mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-12 16:19:53 +00:00
a2ef79e184
This fixed a problem that showed up in the Fedora development tree a few weeks before the Fedora Core 4 release, initially as slab corruption, later as hard crashes on boot up, when slab debugging was disabled for the release. More details on the history at https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=158424 The problem is caused by sbp2's use of scsi_host->hostdata[0] to hold a scsi_id, without explicitly requesting space for it. Since hostdata is declared as a zero-sized array, we don't get any such space by default, so it must be explicitly requested. The patch below implements just that. Signed-off-by: Alexandre Oliva <aoliva@redhat.com> Cc: Jody McIntyre <scjody@modernduck.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2866 lines
82 KiB
C
2866 lines
82 KiB
C
/*
|
||
* sbp2.c - SBP-2 protocol driver for IEEE-1394
|
||
*
|
||
* Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
|
||
* jamesg@filanet.com (JSG)
|
||
*
|
||
* Copyright (C) 2003 Ben Collins <bcollins@debian.org>
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write to the Free Software Foundation,
|
||
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
*/
|
||
|
||
/*
|
||
* Brief Description:
|
||
*
|
||
* This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
|
||
* under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
|
||
* driver. It also registers as a SCSI lower-level driver in order to accept
|
||
* SCSI commands for transport using SBP-2.
|
||
*
|
||
* You may access any attached SBP-2 storage devices as if they were SCSI
|
||
* devices (e.g. mount /dev/sda1, fdisk, mkfs, etc.).
|
||
*
|
||
* Current Issues:
|
||
*
|
||
* - Error Handling: SCSI aborts and bus reset requests are handled somewhat
|
||
* but the code needs additional debugging.
|
||
*/
|
||
|
||
#include <linux/config.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/list.h>
|
||
#include <linux/string.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/interrupt.h>
|
||
#include <linux/fs.h>
|
||
#include <linux/poll.h>
|
||
#include <linux/module.h>
|
||
#include <linux/moduleparam.h>
|
||
#include <linux/types.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/sched.h>
|
||
#include <linux/blkdev.h>
|
||
#include <linux/smp_lock.h>
|
||
#include <linux/init.h>
|
||
#include <linux/pci.h>
|
||
|
||
#include <asm/current.h>
|
||
#include <asm/uaccess.h>
|
||
#include <asm/io.h>
|
||
#include <asm/byteorder.h>
|
||
#include <asm/atomic.h>
|
||
#include <asm/system.h>
|
||
#include <asm/scatterlist.h>
|
||
|
||
#include <scsi/scsi.h>
|
||
#include <scsi/scsi_cmnd.h>
|
||
#include <scsi/scsi_dbg.h>
|
||
#include <scsi/scsi_device.h>
|
||
#include <scsi/scsi_host.h>
|
||
|
||
#include "csr1212.h"
|
||
#include "ieee1394.h"
|
||
#include "ieee1394_types.h"
|
||
#include "ieee1394_core.h"
|
||
#include "nodemgr.h"
|
||
#include "hosts.h"
|
||
#include "highlevel.h"
|
||
#include "ieee1394_transactions.h"
|
||
#include "sbp2.h"
|
||
|
||
static char version[] __devinitdata =
|
||
"$Rev: 1219 $ Ben Collins <bcollins@debian.org>";
|
||
|
||
/*
|
||
* Module load parameter definitions
|
||
*/
|
||
|
||
/*
|
||
* Change max_speed on module load if you have a bad IEEE-1394
|
||
* controller that has trouble running 2KB packets at 400mb.
|
||
*
|
||
* NOTE: On certain OHCI parts I have seen short packets on async transmit
|
||
* (probably due to PCI latency/throughput issues with the part). You can
|
||
* bump down the speed if you are running into problems.
|
||
*/
|
||
static int max_speed = IEEE1394_SPEED_MAX;
|
||
module_param(max_speed, int, 0644);
|
||
MODULE_PARM_DESC(max_speed, "Force max speed (3 = 800mb, 2 = 400mb default, 1 = 200mb, 0 = 100mb)");
|
||
|
||
/*
|
||
* Set serialize_io to 1 if you'd like only one scsi command sent
|
||
* down to us at a time (debugging). This might be necessary for very
|
||
* badly behaved sbp2 devices.
