mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-16 09:56:46 +00:00
c8cfa8d0c0
`Box` provides the simplest way to allocate memory for a generic type with one of the kernel's allocators, e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`. In contrast to Rust's `Box` type, the kernel `Box` type considers the kernel's GFP flags for all appropriate functions, always reports allocation failures through `Result<_, AllocError>` and remains independent from unstable features. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20241004154149.93856-12-dakr@kernel.org [ Added backticks, fixed typos. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
457 lines
14 KiB
Rust
457 lines
14 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
||
|
||
//! Implementation of [`Box`].
|
||
|
||
#[allow(unused_imports)] // Used in doc comments.
|
||
use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
|
||
use super::{AllocError, Allocator, Flags};
|
||
use core::alloc::Layout;
|
||
use core::fmt;
|
||
use core::marker::PhantomData;
|
||
use core::mem::ManuallyDrop;
|
||
use core::mem::MaybeUninit;
|
||
use core::ops::{Deref, DerefMut};
|
||
use core::pin::Pin;
|
||
use core::ptr::NonNull;
|
||
use core::result::Result;
|
||
|
||
use crate::init::{InPlaceInit, InPlaceWrite, Init, PinInit};
|
||
use crate::types::ForeignOwnable;
|
||
|
||
/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
|
||
///
|
||
/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
|
||
/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
|
||
/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
|
||
/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
|
||
/// that may allocate memory are fallible.
|
||
///
|
||
/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
|
||
/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
|
||
///
|
||
/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
|
||
///
|
||
/// assert_eq!(*b, 24_u64);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
///
|
||
/// ```
|
||
/// # use kernel::bindings;
|
||
/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
|
||
/// struct Huge([u8; SIZE]);
|
||
///
|
||
/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
|
||
/// ```
|
||
///
|
||
/// ```
|
||
/// # use kernel::bindings;
|
||
/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
|
||
/// struct Huge([u8; SIZE]);
|
||
///
|
||
/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
|
||
/// ```
|
||
///
|
||
/// # Invariants
|
||
///
|
||
/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
|
||
/// zero-sized types, is a dangling, well aligned pointer.
|
||
#[repr(transparent)]
|
||
pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>);
|
||
|
||
/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let b = KBox::new(24_u64, GFP_KERNEL)?;
|
||
///
|
||
/// assert_eq!(*b, 24_u64);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
|
||
|
||
/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let b = VBox::new(24_u64, GFP_KERNEL)?;
|
||
///
|
||
/// assert_eq!(*b, 24_u64);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
|
||
|
||
/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
|
||
///
|
||
/// assert_eq!(*b, 24_u64);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
|
||
|
||
// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
|
||
unsafe impl<T, A> Send for Box<T, A>
|
||
where
|
||
T: Send + ?Sized,
|
||
A: Allocator,
|
||
{
|
||
}
|
||
|
||
// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
|
||
unsafe impl<T, A> Sync for Box<T, A>
|
||
where
|
||
T: Sync + ?Sized,
|
||
A: Allocator,
|
||
{
|
||
}
|
||
|
||
impl<T, A> Box<T, A>
|
||
where
|
||
T: ?Sized,
|
||
A: Allocator,
|
||
{
|
||
/// Creates a new `Box<T, A>` from a raw pointer.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
|
||
/// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
|
||
/// `Box`.
|
||
///
|
||
/// For ZSTs, `raw` must be a dangling, well aligned pointer.
|
||
#[inline]
|
||
pub const unsafe fn from_raw(raw: *mut T) -> Self {
|
||
// INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
|
||
// SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
|
||
Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
|
||
}
|
||
|
||
/// Consumes the `Box<T, A>` and returns a raw pointer.
|
||
///
|
||
/// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
|
||
/// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
|
||
/// allocation, if any.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = KBox::new(24, GFP_KERNEL)?;
|
||
/// let ptr = KBox::into_raw(x);
|
||
/// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
|
||
/// let x = unsafe { KBox::from_raw(ptr) };
|
||
///
|
||
/// assert_eq!(*x, 24);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
#[inline]
|
||
pub fn into_raw(b: Self) -> *mut T {
|
||
ManuallyDrop::new(b).0.as_ptr()
|
||
}
|
||
|
||
/// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
|
||
///
|
||
/// See [`Box::into_raw`] for more details.
|
||
#[inline]
|
||
pub fn leak<'a>(b: Self) -> &'a mut T {
|
||
// SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
|
||
// which points to an initialized instance of `T`.
