mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-12 08:09:56 +00:00
9edcdabf36
We have potential overflow issue when calculating size of object, when we left shift index with PAGE_CACHE_SHIFT bits, if type of index has only 32-bits space in 32-bit architecture, left shifting will incur overflow, i.e: pgoff_t index = 0xFFFFFFFF; loff_t size = index << PAGE_CACHE_SHIFT; size: 0xFFFFF000 So we should cast index with 64-bits type to avoid this issue. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
1718 lines
39 KiB
C
1718 lines
39 KiB
C
/*
|
|
* fs/f2fs/file.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/types.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/random.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
|
|
|
|
/* block allocation */
|
|
f2fs_lock_op(sbi);
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, page->index);
|
|
if (err) {
|
|
f2fs_unlock_op(sbi);
|
|
goto out;
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
file_update_time(vma->vm_file);
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != inode->i_mapping ||
|
|
page_offset(page) > i_size_read(inode) ||
|
|
!PageUptodate(page))) {
|
|
unlock_page(page);
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* check to see if the page is mapped already (no holes)
|
|
*/
|
|
if (PageMappedToDisk(page))
|
|
goto mapped;
|
|
|
|
/* page is wholly or partially inside EOF */
|
|
if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
|
|
i_size_read(inode)) {
|
|
unsigned offset;
|
|
offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
|
|
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
|
|
}
|
|
set_page_dirty(page);
|
|
SetPageUptodate(page);
|
|
|
|
trace_f2fs_vm_page_mkwrite(page, DATA);
|
|
mapped:
|
|
/* fill the page */
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
/* if gced page is attached, don't write to cold segment */
|
|
clear_cold_data(page);
|
|
out:
|
|
sb_end_pagefault(inode->i_sb);
|
|
return block_page_mkwrite_return(err);
|
|
}
|
|
|
|
static const struct vm_operations_struct f2fs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = f2fs_vm_page_mkwrite,
|
|
};
|
|
|
|
static int get_parent_ino(struct inode *inode, nid_t *pino)
|
|
{
|
|
struct dentry *dentry;
|
|
|
|
inode = igrab(inode);
|
|
dentry = d_find_any_alias(inode);
|
|
iput(inode);
|
|
if (!dentry)
|
|
return 0;
|
|
|
|
if (update_dent_inode(inode, inode, &dentry->d_name)) {
|
|
dput(dentry);
|
|
return 0;
|
|
}
|
|
|
|
*pino = parent_ino(dentry);
|
|
dput(dentry);
|
|
return 1;
|
|
}
|
|
|
|
static inline bool need_do_checkpoint(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
bool need_cp = false;
|
|
|
|
if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
|
|
need_cp = true;
|
|
else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
|
|
need_cp = true;
|
|
else if (file_wrong_pino(inode))
|
|
need_cp = true;
|
|
else if (!space_for_roll_forward(sbi))
|
|
need_cp = true;
|
|
else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
|
|
need_cp = true;
|
|
else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
|
|
need_cp = true;
|
|
else if (test_opt(sbi, FASTBOOT))
|
|
need_cp = true;
|
|
else if (sbi->active_logs == 2)
|
|
need_cp = true;
|
|
|
|
return need_cp;
|
|
}
|
|
|
|
static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
|
|
bool ret = false;
|
|
/* But we need to avoid that there are some inode updates */
|
|
if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
|
|
ret = true;
|
|
f2fs_put_page(i, 0);
|
|
return ret;
|
|
}
|
|
|
|
static void try_to_fix_pino(struct inode *inode)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
nid_t pino;
|
|
|
|
down_write(&fi->i_sem);
|
|
fi->xattr_ver = 0;
|
|
if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
|
|
get_parent_ino(inode, &pino)) {
|
|
fi->i_pino = pino;
|
|
file_got_pino(inode);
|
|
up_write(&fi->i_sem);
|
|
|
|
mark_inode_dirty_sync(inode);
|
|
f2fs_write_inode(inode, NULL);
|
|
} else {
|
|
up_write(&fi->i_sem);
|
|
}
|
|
}
|
|
|
|
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
nid_t ino = inode->i_ino;
|
|
int ret = 0;
|
|
bool need_cp = false;
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
if (unlikely(f2fs_readonly(inode->i_sb)))
|
|
return 0;
|
|
|
|
trace_f2fs_sync_file_enter(inode);
|
|
|
|
/* if fdatasync is triggered, let's do in-place-update */
|
|
if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
|
|
set_inode_flag(fi, FI_NEED_IPU);
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
clear_inode_flag(fi, FI_NEED_IPU);
|
|
|
|
if (ret) {
|
|
trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* if the inode is dirty, let's recover all the time */
|
|
if (!datasync) {
|
|
f2fs_write_inode(inode, NULL);
|
|
goto go_write;
|
|
}
|
|
|
|
/*
|
|
* if there is no written data, don't waste time to write recovery info.
