and can fit
|
|
* within the chip's OOB. On success, the chosen ECC settings are set.
|
|
*/
|
|
int nand_maximize_ecc(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
int step_size, strength, nsteps, ecc_bytes, corr;
|
|
int best_corr = 0;
|
|
int best_step = 0;
|
|
int best_strength, best_ecc_bytes;
|
|
int i, j;
|
|
|
|
if (WARN_ON(oobavail < 0))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
stepinfo = &caps->stepinfos[i];
|
|
step_size = stepinfo->stepsize;
|
|
|
|
/* If chip->ecc.size is already set, respect it */
|
|
if (chip->ecc.size && step_size != chip->ecc.size)
|
|
continue;
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
strength = stepinfo->strengths[j];
|
|
|
|
if (mtd->writesize % step_size)
|
|
continue;
|
|
|
|
nsteps = mtd->writesize / step_size;
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
continue;
|
|
|
|
if (ecc_bytes * nsteps > oobavail)
|
|
continue;
|
|
|
|
corr = strength * nsteps;
|
|
|
|
/*
|
|
* If the number of correctable bits is the same,
|
|
* bigger step_size has more reliability.
|
|
*/
|
|
if (corr > best_corr ||
|
|
(corr == best_corr && step_size > best_step)) {
|
|
best_corr = corr;
|
|
best_step = step_size;
|
|
best_strength = strength;
|
|
best_ecc_bytes = ecc_bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!best_corr)
|
|
return -ENOTSUPP;
|
|
|
|
chip->ecc.size = best_step;
|
|
chip->ecc.strength = best_strength;
|
|
chip->ecc.bytes = best_ecc_bytes;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_maximize_ecc);
|
|
|
|
/*
|
|
* Check if the chip configuration meet the datasheet requirements.
|
|
|
|
* If our configuration corrects A bits per B bytes and the minimum
|
|
* required correction level is X bits per Y bytes, then we must ensure
|
|
* both of the following are true:
|
|
*
|
|
* (1) A / B >= X / Y
|
|
* (2) A >= X
|
|
*
|
|
* Requirement (1) ensures we can correct for the required bitflip density.
|
|
* Requirement (2) ensures we can correct even when all bitflips are clumped
|
|
* in the same sector.
|
|
*/
|
|
static bool nand_ecc_strength_good(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int corr, ds_corr;
|
|
|
|
if (ecc->size == 0 || chip->ecc_step_ds == 0)
|
|
/* Not enough information */
|
|
return true;
|
|
|
|
/*
|
|
* We get the number of corrected bits per page to compare
|
|
* the correction density.
|
|
*/
|
|
corr = (mtd->writesize * ecc->strength) / ecc->size;
|
|
ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
|
|
|
|
return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
|
|
}
|
|
|
|
/**
|
|
* nand_scan_tail - [NAND Interface] Scan for the NAND device
|
|
* @mtd: MTD device structure
|
|
*
|
|
* This is the second phase of the normal nand_scan() function. It fills out
|
|
* all the uninitialized function pointers with the defaults and scans for a
|
|
* bad block table if appropriate.
|
|
*/
|
|
int nand_scan_tail(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int ret, i;
|
|
|
|
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
|
|
if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
|
|
!(chip->bbt_options & NAND_BBT_USE_FLASH))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
|
|
if (!chip->data_buf)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* FIXME: some NAND manufacturer drivers expect the first die to be
|
|
* selected when manufacturer->init() is called. They should be fixed
|
|
* to explictly select the relevant die when interacting with the NAND
|
|
* chip.
|
|
*/
|
|
chip->select_chip(mtd, 0);
|
|
ret = nand_manufacturer_init(chip);
|
|
chip->select_chip(mtd, -1);
|
|
if (ret)
|
|
goto err_free_buf;
|
|
|
|
/* Set the internal oob buffer location, just after the page data */
|
|
chip->oob_poi = chip->data_buf + mtd->writesize;
|
|
|
|
/*
|
|
* If no default placement scheme is given, select an appropriate one.