|
||
unsafe { &mut *Box::into_raw(b) }
|
||
}
|
||
}
|
||
|
||
impl<T, A> Box<MaybeUninit<T>, A>
|
||
where
|
||
A: Allocator,
|
||
{
|
||
/// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
|
||
///
|
||
/// It is undefined behavior to call this function while the value inside of `b` is not yet
|
||
/// fully initialized.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// Callers must ensure that the value inside of `b` is in an initialized state.
|
||
pub unsafe fn assume_init(self) -> Box<T, A> {
|
||
let raw = Self::into_raw(self);
|
||
|
||
// SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
|
||
// of this function, the value inside the `Box` is in an initialized state. Hence, it is
|
||
// safe to reconstruct the `Box` as `Box<T, A>`.
|
||
unsafe { Box::from_raw(raw.cast()) }
|
||
}
|
||
|
||
/// Writes the value and converts to `Box<T, A>`.
|
||
pub fn write(mut self, value: T) -> Box<T, A> {
|
||
(*self).write(value);
|
||
|
||
// SAFETY: We've just initialized `b`'s value.
|
||
unsafe { self.assume_init() }
|
||
}
|
||
}
|
||
|
||
impl<T, A> Box<T, A>
|
||
where
|
||
A: Allocator,
|
||
{
|
||
/// Creates a new `Box<T, A>` and initializes its contents with `x`.
|
||
///
|
||
/// New memory is allocated with `A`. The allocation may fail, in which case an error is
|
||
/// returned. For ZSTs no memory is allocated.
|
||
pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
|
||
let b = Self::new_uninit(flags)?;
|
||
Ok(Box::write(b, x))
|
||
}
|
||
|
||
/// Creates a new `Box<T, A>` with uninitialized contents.
|
||
///
|
||
/// New memory is allocated with `A`. The allocation may fail, in which case an error is
|
||
/// returned. For ZSTs no memory is allocated.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
|
||
/// let b = KBox::write(b, 24);
|
||
///
|
||
/// assert_eq!(*b, 24_u64);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
|
||
let layout = Layout::new::<MaybeUninit<T>>();
|
||
let ptr = A::alloc(layout, flags)?;
|
||
|
||
// INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
|
||
// which is sufficient in size and alignment for storing a `T`.
|
||
Ok(Box(ptr.cast(), PhantomData))
|
||
}
|
||
|
||
/// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
|
||
/// pinned in memory and can't be moved.
|
||
#[inline]
|
||
pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
|
||
where
|
||
A: 'static,
|
||
{
|
||
Ok(Self::new(x, flags)?.into())
|
||
}
|
||
|
||
/// Forgets the contents (does not run the destructor), but keeps the allocation.
|
||
fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
|
||
let ptr = Self::into_raw(this);
|
||
|
||
// SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
|
||
unsafe { Box::from_raw(ptr.cast()) }
|
||
}
|
||
|
||
/// Drops the contents, but keeps the allocation.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let value = KBox::new([0; 32], GFP_KERNEL)?;
|
||
/// assert_eq!(*value, [0; 32]);
|
||
/// let value = KBox::drop_contents(value);
|
||
/// // Now we can re-use `value`:
|
||
/// let value = KBox::write(value, [1; 32]);
|
||
/// assert_eq!(*value, [1; 32]);
|
||
/// # Ok::<(), Error>(())
|
||
/// ```
|
||
pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
|
||
let ptr = this.0.as_ptr();
|
||
|
||
// SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
|
||
// value stored in `this` again.
|
||
unsafe { core::ptr::drop_in_place(ptr) };
|
||
|
||
Self::forget_contents(this)
|
||
}
|
||
|
||
/// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
|
||
pub fn into_inner(b: Self) -> T {
|
||
// SAFETY: By the type invariant `&*b` is valid for `read`.
|
||
let value = unsafe { core::ptr::read(&*b) };
|
||
let _ = Self::forget_contents(b);
|
||
value
|
||
}
|
||
}
|
||
|
||
impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
|
||
where
|
||
T: ?Sized,
|
||
A: Allocator,
|
||
{
|
||
/// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
|
||
/// `*b` will be pinned in memory and can't be moved.
|
||
///
|
||
/// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
|
||
fn from(b: Box<T, A>) -> Self {
|
||
// SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
|
||
// as `T` does not implement `Unpin`.
|
||
unsafe { Pin::new_unchecked(b) }
|
||
}
|
||
}
|
||
|
||
impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
|
||
where
|
||
A: Allocator + 'static,
|
||
{
|
||
type Initialized = Box<T, A>;
|
||
|
||
fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
|
||
let slot = self.as_mut_ptr();
|
||
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
||
// slot is valid.