|
|
*/
|
|
if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
|
|
!exist_written_data(sbi, ino, APPEND_INO)) {
|
|
|
|
/* it may call write_inode just prior to fsync */
|
|
if (need_inode_page_update(sbi, ino))
|
|
goto go_write;
|
|
|
|
if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
|
|
exist_written_data(sbi, ino, UPDATE_INO))
|
|
goto flush_out;
|
|
goto out;
|
|
}
|
|
go_write:
|
|
/* guarantee free sections for fsync */
|
|
f2fs_balance_fs(sbi);
|
|
|
|
/*
|
|
* Both of fdatasync() and fsync() are able to be recovered from
|
|
* sudden-power-off.
|
|
*/
|
|
down_read(&fi->i_sem);
|
|
need_cp = need_do_checkpoint(inode);
|
|
up_read(&fi->i_sem);
|
|
|
|
if (need_cp) {
|
|
/* all the dirty node pages should be flushed for POR */
|
|
ret = f2fs_sync_fs(inode->i_sb, 1);
|
|
|
|
/*
|
|
* We've secured consistency through sync_fs. Following pino
|
|
* will be used only for fsynced inodes after checkpoint.
|
|
*/
|
|
try_to_fix_pino(inode);
|
|
clear_inode_flag(fi, FI_APPEND_WRITE);
|
|
clear_inode_flag(fi, FI_UPDATE_WRITE);
|
|
goto out;
|
|
}
|
|
sync_nodes:
|
|
sync_node_pages(sbi, ino, &wbc);
|
|
|
|
/* if cp_error was enabled, we should avoid infinite loop */
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto out;
|
|
|
|
if (need_inode_block_update(sbi, ino)) {
|
|
mark_inode_dirty_sync(inode);
|
|
f2fs_write_inode(inode, NULL);
|
|
goto sync_nodes;
|
|
}
|
|
|
|
ret = wait_on_node_pages_writeback(sbi, ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* once recovery info is written, don't need to tack this */
|
|
remove_dirty_inode(sbi, ino, APPEND_INO);
|
|
clear_inode_flag(fi, FI_APPEND_WRITE);
|
|
flush_out:
|
|
remove_dirty_inode(sbi, ino, UPDATE_INO);
|
|
clear_inode_flag(fi, FI_UPDATE_WRITE);
|
|
ret = f2fs_issue_flush(sbi);
|
|
out:
|
|
trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
|
|
f2fs_trace_ios(NULL, 1);
|
|
return ret;
|
|
}
|
|
|
|
static pgoff_t __get_first_dirty_index(struct address_space *mapping,
|
|
pgoff_t pgofs, int whence)
|
|
{
|
|
struct pagevec pvec;
|
|
int nr_pages;
|
|
|
|
if (whence != SEEK_DATA)
|
|
return 0;
|
|
|
|
/* find first dirty page index */
|
|
pagevec_init(&pvec, 0);
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
|
|
PAGECACHE_TAG_DIRTY, 1);
|
|
pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
|
|
pagevec_release(&pvec);
|
|
return pgofs;
|
|
}
|
|
|
|
static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
|
|
int whence)
|
|
{
|
|
switch (whence) {
|
|
case SEEK_DATA:
|
|
if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
|
|
(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
|
|
return true;
|
|
break;
|
|
case SEEK_HOLE:
|
|
if (blkaddr == NULL_ADDR)
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
loff_t maxbytes = inode->i_sb->s_maxbytes;
|
|
struct dnode_of_data dn;
|
|
pgoff_t pgofs, end_offset, dirty;
|
|
loff_t data_ofs = offset;
|
|
loff_t isize;
|
|
int err = 0;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
isize = i_size_read(inode);
|
|
if (offset >= isize)
|
|
goto fail;
|
|
|
|
/* handle inline data case */
|
|
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
|
|
if (whence == SEEK_HOLE)
|
|
data_ofs = isize;
|
|
goto found;
|
|
}
|
|
|
|
pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
|
|
|
|
dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
|
|
|
|
for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
|
|
if (err && err != -ENOENT) {
|
|
goto fail;
|
|
} else if (err == -ENOENT) {
|
|
/* direct node does not exists */
|
|
if (whence == SEEK_DATA) {
|
|
pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
|
|
F2FS_I(inode));
|
|
continue;
|
|
} else {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
|
|
/* find data/hole in dnode block */
|
|
for (; dn.ofs_in_node < end_offset;
|
|
dn.ofs_in_node++, pgofs++,
|
|
data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
|
|
block_t blkaddr;
|
|
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
|
|
if (__found_offset(blkaddr, dirty, pgofs, whence)) {
|
|
f2fs_put_dnode(&dn);
|
|
goto found;
|
|
}
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
|
|
if (whence == SEEK_DATA)
|
|
goto fail;
|
|
found:
|
|
if (whence == SEEK_HOLE && data_ofs > isize)
|
|
data_ofs = isize;
|
|
mutex_unlock(&inode->i_mutex);
|
|
return vfs_setpos(file, data_ofs, maxbytes);
|
|
fail:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
loff_t maxbytes = inode->i_sb->s_maxbytes;
|
|
|
|
switch (whence) {
|
|
case SEEK_SET:
|
|
case SEEK_CUR:
|
|
case SEEK_END:
|
|
return generic_file_llseek_size(file, offset, whence,
|
|
maxbytes, i_size_read(inode));
|
|
case SEEK_DATA:
|
|
case SEEK_HOLE:
|
|
if (offset < 0)
|
|
return -ENXIO;
|
|
return f2fs_seek_block(file, offset, whence);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
if (f2fs_encrypted_inode(inode)) {
|
|
int err = f2fs_get_encryption_info(inode);
|
|
if (err)
|
|
return 0;
|
|
}
|
|
|
|
/* we don't need to use inline_data strictly */
|
|
if (f2fs_has_inline_data(inode)) {
|
|
int err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
file_accessed(file);
|
|
vma->vm_ops = &f2fs_file_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int ret = generic_file_open(inode, filp);
|
|
|
|
if (!ret && f2fs_encrypted_inode(inode)) {
|
|
ret = f2fs_get_encryption_info(inode);
|
|
if (ret)
|
|
ret = -EACCES;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_node *raw_node;
|
|
int nr_free = 0, ofs = dn->ofs_in_node, len = count;
|
|
__le32 *addr;
|
|
|
|
raw_node = F2FS_NODE(dn->node_page);
|
|
addr = blkaddr_in_node(raw_node) + ofs;
|
|
|
|
for (; count > 0; count--, addr++, dn->ofs_in_node++) {
|
|
block_t blkaddr = le32_to_cpu(*addr);
|
|
if (blkaddr == NULL_ADDR)
|
|
continue;
|
|
|
|
dn->data_blkaddr = NULL_ADDR;
|
|
set_data_blkaddr(dn);
|
|
invalidate_blocks(sbi, blkaddr);
|
|
if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
|
|
clear_inode_flag(F2FS_I(dn->inode),
|
|
FI_FIRST_BLOCK_WRITTEN);
|
|
nr_free++;
|
|
}
|
|
|
|
if (nr_free) {
|
|
pgoff_t fofs;
|
|
/*
|
|
* once we invalidate valid blkaddr in range [ofs, ofs + count],
|
|
* we will invalidate all blkaddr in the whole range.
|
|
*/
|
|
fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
|
|
F2FS_I(dn->inode)) + ofs;
|
|
f2fs_update_extent_cache_range(dn, fofs, 0, len);
|
|
dec_valid_block_count(sbi, dn->inode, nr_free);
|
|
set_page_dirty(dn->node_page);
|
|
sync_inode_page(dn);
|
|
}
|
|
dn->ofs_in_node = ofs;
|
|
|
|
trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
|
|
dn->ofs_in_node, nr_free);
|
|
return nr_free;
|
|
}
|
|
|
|
void truncate_data_blocks(struct dnode_of_data *dn)
|
|
{
|
|
truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
|
|
}
|
|
|
|
static int truncate_partial_data_page(struct inode *inode, u64 from,
|
|
bool cache_only)
|
|
{
|
|
unsigned offset = from & (PAGE_CACHE_SIZE - 1);
|
|
pgoff_t index = from >> PAGE_CACHE_SHIFT;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
|
|
if (!offset && !cache_only)
|
|
return 0;
|
|
|
|
if (cache_only) {
|
|
page = grab_cache_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
goto truncate_out;
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
page = get_lock_data_page(inode, index);
|
|
if (IS_ERR(page))
|
|
return 0;
|
|
truncate_out:
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
zero_user(page, offset, PAGE_CACHE_SIZE - offset);
|
|
if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
int truncate_blocks(struct inode *inode, u64 from, bool lock)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int blocksize = inode->i_sb->s_blocksize;
|
|
struct dnode_of_data dn;
|
|
pgoff_t free_from;
|
|
int count = 0, err = 0;
|
|
struct page *ipage;
|
|
bool truncate_page = false;
|
|
|
|
trace_f2fs_truncate_blocks_enter(inode, from);
|
|
|
|
free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
|
|
|
|
if (lock)
|
|
f2fs_lock_op(sbi);
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
if (truncate_inline_inode(ipage, from))
|
|
set_page_dirty(ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
truncate_page = true;
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
goto free_next;
|
|
goto out;
|
|
}
|
|
|
|
count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
|
|
count -= dn.ofs_in_node;
|
|
f2fs_bug_on(sbi, count < 0);
|
|
|
|
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
|
|
truncate_data_blocks_range(&dn, count);
|
|
free_from += count;
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
free_next:
|
|
err = truncate_inode_blocks(inode, free_from);
|
|
out:
|
|
if (lock)
|
|
f2fs_unlock_op(sbi);
|
|
|
|
/* lastly zero out the first data page */
|
|
if (!err)
|
|
err = truncate_partial_data_page(inode, from, truncate_page);
|
|
|
|
trace_f2fs_truncate_blocks_exit(inode, err);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_truncate(struct inode *inode, bool lock)
|
|
{
|
|
int err;
|
|
|
|
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
|
|
S_ISLNK(inode->i_mode)))
|
|
return 0;
|
|
|
|
trace_f2fs_truncate(inode);
|
|
|
|
/* we should check inline_data size */