|
||
*/
|
||
static int serialize_io = 0;
|
||
module_param(serialize_io, int, 0444);
|
||
MODULE_PARM_DESC(serialize_io, "Serialize all I/O coming down from the scsi drivers (default = 0)");
|
||
|
||
/*
|
||
* Bump up max_sectors if you'd like to support very large sized
|
||
* transfers. Please note that some older sbp2 bridge chips are broken for
|
||
* transfers greater or equal to 128KB. Default is a value of 255
|
||
* sectors, or just under 128KB (at 512 byte sector size). I can note that
|
||
* the Oxsemi sbp2 chipsets have no problems supporting very large
|
||
* transfer sizes.
|
||
*/
|
||
static int max_sectors = SBP2_MAX_SECTORS;
|
||
module_param(max_sectors, int, 0444);
|
||
MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported (default = 255)");
|
||
|
||
/*
|
||
* Exclusive login to sbp2 device? In most cases, the sbp2 driver should
|
||
* do an exclusive login, as it's generally unsafe to have two hosts
|
||
* talking to a single sbp2 device at the same time (filesystem coherency,
|
||
* etc.). If you're running an sbp2 device that supports multiple logins,
|
||
* and you're either running read-only filesystems or some sort of special
|
||
* filesystem supporting multiple hosts (one such filesystem is OpenGFS,
|
||
* see opengfs.sourceforge.net for more info), then set exclusive_login
|
||
* to zero. Note: The Oxsemi OXFW911 sbp2 chipset supports up to four
|
||
* concurrent logins.
|
||
*/
|
||
static int exclusive_login = 1;
|
||
module_param(exclusive_login, int, 0644);
|
||
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device (default = 1)");
|
||
|
||
/*
|
||
* SCSI inquiry hack for really badly behaved sbp2 devices. Turn this on
|
||
* if your sbp2 device is not properly handling the SCSI inquiry command.
|
||
* This hack makes the inquiry look more like a typical MS Windows
|
||
* inquiry.
|
||
*
|
||
* If force_inquiry_hack=1 is required for your device to work,
|
||
* please submit the logged sbp2_firmware_revision value of this device to
|
||
* the linux1394-devel mailing list.
|
||
*/
|
||
static int force_inquiry_hack = 0;
|
||
module_param(force_inquiry_hack, int, 0444);
|
||
MODULE_PARM_DESC(force_inquiry_hack, "Force SCSI inquiry hack (default = 0)");
|
||
|
||
|
||
/*
|
||
* Export information about protocols/devices supported by this driver.
|
||
*/
|
||
static struct ieee1394_device_id sbp2_id_table[] = {
|
||
{
|
||
.match_flags =IEEE1394_MATCH_SPECIFIER_ID |
|
||
IEEE1394_MATCH_VERSION,
|
||
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
|
||
.version = SBP2_SW_VERSION_ENTRY & 0xffffff
|
||
},
|
||
{ }
|
||
};
|
||
|
||
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
|
||
|
||
/*
|
||
* Debug levels, configured via kernel config, or enable here.
|
||
*/
|
||
|
||
/* #define CONFIG_IEEE1394_SBP2_DEBUG_ORBS */
|
||
/* #define CONFIG_IEEE1394_SBP2_DEBUG_DMA */
|
||
/* #define CONFIG_IEEE1394_SBP2_DEBUG 1 */
|
||
/* #define CONFIG_IEEE1394_SBP2_DEBUG 2 */
|
||
/* #define CONFIG_IEEE1394_SBP2_PACKET_DUMP */
|
||
|
||
#ifdef CONFIG_IEEE1394_SBP2_DEBUG_ORBS
|
||
#define SBP2_ORB_DEBUG(fmt, args...) HPSB_ERR("sbp2(%s): "fmt, __FUNCTION__, ## args)
|
||
static u32 global_outstanding_command_orbs = 0;
|
||
#define outstanding_orb_incr global_outstanding_command_orbs++
|
||
#define outstanding_orb_decr global_outstanding_command_orbs--
|
||
#else
|
||
#define SBP2_ORB_DEBUG(fmt, args...)