|
|
*/
|
|
if (!mtd->ooblayout &&
|
|
!(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
|
|
switch (mtd->oobsize) {
|
|
case 8:
|
|
case 16:
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
|
|
break;
|
|
case 64:
|
|
case 128:
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
|
|
break;
|
|
default:
|
|
/*
|
|
* Expose the whole OOB area to users if ECC_NONE
|
|
* is passed. We could do that for all kind of
|
|
* ->oobsize, but we must keep the old large/small
|
|
* page with ECC layout when ->oobsize <= 128 for
|
|
* compatibility reasons.
|
|
*/
|
|
if (ecc->mode == NAND_ECC_NONE) {
|
|
mtd_set_ooblayout(mtd,
|
|
&nand_ooblayout_lp_ops);
|
|
break;
|
|
}
|
|
|
|
WARN(1, "No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
|
|
* selected and we have 256 byte pagesize fallback to software ECC
|
|
*/
|
|
|
|
switch (ecc->mode) {
|
|
case NAND_ECC_HW_OOB_FIRST:
|
|
/* Similar to NAND_ECC_HW, but a separate read_page handle */
|
|
if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
|
|
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
if (!ecc->read_page)
|
|
ecc->read_page = nand_read_page_hwecc_oob_first;
|
|
|
|
case NAND_ECC_HW:
|
|
/* Use standard hwecc read page function? */
|
|
if (!ecc->read_page)
|
|
ecc->read_page = nand_read_page_hwecc;
|
|
if (!ecc->write_page)
|
|
ecc->write_page = nand_write_page_hwecc;
|
|
if (!ecc->read_page_raw)
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
if (!ecc->write_page_raw)
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
if (!ecc->read_oob)
|
|
ecc->read_oob = nand_read_oob_std;
|
|
if (!ecc->write_oob)
|
|
ecc->write_oob = nand_write_oob_std;
|
|
if (!ecc->read_subpage)
|
|
ecc->read_subpage = nand_read_subpage;
|
|
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
|
|
ecc->write_subpage = nand_write_subpage_hwecc;
|
|
|
|
case NAND_ECC_HW_SYNDROME:
|
|
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
|
|
(!ecc->read_page ||
|
|
ecc->read_page == nand_read_page_hwecc ||
|
|
!ecc->write_page ||
|
|
ecc->write_page == nand_write_page_hwecc)) {
|
|
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
/* Use standard syndrome read/write page function? */
|
|
if (!ecc->read_page)
|
|
ecc->read_page = nand_read_page_syndrome;
|
|
if (!ecc->write_page)
|
|
ecc->write_page = nand_write_page_syndrome;
|
|
if (!ecc->read_page_raw)
|
|
ecc->read_page_raw = nand_read_page_raw_syndrome;
|
|
if (!ecc->write_page_raw)
|
|
ecc->write_page_raw = nand_write_page_raw_syndrome;
|
|
if (!ecc->read_oob)
|
|
ecc->read_oob = nand_read_oob_syndrome;
|
|
if (!ecc->write_oob)
|
|
ecc->write_oob = nand_write_oob_syndrome;
|
|
|
|
if (mtd->writesize >= ecc->size) {
|
|
if (!ecc->strength) {
|
|
WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
break;
|
|
}
|
|
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
|
|
ecc->size, mtd->writesize);
|
|
ecc->mode = NAND_ECC_SOFT;
|
|
ecc->algo = NAND_ECC_HAMMING;
|
|
|
|
case NAND_ECC_SOFT:
|
|
ret = nand_set_ecc_soft_ops(mtd);
|
|
if (ret) {
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
break;
|
|
|
|
case NAND_ECC_ON_DIE:
|
|
if (!ecc->read_page || !ecc->write_page) {
|
|
WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
if (!ecc->read_oob)
|
|
ecc->read_oob = nand_read_oob_std;
|
|
if (!ecc->write_oob)
|
|
ecc->write_oob = nand_write_oob_std;
|
|
break;
|
|
|
|
case NAND_ECC_NONE:
|
|
pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