|
|
if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = truncate_blocks(inode, i_size_read(inode), lock);
|
|
if (err)
|
|
return err;
|
|
|
|
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
|
mark_inode_dirty(inode);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_getattr(struct vfsmount *mnt,
|
|
struct dentry *dentry, struct kstat *stat)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
generic_fillattr(inode, stat);
|
|
stat->blocks <<= 3;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
static void __setattr_copy(struct inode *inode, const struct iattr *attr)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
unsigned int ia_valid = attr->ia_valid;
|
|
|
|
if (ia_valid & ATTR_UID)
|
|
inode->i_uid = attr->ia_uid;
|
|
if (ia_valid & ATTR_GID)
|
|
inode->i_gid = attr->ia_gid;
|
|
if (ia_valid & ATTR_ATIME)
|
|
inode->i_atime = timespec_trunc(attr->ia_atime,
|
|
inode->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_MTIME)
|
|
inode->i_mtime = timespec_trunc(attr->ia_mtime,
|
|
inode->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_CTIME)
|
|
inode->i_ctime = timespec_trunc(attr->ia_ctime,
|
|
inode->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_MODE) {
|
|
umode_t mode = attr->ia_mode;
|
|
|
|
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
|
|
mode &= ~S_ISGID;
|
|
set_acl_inode(fi, mode);
|
|
}
|
|
}
|
|
#else
|
|
#define __setattr_copy setattr_copy
|
|
#endif
|
|
|
|
int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
int err;
|
|
|
|
err = inode_change_ok(inode, attr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (attr->ia_valid & ATTR_SIZE) {
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
f2fs_get_encryption_info(inode))
|
|
return -EACCES;
|
|
|
|
if (attr->ia_size <= i_size_read(inode)) {
|
|
truncate_setsize(inode, attr->ia_size);
|
|
err = f2fs_truncate(inode, true);
|
|
if (err)
|
|
return err;
|
|
f2fs_balance_fs(F2FS_I_SB(inode));
|
|
} else {
|
|
/*
|
|
* do not trim all blocks after i_size if target size is
|
|
* larger than i_size.
|
|
*/
|
|
truncate_setsize(inode, attr->ia_size);
|
|
}
|
|
}
|
|
|
|
__setattr_copy(inode, attr);
|
|
|
|
if (attr->ia_valid & ATTR_MODE) {
|
|
err = posix_acl_chmod(inode, get_inode_mode(inode));
|
|
if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
|
|
inode->i_mode = fi->i_acl_mode;
|
|
clear_inode_flag(fi, FI_ACL_MODE);
|
|
}
|
|
}
|
|
|
|
mark_inode_dirty(inode);
|
|
return err;
|
|
}
|
|
|
|
const struct inode_operations f2fs_file_inode_operations = {
|
|
.getattr = f2fs_getattr,
|
|
.setattr = f2fs_setattr,
|
|
.get_acl = f2fs_get_acl,
|
|
.set_acl = f2fs_set_acl,
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
.setxattr = generic_setxattr,
|
|
.getxattr = generic_getxattr,
|
|
.listxattr = f2fs_listxattr,
|
|
.removexattr = generic_removexattr,
|
|
#endif
|
|
.fiemap = f2fs_fiemap,
|
|
};
|
|
|
|
static int fill_zero(struct inode *inode, pgoff_t index,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
f2fs_lock_op(sbi);
|
|
page = get_new_data_page(inode, NULL, index, false);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
zero_user(page, start, len);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
|
|
{
|
|
pgoff_t index;
|
|
int err;
|
|
|
|
for (index = pg_start; index < pg_end; index++) {
|
|
struct dnode_of_data dn;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
continue;
|
|
return err;
|
|
}
|
|
|
|
if (dn.data_blkaddr != NULL_ADDR)
|
|
truncate_data_blocks_range(&dn, 1);
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
pgoff_t pg_start, pg_end;
|
|
loff_t off_start, off_end;
|
|
int ret = 0;
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
|
|
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
|
|
|
|
off_start = offset & (PAGE_CACHE_SIZE - 1);
|
|
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
|
|
|
|
if (pg_start == pg_end) {
|
|
ret = fill_zero(inode, pg_start, off_start,
|
|
off_end - off_start);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
if (off_start) {
|
|
ret = fill_zero(inode, pg_start++, off_start,
|
|
PAGE_CACHE_SIZE - off_start);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (off_end) {
|
|
ret = fill_zero(inode, pg_end, 0, off_end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (pg_start < pg_end) {
|
|
struct address_space *mapping = inode->i_mapping;
|
|
loff_t blk_start, blk_end;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
|
|
blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
|
|