|
||
#define outstanding_orb_incr
|
||
#define outstanding_orb_decr
|
||
#endif
|
||
|
||
#ifdef CONFIG_IEEE1394_SBP2_DEBUG_DMA
|
||
#define SBP2_DMA_ALLOC(fmt, args...) \
|
||
HPSB_ERR("sbp2(%s)alloc(%d): "fmt, __FUNCTION__, \
|
||
++global_outstanding_dmas, ## args)
|
||
#define SBP2_DMA_FREE(fmt, args...) \
|
||
HPSB_ERR("sbp2(%s)free(%d): "fmt, __FUNCTION__, \
|
||
--global_outstanding_dmas, ## args)
|
||
static u32 global_outstanding_dmas = 0;
|
||
#else
|
||
#define SBP2_DMA_ALLOC(fmt, args...)
|
||
#define SBP2_DMA_FREE(fmt, args...)
|
||
#endif
|
||
|
||
#if CONFIG_IEEE1394_SBP2_DEBUG >= 2
|
||
#define SBP2_DEBUG(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
|
||
#define SBP2_INFO(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
|
||
#define SBP2_NOTICE(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
|
||
#define SBP2_WARN(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
|
||
#elif CONFIG_IEEE1394_SBP2_DEBUG == 1
|
||
#define SBP2_DEBUG(fmt, args...) HPSB_DEBUG("sbp2: "fmt, ## args)
|
||
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
|
||
#define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args)
|
||
#define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args)
|
||
#else
|
||
#define SBP2_DEBUG(fmt, args...)
|
||
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
|
||
#define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args)
|
||
#define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args)
|
||
#endif
|
||
|
||
#define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
|
||
|
||
|
||
/*
|
||
* Globals
|
||
*/
|
||
|
||
static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id,
|
||
u32 status);
|
||
|
||
static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
|
||
u32 scsi_status, struct scsi_cmnd *SCpnt,
|
||
void (*done)(struct scsi_cmnd *));
|
||
|
||
static struct scsi_host_template scsi_driver_template;
|
||
|
||
static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
|
||
|
||
static void sbp2_host_reset(struct hpsb_host *host);
|
||
|
||
static int sbp2_probe(struct device *dev);
|
||
static int sbp2_remove(struct device *dev);
|
||
static int sbp2_update(struct unit_directory *ud);
|
||
|
||
static struct hpsb_highlevel sbp2_highlevel = {
|
||
.name = SBP2_DEVICE_NAME,
|
||
.host_reset = sbp2_host_reset,
|
||
};
|
||
|
||
static struct hpsb_address_ops sbp2_ops = {
|
||
.write = sbp2_handle_status_write
|
||
};
|
||
|
||
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
|
||
static struct hpsb_address_ops sbp2_physdma_ops = {
|
||
.read = sbp2_handle_physdma_read,
|
||
.write = sbp2_handle_physdma_write,
|
||
};
|
||
#endif
|
||
|
||
static struct hpsb_protocol_driver sbp2_driver = {
|
||
.name = "SBP2 Driver",
|
||
.id_table = sbp2_id_table,
|
||
.update = sbp2_update,
|
||
.driver = {
|
||
.name = SBP2_DEVICE_NAME,
|
||
.bus = &ieee1394_bus_type,
|
||
.probe = sbp2_probe,
|
||
.remove = sbp2_remove,
|
||
},
|
||
};
|
||
|
||
|
||
/* List of device firmware's that require a forced 36 byte inquiry. */
|
||
static u32 sbp2_broken_inquiry_list[] = {
|
||
0x00002800, /* Stefan Richter <richtest@bauwesen.tu-cottbus.de> */
|
||
/* DViCO Momobay CX-1 */
|
||
0x00000200 /* Andreas Plesch <plesch@fas.harvard.edu> */
|
||
