linux/drivers/cpufreq/cpufreq_conservative.c
Rafael J. Wysocki 9be4fd2c77 cpufreq: governor: Replace timers with utilization update callbacks
Instead of using a per-CPU deferrable timer for queuing up governor
work items, register a utilization update callback that will be
invoked from the scheduler on utilization changes.

The sampling rate is still the same as what was used for the
deferrable timers and the added irq_work overhead should be offset by
the eliminated timers overhead, so in theory the functional impact of
this patch should not be significant.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
2016-03-09 14:40:53 +01:00

407 lines
11 KiB
C

/*
* drivers/cpufreq/cpufreq_conservative.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/slab.h>
#include "cpufreq_governor.h"
/* Conservative governor macros */
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
#define DEF_FREQUENCY_STEP (5)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (10)
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event);
static struct cpufreq_governor cpufreq_gov_conservative = {
.name = "conservative",
.governor = cs_cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
struct cpufreq_policy *policy)
{
unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
/* max freq cannot be less than 100. But who knows... */
if (unlikely(freq_target == 0))
freq_target = DEF_FREQUENCY_STEP;
return freq_target;
}
/*
* Every sampling_rate, we check, if current idle time is less than 20%
* (default), then we try to increase frequency. Every sampling_rate *
* sampling_down_factor, we check, if current idle time is more than 80%
* (default), then we try to decrease frequency
*
* Any frequency increase takes it to the maximum frequency. Frequency reduction
* happens at minimum steps of 5% (default) of maximum frequency
*/
static void cs_check_cpu(int cpu, unsigned int load)
{
struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
struct dbs_data *dbs_data = policy->governor_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
/*
* break out if we 'cannot' reduce the speed as the user might
* want freq_step to be zero
*/
if (cs_tuners->freq_step == 0)
return;
/* Check for frequency increase */
if (load > cs_tuners->up_threshold) {
dbs_info->down_skip = 0;
/* if we are already at full speed then break out early */
if (dbs_info->requested_freq == policy->max)
return;
dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
if (dbs_info->requested_freq > policy->max)
dbs_info->requested_freq = policy->max;
__cpufreq_driver_target(policy, dbs_info->requested_freq,
CPUFREQ_RELATION_H);
return;
}
/* if sampling_down_factor is active break out early */
if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
return;
dbs_info->down_skip = 0;
/* Check for frequency decrease */
if (load < cs_tuners->down_threshold) {
unsigned int freq_target;
/*
* if we cannot reduce the frequency anymore, break out early
*/
if (policy->cur == policy->min)
return;
freq_target = get_freq_target(cs_tuners, policy);
if (dbs_info->requested_freq > freq_target)
dbs_info->requested_freq -= freq_target;
else
dbs_info->requested_freq = policy->min;
__cpufreq_driver_target(policy, dbs_info->requested_freq,
CPUFREQ_RELATION_L);
return;
}
}
static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
{
struct dbs_data *dbs_data = policy->governor_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
dbs_check_cpu(dbs_data, policy->cpu);
return delay_for_sampling_rate(cs_tuners->sampling_rate);
}
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
struct cs_cpu_dbs_info_s *dbs_info =
&per_cpu(cs_cpu_dbs_info, freq->cpu);
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
if (!policy)
return 0;
/* policy isn't governed by conservative governor */
if (policy->governor != &cpufreq_gov_conservative)
return 0;
/*
* we only care if our internally tracked freq moves outside the 'valid'
* ranges of frequency available to us otherwise we do not change it
*/
if (dbs_info->requested_freq > policy->max
|| dbs_info->requested_freq < policy->min)
dbs_info->requested_freq = freq->new;
return 0;
}
static struct notifier_block cs_cpufreq_notifier_block = {