truncate_inode_pages_range(mapping, blk_start,
|
|
blk_end - 1);
|
|
|
|
f2fs_lock_op(sbi);
|
|
ret = truncate_hole(inode, pg_start, pg_end);
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
int ret = 0;
|
|
|
|
for (; end < nrpages; start++, end++) {
|
|
block_t new_addr, old_addr;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
|
|
if (ret && ret != -ENOENT) {
|
|
goto out;
|
|
} else if (ret == -ENOENT) {
|
|
new_addr = NULL_ADDR;
|
|
} else {
|
|
new_addr = dn.data_blkaddr;
|
|
truncate_data_blocks_range(&dn, 1);
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
|
|
if (new_addr == NULL_ADDR) {
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
|
|
if (ret && ret != -ENOENT) {
|
|
goto out;
|
|
} else if (ret == -ENOENT) {
|
|
f2fs_unlock_op(sbi);
|
|
continue;
|
|
}
|
|
|
|
if (dn.data_blkaddr == NULL_ADDR) {
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
continue;
|
|
} else {
|
|
truncate_data_blocks_range(&dn, 1);
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
} else {
|
|
struct page *ipage;
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
ret = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
ret = f2fs_reserve_block(&dn, start);
|
|
if (ret)
|
|
goto out;
|
|
|
|
old_addr = dn.data_blkaddr;
|
|
if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
|
|
dn.data_blkaddr = NULL_ADDR;
|
|
f2fs_update_extent_cache(&dn);
|
|
invalidate_blocks(sbi, old_addr);
|
|
|
|
dn.data_blkaddr = new_addr;
|
|
set_data_blkaddr(&dn);
|
|
} else if (new_addr != NEW_ADDR) {
|
|
struct node_info ni;
|
|
|
|
get_node_info(sbi, dn.nid, &ni);
|
|
f2fs_replace_block(sbi, &dn, old_addr, new_addr,
|
|
ni.version, true);
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
return 0;
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
pgoff_t pg_start, pg_end;
|
|
loff_t new_size;
|
|
int ret;
|
|
|
|
if (offset + len >= i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
/* collapse range should be aligned to block size of f2fs. */
|
|
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
|
|
return -EINVAL;
|
|
|
|
f2fs_balance_fs(F2FS_I_SB(inode));
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
pg_start = offset >> PAGE_CACHE_SHIFT;
|
|
pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
|
|
|
|
/* write out all dirty pages from offset */
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
|
|
if (ret)
|
|
return ret;
|
|
|
|
truncate_pagecache(inode, offset);
|
|
|
|
ret = f2fs_do_collapse(inode, pg_start, pg_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new_size = i_size_read(inode) - len;
|
|
|
|
ret = truncate_blocks(inode, new_size, true);
|
|
if (!ret)
|
|
i_size_write(inode, new_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
|
|
int mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
pgoff_t index, pg_start, pg_end;
|
|
loff_t new_size = i_size_read(inode);
|
|
loff_t off_start, off_end;
|
|
int ret = 0;
|
|
|
|
ret = inode_newsize_ok(inode, (len + offset));
|
|
if (ret)
|
|
return ret;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
truncate_pagecache_range(inode, offset, offset + len - 1);
|
|
|
|
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
|
|
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
|
|
|
|
off_start = offset & (PAGE_CACHE_SIZE - 1);
|
|
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
|
|
|
|
if (pg_start == pg_end) {
|
|
ret = fill_zero(inode, pg_start, off_start,
|
|
off_end - off_start);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (offset + len > new_size)
|
|
new_size = offset + len;
|
|
new_size = max_t(loff_t, new_size, offset + len);
|
|
} else {
|
|
if (off_start) {
|
|
ret = fill_zero(inode, pg_start++, off_start,
|
|
PAGE_CACHE_SIZE - off_start);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new_size = max_t(loff_t, new_size,
|
|
(loff_t)pg_start << PAGE_CACHE_SHIFT);
|
|
}
|
|
|
|
for (index = pg_start; index < pg_end; index++) {
|
|
struct dnode_of_data dn;
|
|
struct page *ipage;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
ret = PTR_ERR(ipage);
|
|
f2fs_unlock_op(sbi);
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
ret = f2fs_reserve_block(&dn, index);
|
|
if (ret) {
|
|
f2fs_unlock_op(sbi);
|
|
goto out;
|
|
}
|
|
|
|
if (dn.data_blkaddr != NEW_ADDR) {
|
|
invalidate_blocks(sbi, dn.data_blkaddr);
|
|
|
|
dn.data_blkaddr = NEW_ADDR;
|
|
set_data_blkaddr(&dn);
|
|
|
|
dn.data_blkaddr = NULL_ADDR;
|
|
f2fs_update_extent_cache(&dn);
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
new_size = max_t(loff_t, new_size,
|
|