/* QPS Fire DVDBurner */
|
||
};
|
||
|
||
#define NUM_BROKEN_INQUIRY_DEVS \
|
||
(sizeof(sbp2_broken_inquiry_list)/sizeof(*sbp2_broken_inquiry_list))
|
||
|
||
/**************************************
|
||
* General utility functions
|
||
**************************************/
|
||
|
||
|
||
#ifndef __BIG_ENDIAN
|
||
/*
|
||
* Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
|
||
*/
|
||
static __inline__ void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
|
||
{
|
||
u32 *temp = buffer;
|
||
|
||
for (length = (length >> 2); length--; )
|
||
temp[length] = be32_to_cpu(temp[length]);
|
||
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
|
||
*/
|
||
static __inline__ void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
|
||
{
|
||
u32 *temp = buffer;
|
||
|
||
for (length = (length >> 2); length--; )
|
||
temp[length] = cpu_to_be32(temp[length]);
|
||
|
||
return;
|
||
}
|
||
#else /* BIG_ENDIAN */
|
||
/* Why waste the cpu cycles? */
|
||
#define sbp2util_be32_to_cpu_buffer(x,y)
|
||
#define sbp2util_cpu_to_be32_buffer(x,y)
|
||
#endif
|
||
|
||
#ifdef CONFIG_IEEE1394_SBP2_PACKET_DUMP
|
||
/*
|
||
* Debug packet dump routine. Length is in bytes.
|
||
*/
|
||
static void sbp2util_packet_dump(void *buffer, int length, char *dump_name, u32 dump_phys_addr)
|
||
{
|
||
int i;
|
||
unsigned char *dump = buffer;
|
||
|
||
if (!dump || !length || !dump_name)
|
||
return;
|
||
|
||
if (dump_phys_addr)
|
||
printk("[%s, 0x%x]", dump_name, dump_phys_addr);
|
||
else
|
||
printk("[%s]", dump_name);
|
||
for (i = 0; i < length; i++) {
|
||
if (i > 0x3f) {
|
||
printk("\n ...");
|
||
break;
|
||
}
|
||
if ((i & 0x3) == 0)
|
||
printk(" ");
|
||
if ((i & 0xf) == 0)
|
||
printk("\n ");
|
||
printk("%02x ", (int) dump[i]);
|
||
}
|
||
printk("\n");
|
||
|
||
return;
|
||
}
|
||
#else
|
||
#define sbp2util_packet_dump(w,x,y,z)
|
||
#endif
|
||
|
||
/*
|
||
* Goofy routine that basically does a down_timeout function.
|
||
*/
|
||
static int sbp2util_down_timeout(atomic_t *done, int timeout)
|
||
{
|
||
int i;
|
||
|
||
for (i = timeout; (i > 0 && atomic_read(done) == 0); i-= HZ/10) {
|
||
if (msleep_interruptible(100)) /* 100ms */
|
||
return(1);
|
||
}
|
||
return ((i > 0) ? 0:1);
|
||
}
|
||
|
||
/* Free's an allocated packet */
|
||
static void sbp2_free_packet(struct hpsb_packet *packet)
|
||
{
|
||
hpsb_free_tlabel(packet);
|
||
hpsb_free_packet(packet);
|
||
}
|
||
|
||
/* This is much like hpsb_node_write(), except it ignores the response
|
||
* subaction and returns immediately. Can be used from interrupts.
|
||
*/
|
||
static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
|
||
quadlet_t *buffer, size_t length)
|
||
{
|
||
struct hpsb_packet *packet;
|
||
|
||
packet = hpsb_make_writepacket(ne->host, ne->nodeid,
|
||
addr, buffer, length);
|
||
if (!packet)
|
||
return -ENOMEM;
|
||
|
||
hpsb_set_packet_complete_task(packet, (void (*)(void*))sbp2_free_packet,
|
||
packet);
|
||
|
||
hpsb_node_fill_packet(ne, packet);
|
||
|
||
if (hpsb_send_packet(packet) < 0) {
|
||
sbp2_free_packet(packet);
|
||
return -EIO;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* This function is called to create a pool of command orbs used for
|
||
* command processing. It is called when a new sbp2 device is detected.