|
|
ecc->read_page = nand_read_page_raw;
|
|
ecc->write_page = nand_write_page_raw;
|
|
ecc->read_oob = nand_read_oob_std;
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
ecc->write_oob = nand_write_oob_std;
|
|
ecc->size = mtd->writesize;
|
|
ecc->bytes = 0;
|
|
ecc->strength = 0;
|
|
break;
|
|
|
|
default:
|
|
WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
|
|
if (ecc->correct || ecc->calculate) {
|
|
ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
|
|
ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
|
|
if (!ecc->calc_buf || !ecc->code_buf) {
|
|
ret = -ENOMEM;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
}
|
|
|
|
/* For many systems, the standard OOB write also works for raw */
|
|
if (!ecc->read_oob_raw)
|
|
ecc->read_oob_raw = ecc->read_oob;
|
|
if (!ecc->write_oob_raw)
|
|
ecc->write_oob_raw = ecc->write_oob;
|
|
|
|
/* propagate ecc info to mtd_info */
|
|
mtd->ecc_strength = ecc->strength;
|
|
mtd->ecc_step_size = ecc->size;
|
|
|
|
/*
|
|
* Set the number of read / write steps for one page depending on ECC
|
|
* mode.
|
|
*/
|
|
ecc->steps = mtd->writesize / ecc->size;
|
|
if (ecc->steps * ecc->size != mtd->writesize) {
|
|
WARN(1, "Invalid ECC parameters\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
ecc->total = ecc->steps * ecc->bytes;
|
|
if (ecc->total > mtd->oobsize) {
|
|
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
|
|
/*
|
|
* The number of bytes available for a client to place data into
|
|
* the out of band area.
|
|
*/
|
|
ret = mtd_ooblayout_count_freebytes(mtd);
|
|
if (ret < 0)
|
|
ret = 0;
|
|
|
|
mtd->oobavail = ret;
|
|
|
|
/* ECC sanity check: warn if it's too weak */
|
|
if (!nand_ecc_strength_good(mtd))
|
|
pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
|
|
mtd->name);
|
|
|
|
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
|
|
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
|
|
switch (ecc->steps) {
|
|
case 2:
|
|
mtd->subpage_sft = 1;
|
|
break;
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
mtd->subpage_sft = 2;
|
|
break;
|
|
}
|
|
}
|
|
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
|
|
|
|
/* Initialize state */
|
|
chip->state = FL_READY;
|
|
|
|
/* Invalidate the pagebuffer reference */
|
|
chip->pagebuf = -1;
|
|
|
|
/* Large page NAND with SOFT_ECC should support subpage reads */
|
|
switch (ecc->mode) {
|
|
case NAND_ECC_SOFT:
|
|
if (chip->page_shift > 9)
|
|
chip->options |= NAND_SUBPAGE_READ;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Fill in remaining MTD driver data */
|
|
mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
|
|
mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
|
|
MTD_CAP_NANDFLASH;
|
|
mtd->_erase = nand_erase;
|
|
mtd->_point = NULL;
|
|
mtd->_unpoint = NULL;
|
|
mtd->_panic_write = panic_nand_write;
|
|
mtd->_read_oob = nand_read_oob;
|
|
mtd->_write_oob = nand_write_oob;
|
|
mtd->_sync = nand_sync;
|
|
mtd->_lock = NULL;
|
|
mtd->_unlock = NULL;
|
|
mtd->_suspend = nand_suspend;
|
|
mtd->_resume = nand_resume;
|
|
mtd->_reboot = nand_shutdown;
|
|
mtd->_block_isreserved = nand_block_isreserved;
|
|
mtd->_block_isbad = nand_block_isbad;
|
|
mtd->_block_markbad = nand_block_markbad;
|
|
mtd->_max_bad_blocks = nand_max_bad_blocks;
|
|
mtd->writebufsize = mtd->writesize;
|
|
|
|
/*
|
|
* Initialize bitflip_threshold to its default prior scan_bbt() call.