(loff_t)(index + 1) << PAGE_CACHE_SHIFT);
|
|
}
|
|
|
|
if (off_end) {
|
|
ret = fill_zero(inode, pg_end, 0, off_end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
new_size = max_t(loff_t, new_size, offset + len);
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
|
|
i_size_write(inode, new_size);
|
|
mark_inode_dirty(inode);
|
|
update_inode_page(inode);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
pgoff_t pg_start, pg_end, delta, nrpages, idx;
|
|
loff_t new_size;
|
|
int ret;
|
|
|
|
new_size = i_size_read(inode) + len;
|
|
if (new_size > inode->i_sb->s_maxbytes)
|
|
return -EFBIG;
|
|
|
|
if (offset >= i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
/* insert range should be aligned to block size of f2fs. */
|
|
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
|
|
return -EINVAL;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = truncate_blocks(inode, i_size_read(inode), true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* write out all dirty pages from offset */
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
|
|
if (ret)
|
|
return ret;
|
|
|
|
truncate_pagecache(inode, offset);
|
|
|
|
pg_start = offset >> PAGE_CACHE_SHIFT;
|
|
pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
|
|
delta = pg_end - pg_start;
|
|
nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
|
|
for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
|
|
struct dnode_of_data dn;
|
|
struct page *ipage;
|
|
block_t new_addr, old_addr;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
|
|
if (ret && ret != -ENOENT) {
|
|
goto out;
|
|
} else if (ret == -ENOENT) {
|
|
goto next;
|
|
} else if (dn.data_blkaddr == NULL_ADDR) {
|
|
f2fs_put_dnode(&dn);
|
|
goto next;
|
|
} else {
|
|
new_addr = dn.data_blkaddr;
|
|
truncate_data_blocks_range(&dn, 1);
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
ret = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
ret = f2fs_reserve_block(&dn, idx + delta);
|
|
if (ret)
|
|
goto out;
|
|
|
|
old_addr = dn.data_blkaddr;
|
|
f2fs_bug_on(sbi, old_addr != NEW_ADDR);
|
|
|
|
if (new_addr != NEW_ADDR) {
|
|
struct node_info ni;
|
|
|
|
get_node_info(sbi, dn.nid, &ni);
|
|
f2fs_replace_block(sbi, &dn, old_addr, new_addr,
|
|
ni.version, true);
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
next:
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
|
|
i_size_write(inode, new_size);
|
|
return 0;
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
return ret;
|
|
}
|
|
|
|
static int expand_inode_data(struct inode *inode, loff_t offset,
|
|
loff_t len, int mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
pgoff_t index, pg_start, pg_end;
|
|
loff_t new_size = i_size_read(inode);
|
|
loff_t off_start, off_end;
|
|
int ret = 0;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
ret = inode_newsize_ok(inode, (len + offset));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
|
|
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
|
|
|
|
off_start = offset & (PAGE_CACHE_SIZE - 1);
|
|
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
for (index = pg_start; index <= pg_end; index++) {
|
|
struct dnode_of_data dn;
|
|
|
|
if (index == pg_end && !off_end)
|
|
goto noalloc;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = f2fs_reserve_block(&dn, index);
|
|
if (ret)
|
|
break;
|
|
noalloc:
|
|
if (pg_start == pg_end)
|
|
new_size = offset + len;
|
|
else if (index == pg_start && off_start)
|
|
new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
|
|
else if (index == pg_end)
|
|
new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
|
|
off_end;
|
|
else
|
|
new_size += PAGE_CACHE_SIZE;
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
i_size_read(inode) < new_size) {
|
|
i_size_write(inode, new_size);
|
|
mark_inode_dirty(inode);
|
|
update_inode_page(inode);
|
|
}
|
|
f2fs_unlock_op(sbi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long f2fs_fallocate(struct file *file, int mode,
|
|
loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
long ret = 0;
|
|
|
|
/* f2fs only support ->fallocate for regular file */
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
|
|
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
|
|
FALLOC_FL_INSERT_RANGE))
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE) {
|
|
if (offset >= inode->i_size)
|
|
goto out;
|
|
|
|
ret = punch_hole(inode, offset, len);
|
|
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
|
|
ret = f2fs_collapse_range(inode, offset, len);
|
|
} else if (mode & FALLOC_FL_ZERO_RANGE) {