|
||
*/
|
||
static int sbp2util_create_command_orb_pool(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
int i;
|
||
unsigned long flags, orbs;
|
||
struct sbp2_command_info *command;
|
||
|
||
orbs = serialize_io ? 2 : SBP2_MAX_CMDS;
|
||
|
||
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
|
||
for (i = 0; i < orbs; i++) {
|
||
command = (struct sbp2_command_info *)
|
||
kmalloc(sizeof(struct sbp2_command_info), GFP_ATOMIC);
|
||
if (!command) {
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return(-ENOMEM);
|
||
}
|
||
memset(command, '\0', sizeof(struct sbp2_command_info));
|
||
command->command_orb_dma =
|
||
pci_map_single (hi->host->pdev, &command->command_orb,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
SBP2_DMA_ALLOC("single command orb DMA");
|
||
command->sge_dma =
|
||
pci_map_single (hi->host->pdev, &command->scatter_gather_element,
|
||
sizeof(command->scatter_gather_element),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
SBP2_DMA_ALLOC("scatter_gather_element");
|
||
INIT_LIST_HEAD(&command->list);
|
||
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed);
|
||
}
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* This function is called to delete a pool of command orbs.
|
||
*/
|
||
static void sbp2util_remove_command_orb_pool(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct hpsb_host *host = scsi_id->hi->host;
|
||
struct list_head *lh, *next;
|
||
struct sbp2_command_info *command;
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
|
||
if (!list_empty(&scsi_id->sbp2_command_orb_completed)) {
|
||
list_for_each_safe(lh, next, &scsi_id->sbp2_command_orb_completed) {
|
||
command = list_entry(lh, struct sbp2_command_info, list);
|
||
|
||
/* Release our generic DMA's */
|
||
pci_unmap_single(host->pdev, command->command_orb_dma,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
SBP2_DMA_FREE("single command orb DMA");
|
||
pci_unmap_single(host->pdev, command->sge_dma,
|
||
sizeof(command->scatter_gather_element),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
SBP2_DMA_FREE("scatter_gather_element");
|
||
|
||
kfree(command);
|
||
}
|
||
}
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* This function finds the sbp2_command for a given outstanding command
|
||
* orb.Only looks at the inuse list.
|
||
*/
|
||
static struct sbp2_command_info *sbp2util_find_command_for_orb(
|
||
struct scsi_id_instance_data *scsi_id, dma_addr_t orb)
|
||
{
|
||
struct sbp2_command_info *command;
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
|
||
if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
|
||
list_for_each_entry(command, &scsi_id->sbp2_command_orb_inuse, list) {
|
||
if (command->command_orb_dma == orb) {
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return (command);
|
||
}
|
||
}
|
||
}
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
|
||
SBP2_ORB_DEBUG("could not match command orb %x", (unsigned int)orb);
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
/*
|
||
* This function finds the sbp2_command for a given outstanding SCpnt.
|
||
* Only looks at the inuse list.
|
||
*/
|
||
static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(struct scsi_id_instance_data *scsi_id, void *SCpnt)
|
||
{
|
||
struct sbp2_command_info *command;
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
|
||
if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
|
||
list_for_each_entry(command, &scsi_id->sbp2_command_orb_inuse, list) {
|
||
if (command->Current_SCpnt == SCpnt) {
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return (command);
|
||
}
|
||
}
|
||
}
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return(NULL);
|
||
}
|
||
|
||
/*
|
||
* This function allocates a command orb used to send a scsi command.