.notifier_call = dbs_cpufreq_notifier,
};
/************************** sysfs interface ************************/
static struct common_dbs_data cs_dbs_cdata;
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
cs_tuners->sampling_down_factor = input;
return count;
}
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
return -EINVAL;
cs_tuners->up_threshold = input;
return count;
}
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
/* cannot be lower than 11 otherwise freq will not fall */
if (ret != 1 || input < 11 || input > 100 ||
input >= cs_tuners->up_threshold)
return -EINVAL;
cs_tuners->down_threshold = input;
return count;
}
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == cs_tuners->ignore_nice_load) /* nothing to do */
return count;
cs_tuners->ignore_nice_load = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cs_cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall, 0);
if (cs_tuners->ignore_nice_load)
dbs_info->cdbs.prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 100)
input = 100;
/*
* no need to test here if freq_step is zero as the user might actually
* want this, they would be crazy though :)
*/
cs_tuners->freq_step = input;
return count;
}
show_store_one(cs, sampling_rate);
show_store_one(cs, sampling_down_factor);
show_store_one(cs, up_threshold);
show_store_one(cs, down_threshold);
show_store_one(cs, ignore_nice_load);
show_store_one(cs, freq_step);
declare_show_sampling_rate_min(cs);
gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(down_threshold);
gov_sys_pol_attr_rw(ignore_nice_load);
gov_sys_pol_attr_rw(freq_step);
gov_sys_pol_attr_ro(sampling_rate_min);
static struct attribute *dbs_attributes_gov_sys[] = {
&sampling_rate_min_gov_sys.attr,
&sampling_rate_gov_sys.attr,
&sampling_down_factor_gov_sys.attr,
&up_threshold_gov_sys.attr,
&down_threshold_gov_sys.attr,
&ignore_nice_load_gov_sys.attr,
&freq_step_gov_sys.attr,
NULL
};
static struct attribute_group cs_attr_group_gov_sys = {
.attrs = dbs_attributes_gov_sys,
.name = "conservative",
};
static struct attribute *dbs_attributes_gov_pol[] = {
&sampling_rate_min_gov_pol.attr,
&sampling_rate_gov_pol.attr,
&sampling_down_factor_gov_pol.attr,
&up_threshold_gov_pol.attr,
&down_threshold_gov_pol.attr,
&ignore_nice_load_gov_pol.attr,
&freq_step_gov_pol.attr,
NULL
};
static struct attribute_group cs_attr_group_gov_pol = {
.attrs = dbs_attributes_gov_pol,
.name = "conservative",
};
/************************** sysfs end ************************/
static int cs_init(struct dbs_data *dbs_data, bool notify)
{
struct cs_dbs_tuners *tuners;
tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
if (!tuners) {
pr_err("%s: kzalloc failed\n", __func__);
return -ENOMEM;
}
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
tuners->ignore_nice_load = 0;
tuners->freq_step = DEF_FREQUENCY_STEP;
dbs_data->tuners = tuners;
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
jiffies_to_usecs(10);
if (notify)
cpufreq_register_notifier(&cs_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
static void cs_exit(struct dbs_data *dbs_data, bool notify)
{
if (notify)
cpufreq_unregister_notifier(&cs_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
kfree(dbs_data->tuners);
}
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
static struct common_dbs_data cs_dbs_cdata = {
.governor = GOV_CONSERVATIVE,
.attr_group_gov_sys = &cs_attr_group_gov_sys,
.attr_group_gov_pol = &cs_attr_group_gov_pol,
.get_cpu_cdbs = get_cpu_cdbs,
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
.gov_dbs_timer = cs_dbs_timer,
.gov_check_cpu = cs_check_cpu,
.init = cs_init,
.exit = cs_exit,
.mutex = __MUTEX_INITIALIZER(cs_dbs_cdata.mutex),
};
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
}
static int __init cpufreq_gov_dbs_init(void)
{
return cpufreq_register_governor(&cpufreq_gov_conservative);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_conservative);
}
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors "
"optimised for use in a battery environment");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &cpufreq_gov_conservative;
}
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);