|
||
unsafe { init.__init(slot)? };
|
||
// SAFETY: All fields have been initialized.
|
||
Ok(unsafe { Box::assume_init(self) })
|
||
}
|
||
|
||
fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
|
||
let slot = self.as_mut_ptr();
|
||
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
||
// slot is valid and will not be moved, because we pin it later.
|
||
unsafe { init.__pinned_init(slot)? };
|
||
// SAFETY: All fields have been initialized.
|
||
Ok(unsafe { Box::assume_init(self) }.into())
|
||
}
|
||
}
|
||
|
||
impl<T, A> InPlaceInit<T> for Box<T, A>
|
||
where
|
||
A: Allocator + 'static,
|
||
{
|
||
type PinnedSelf = Pin<Self>;
|
||
|
||
#[inline]
|
||
fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
|
||
where
|
||
E: From<AllocError>,
|
||
{
|
||
Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
|
||
}
|
||
|
||
#[inline]
|
||
fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
|
||
where
|
||
E: From<AllocError>,
|
||
{
|
||
Box::<_, A>::new_uninit(flags)?.write_init(init)
|
||
}
|
||
}
|
||
|
||
impl<T: 'static, A> ForeignOwnable for Box<T, A>
|
||
where
|
||
A: Allocator,
|
||
{
|
||
type Borrowed<'a> = &'a T;
|
||
|
||
fn into_foreign(self) -> *const core::ffi::c_void {
|
||
Box::into_raw(self) as _
|
||
}
|
||
|
||
unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
|
||
// SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
|
||
// call to `Self::into_foreign`.
|
||
unsafe { Box::from_raw(ptr as _) }
|
||
}
|
||
|
||
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
|
||
// SAFETY: The safety requirements of this method ensure that the object remains alive and
|
||
// immutable for the duration of 'a.
|
||
unsafe { &*ptr.cast() }
|
||
}
|
||
}
|
||
|
||
impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
|
||
where
|
||
A: Allocator,
|
||
{
|
||
type Borrowed<'a> = Pin<&'a T>;
|
||
|
||
fn into_foreign(self) -> *const core::ffi::c_void {
|
||
// SAFETY: We are still treating the box as pinned.
|
||
Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) as _
|
||
}
|
||
|
||
unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
|
||
// SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
|
||
// call to `Self::into_foreign`.
|
||
unsafe { Pin::new_unchecked(Box::from_raw(ptr as _)) }
|
||
}
|
||
|
||
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Pin<&'a T> {
|
||
// SAFETY: The safety requirements for this function ensure that the object is still alive,
|
||
// so it is safe to dereference the raw pointer.
|
||
// The safety requirements of `from_foreign` also ensure that the object remains alive for
|
||
// the lifetime of the returned value.
|
||
let r = unsafe { &*ptr.cast() };
|
||
|
||
// SAFETY: This pointer originates from a `Pin<Box<T>>`.
|
||
unsafe { Pin::new_unchecked(r) }
|
||
}
|
||
}
|
||
|
||
impl<T, A> Deref for Box<T, A>
|
||
where
|
||
T: ?Sized,
|
||
A: Allocator,
|
||
{
|
||
type Target = T;
|
||
|
||
fn deref(&self) -> &T {
|
||
// SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
|
||
// instance of `T`.
|
||
unsafe { self.0.as_ref() }
|
||
}
|
||
}
|
||
|
||
impl<T, A> DerefMut for Box<T, A>
|
||
where
|
||
T: ?Sized,
|
||
A: Allocator,
|
||
{
|
||
fn deref_mut(&mut self) -> &mut T {
|
||
// SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
|
||
// instance of `T`.
|
||
unsafe { self.0.as_mut() }
|
||
}
|
||
}
|
||
|
||
impl<T, A> fmt::Debug for Box<T, A>
|
||
where
|
||
T: ?Sized + fmt::Debug,
|
||
A: Allocator,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
fmt::Debug::fmt(&**self, f)
|
||
}
|
||
}
|
||
|
||
impl<T, A> Drop for Box<T, A>
|
||
where
|
||
T: ?Sized,
|
||
A: Allocator,
|
||
{
|
||
fn drop(&mut self) {
|
||
let layout = Layout::for_value::<T>(self);
|
||
|
||
// SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
|
||
unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
|
||
|
||
// SAFETY:
|
||
// - `self.0` was previously allocated with `A`.
|
||
// - `layout` is equal to the `Layout´ `self.0` was allocated with.
|
||
unsafe { A::free(self.0.cast(), layout) };
|
||
}
|
||
}
|