|
|
ret = f2fs_zero_range(inode, offset, len, mode);
|
|
} else if (mode & FALLOC_FL_INSERT_RANGE) {
|
|
ret = f2fs_insert_range(inode, offset, len);
|
|
} else {
|
|
ret = expand_inode_data(inode, offset, len, mode);
|
|
}
|
|
|
|
if (!ret) {
|
|
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
|
mark_inode_dirty(inode);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
trace_f2fs_fallocate(inode, mode, offset, len, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_release_file(struct inode *inode, struct file *filp)
|
|
{
|
|
/* some remained atomic pages should discarded */
|
|
if (f2fs_is_atomic_file(inode))
|
|
commit_inmem_pages(inode, true);
|
|
if (f2fs_is_volatile_file(inode)) {
|
|
set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
|
|
filemap_fdatawrite(inode->i_mapping);
|
|
clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
|
|
#define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
|
|
|
|
static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
|
|
{
|
|
if (S_ISDIR(mode))
|
|
return flags;
|
|
else if (S_ISREG(mode))
|
|
return flags & F2FS_REG_FLMASK;
|
|
else
|
|
return flags & F2FS_OTHER_FLMASK;
|
|
}
|
|
|
|
static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
|
|
return put_user(flags, (int __user *)arg);
|
|
}
|
|
|
|
static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
|
|
unsigned int oldflags;
|
|
int ret;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!inode_owner_or_capable(inode)) {
|
|
ret = -EACCES;
|
|
goto out;
|
|
}
|
|
|
|
if (get_user(flags, (int __user *)arg)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
flags = f2fs_mask_flags(inode->i_mode, flags);
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
oldflags = fi->i_flags;
|
|
|
|
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
|
|
if (!capable(CAP_LINUX_IMMUTABLE)) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
flags = flags & FS_FL_USER_MODIFIABLE;
|
|
flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
|
|
fi->i_flags = flags;
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
f2fs_set_inode_flags(inode);
|
|
inode->i_ctime = CURRENT_TIME;
|
|
mark_inode_dirty(inode);
|
|
out:
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
return put_user(inode->i_generation, (int __user *)arg);
|
|
}
|
|
|
|
static int f2fs_ioc_start_atomic_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
f2fs_balance_fs(F2FS_I_SB(inode));
|
|
|
|
if (f2fs_is_atomic_file(inode))
|
|
return 0;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_ioc_commit_atomic_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
if (f2fs_is_volatile_file(inode))
|
|
return 0;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
|
|
ret = commit_inmem_pages(inode, false);
|
|
if (ret)
|
|
goto err_out;
|
|
}
|
|
|
|
ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
|
|
err_out:
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_start_volatile_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
if (f2fs_is_volatile_file(inode))
|
|
return 0;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_ioc_release_volatile_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
if (!f2fs_is_volatile_file(inode))
|
|
return 0;
|
|
|
|
if (!f2fs_is_first_block_written(inode))
|
|
return truncate_partial_data_page(inode, 0, true);
|
|
|
|
return punch_hole(inode, 0, F2FS_BLKSIZE);
|
|
}
|
|
|
|
static int f2fs_ioc_abort_volatile_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
f2fs_balance_fs(F2FS_I_SB(inode));
|
|
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
|
|
commit_inmem_pages(inode, true);
|
|
}
|
|
|
|
if (f2fs_is_volatile_file(inode))
|
|
clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
|
|
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct super_block *sb = sbi->sb;
|
|
__u32 in;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (get_user(in, (__u32 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
switch (in) {
|
|
case F2FS_GOING_DOWN_FULLSYNC:
|
|
sb = freeze_bdev(sb->s_bdev);
|
|
if (sb && !IS_ERR(sb)) {
|
|
f2fs_stop_checkpoint(sbi);
|
|
thaw_bdev(sb->s_bdev, sb);
|
|
}
|
|
break;
|
|
case F2FS_GOING_DOWN_METASYNC:
|
|
/* do checkpoint only */
|
|
f2fs_sync_fs(sb, 1);
|
|
f2fs_stop_checkpoint(sbi);
|
|
break;
|
|
case F2FS_GOING_DOWN_NOSYNC:
|
|
f2fs_stop_checkpoint(sbi);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct super_block *sb = inode->i_sb;
|
|
struct request_queue *q = bdev_get_queue(sb->s_bdev);
|
|