|
|
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
|
|
* properly set.
|
|
*/
|
|
if (!mtd->bitflip_threshold)
|
|
mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
|
|
|
|
/* Initialize the ->data_interface field. */
|
|
ret = nand_init_data_interface(chip);
|
|
if (ret)
|
|
goto err_nand_manuf_cleanup;
|
|
|
|
/* Enter fastest possible mode on all dies. */
|
|
for (i = 0; i < chip->numchips; i++) {
|
|
chip->select_chip(mtd, i);
|
|
ret = nand_setup_data_interface(chip, i);
|
|
chip->select_chip(mtd, -1);
|
|
|
|
if (ret)
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
|
|
/* Check, if we should skip the bad block table scan */
|
|
if (chip->options & NAND_SKIP_BBTSCAN)
|
|
return 0;
|
|
|
|
/* Build bad block table */
|
|
ret = chip->scan_bbt(mtd);
|
|
if (ret)
|
|
goto err_nand_manuf_cleanup;
|
|
|
|
return 0;
|
|
|
|
|
|
err_nand_manuf_cleanup:
|
|
nand_manufacturer_cleanup(chip);
|
|
|
|
err_free_buf:
|
|
kfree(chip->data_buf);
|
|
kfree(ecc->code_buf);
|
|
kfree(ecc->calc_buf);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(nand_scan_tail);
|
|
|
|
/*
|
|
* is_module_text_address() isn't exported, and it's mostly a pointless
|
|
* test if this is a module _anyway_ -- they'd have to try _really_ hard
|
|
* to call us from in-kernel code if the core NAND support is modular.
|
|
*/
|
|
#ifdef MODULE
|
|
#define caller_is_module() (1)
|
|
#else
|
|
#define caller_is_module() \
|
|
is_module_text_address((unsigned long)__builtin_return_address(0))
|
|
#endif
|
|
|
|
/**
|
|
* nand_scan - [NAND Interface] Scan for the NAND device
|
|
* @mtd: MTD device structure
|
|
* @maxchips: number of chips to scan for
|
|
*
|
|
* This fills out all the uninitialized function pointers with the defaults.
|
|
* The flash ID is read and the mtd/chip structures are filled with the
|
|
* appropriate values.
|
|
*/
|
|
int nand_scan(struct mtd_info *mtd, int maxchips)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_scan_ident(mtd, maxchips, NULL);
|
|
if (!ret)
|
|
ret = nand_scan_tail(mtd);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(nand_scan);
|
|
|
|
/**
|
|
* nand_cleanup - [NAND Interface] Free resources held by the NAND device
|
|
* @chip: NAND chip object
|
|
*/
|
|
void nand_cleanup(struct nand_chip *chip)
|
|
{
|
|
if (chip->ecc.mode == NAND_ECC_SOFT &&
|
|
chip->ecc.algo == NAND_ECC_BCH)
|
|
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
|
|
|
|
/* Free bad block table memory */
|
|
kfree(chip->bbt);
|
|
kfree(chip->data_buf);
|
|
kfree(chip->ecc.code_buf);
|
|
kfree(chip->ecc.calc_buf);
|
|
|
|
/* Free bad block descriptor memory */
|
|
if (chip->badblock_pattern && chip->badblock_pattern->options
|
|
& NAND_BBT_DYNAMICSTRUCT)
|
|
kfree(chip->badblock_pattern);
|
|
|
|
/* Free manufacturer priv data. */
|
|
nand_manufacturer_cleanup(chip);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_cleanup);
|
|
|
|
/**
|
|
* nand_release - [NAND Interface] Unregister the MTD device and free resources
|
|
* held by the NAND device
|
|
* @mtd: MTD device structure
|
|
*/
|
|
void nand_release(struct mtd_info *mtd)
|
|
{
|
|
mtd_device_unregister(mtd);
|
|
nand_cleanup(mtd_to_nand(mtd));
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_release);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
|
|
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
|
|
MODULE_DESCRIPTION("Generic NAND flash driver code");
|