struct fstrim_range range;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!blk_queue_discard(q))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&range, (struct fstrim_range __user *)arg,
|
|
sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
range.minlen = max((unsigned int)range.minlen,
|
|
q->limits.discard_granularity);
|
|
ret = f2fs_trim_fs(F2FS_SB(sb), &range);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (copy_to_user((struct fstrim_range __user *)arg, &range,
|
|
sizeof(range)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static bool uuid_is_nonzero(__u8 u[16])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if (u[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
struct f2fs_encryption_policy policy;
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
|
|
sizeof(policy)))
|
|
return -EFAULT;
|
|
|
|
return f2fs_process_policy(&policy, inode);
|
|
#else
|
|
return -EOPNOTSUPP;
|
|
#endif
|
|
}
|
|
|
|
static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
struct f2fs_encryption_policy policy;
|
|
struct inode *inode = file_inode(filp);
|
|
int err;
|
|
|
|
err = f2fs_get_policy(inode, &policy);
|
|
if (err)
|
|
return err;
|
|
|
|
if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
|
|
sizeof(policy)))
|
|
return -EFAULT;
|
|
return 0;
|
|
#else
|
|
return -EOPNOTSUPP;
|
|
#endif
|
|
}
|
|
|
|
static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int err;
|
|
|
|
if (!f2fs_sb_has_crypto(inode->i_sb))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
|
|
goto got_it;
|
|
|
|
err = mnt_want_write_file(filp);
|
|
if (err)
|
|
return err;
|
|
|
|
/* update superblock with uuid */
|
|
generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
|
|
|
|
err = f2fs_commit_super(sbi, false);
|
|
|
|
mnt_drop_write_file(filp);
|
|
if (err) {
|
|
/* undo new data */
|
|
memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
|
|
return err;
|
|
}
|
|
got_it:
|
|
if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
|
|
16))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
__u32 i, count;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (get_user(count, (__u32 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
if (!count || count > F2FS_BATCH_GC_MAX_NUM)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (!mutex_trylock(&sbi->gc_mutex))
|
|
break;
|
|
|
|
if (f2fs_gc(sbi))
|
|
break;
|
|
}
|
|
|
|
if (put_user(i, (__u32 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case F2FS_IOC_GETFLAGS:
|
|
return f2fs_ioc_getflags(filp, arg);
|
|
case F2FS_IOC_SETFLAGS:
|
|
return f2fs_ioc_setflags(filp, arg);
|
|
case F2FS_IOC_GETVERSION:
|
|
return f2fs_ioc_getversion(filp, arg);
|
|
case F2FS_IOC_START_ATOMIC_WRITE:
|
|
return f2fs_ioc_start_atomic_write(filp);
|
|
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
|
|
return f2fs_ioc_commit_atomic_write(filp);
|
|
case F2FS_IOC_START_VOLATILE_WRITE:
|
|
return f2fs_ioc_start_volatile_write(filp);
|
|
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
|
|
return f2fs_ioc_release_volatile_write(filp);
|
|
case F2FS_IOC_ABORT_VOLATILE_WRITE:
|
|
return f2fs_ioc_abort_volatile_write(filp);
|
|
case F2FS_IOC_SHUTDOWN:
|
|
return f2fs_ioc_shutdown(filp, arg);
|
|
case FITRIM:
|
|
return f2fs_ioc_fitrim(filp, arg);
|
|
case F2FS_IOC_SET_ENCRYPTION_POLICY:
|
|
return f2fs_ioc_set_encryption_policy(filp, arg);
|
|
case F2FS_IOC_GET_ENCRYPTION_POLICY:
|
|
return f2fs_ioc_get_encryption_policy(filp, arg);
|
|
case F2FS_IOC_GET_ENCRYPTION_PWSALT:
|
|
return f2fs_ioc_get_encryption_pwsalt(filp, arg);
|
|
case F2FS_IOC_GARBAGE_COLLECT:
|
|
return f2fs_ioc_gc(filp, arg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
!f2fs_has_encryption_key(inode) &&
|
|
f2fs_get_encryption_info(inode))
|
|
return -EACCES;
|
|
|
|
return generic_file_write_iter(iocb, from);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case F2FS_IOC32_GETFLAGS:
|
|
cmd = F2FS_IOC_GETFLAGS;
|
|
break;
|
|
case F2FS_IOC32_SETFLAGS:
|
|
cmd = F2FS_IOC_SETFLAGS;
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
|
|
}
|
|
#endif
|
|
|
|
const struct file_operations f2fs_file_operations = {
|
|
.llseek = f2fs_llseek,
|
|
.read_iter = generic_file_read_iter,
|
|
.write_iter = f2fs_file_write_iter,
|
|
.open = f2fs_file_open,
|
|
.release = f2fs_release_file,
|
|
.mmap = f2fs_file_mmap,
|
|
.fsync = f2fs_sync_file,
|
|
.fallocate = f2fs_fallocate,
|
|
.unlocked_ioctl = f2fs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = f2fs_compat_ioctl,
|
|
#endif
|
|
.splice_read = generic_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
};
|