|
||
*/
|
||
static struct sbp2_command_info *sbp2util_allocate_command_orb(
|
||
struct scsi_id_instance_data *scsi_id,
|
||
struct scsi_cmnd *Current_SCpnt,
|
||
void (*Current_done)(struct scsi_cmnd *))
|
||
{
|
||
struct list_head *lh;
|
||
struct sbp2_command_info *command = NULL;
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
|
||
if (!list_empty(&scsi_id->sbp2_command_orb_completed)) {
|
||
lh = scsi_id->sbp2_command_orb_completed.next;
|
||
list_del(lh);
|
||
command = list_entry(lh, struct sbp2_command_info, list);
|
||
command->Current_done = Current_done;
|
||
command->Current_SCpnt = Current_SCpnt;
|
||
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_inuse);
|
||
} else {
|
||
SBP2_ERR("sbp2util_allocate_command_orb - No orbs available!");
|
||
}
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
return (command);
|
||
}
|
||
|
||
/* Free our DMA's */
|
||
static void sbp2util_free_command_dma(struct sbp2_command_info *command)
|
||
{
|
||
struct scsi_id_instance_data *scsi_id =
|
||
(struct scsi_id_instance_data *)command->Current_SCpnt->device->host->hostdata[0];
|
||
struct hpsb_host *host;
|
||
|
||
if (!scsi_id) {
|
||
printk(KERN_ERR "%s: scsi_id == NULL\n", __FUNCTION__);
|
||
return;
|
||
}
|
||
|
||
host = scsi_id->ud->ne->host;
|
||
|
||
if (command->cmd_dma) {
|
||
if (command->dma_type == CMD_DMA_SINGLE) {
|
||
pci_unmap_single(host->pdev, command->cmd_dma,
|
||
command->dma_size, command->dma_dir);
|
||
SBP2_DMA_FREE("single bulk");
|
||
} else if (command->dma_type == CMD_DMA_PAGE) {
|
||
pci_unmap_page(host->pdev, command->cmd_dma,
|
||
command->dma_size, command->dma_dir);
|
||
SBP2_DMA_FREE("single page");
|
||
} /* XXX: Check for CMD_DMA_NONE bug */
|
||
command->dma_type = CMD_DMA_NONE;
|
||
command->cmd_dma = 0;
|
||
}
|
||
|
||
if (command->sge_buffer) {
|
||
pci_unmap_sg(host->pdev, command->sge_buffer,
|
||
command->dma_size, command->dma_dir);
|
||
SBP2_DMA_FREE("scatter list");
|
||
command->sge_buffer = NULL;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* This function moves a command to the completed orb list.
|
||
*/
|
||
static void sbp2util_mark_command_completed(struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command)
|
||
{
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
|
||
list_del(&command->list);
|
||
sbp2util_free_command_dma(command);
|
||
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed);
|
||
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
|
||
}
|
||
|
||
|
||
|
||
/*********************************************
|
||
* IEEE-1394 core driver stack related section
|
||
*********************************************/
|
||
static struct scsi_id_instance_data *sbp2_alloc_device(struct unit_directory *ud);
|
||
|
||
static int sbp2_probe(struct device *dev)
|
||
{
|
||
struct unit_directory *ud;
|
||
struct scsi_id_instance_data *scsi_id;
|
||
|
||
SBP2_DEBUG("sbp2_probe");
|
||
|
||
ud = container_of(dev, struct unit_directory, device);
|
||
|
||
/* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
|
||
* instead. */
|
||
if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
|
||
return -ENODEV;
|
||
|
||
scsi_id = sbp2_alloc_device(ud);
|
||
|
||
if (!scsi_id)
|
||
return -ENOMEM;
|
||
|
||
sbp2_parse_unit_directory(scsi_id, ud);
|
||
|
||
return sbp2_start_device(scsi_id);
|
||
}
|
||
|
||
static int sbp2_remove(struct device *dev)
|
||
{
|
||
struct unit_directory *ud;
|
||
struct scsi_id_instance_data *scsi_id;
|
||
|
||
SBP2_DEBUG("sbp2_remove");
|
||
|
||
ud = container_of(dev, struct unit_directory, device);
|
||
scsi_id = ud->device.driver_data;
|
||
|
||
sbp2_logout_device(scsi_id);
|
||
sbp2_remove_device(scsi_id);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int sbp2_update(struct unit_directory *ud)
|
||
{
|
||
struct scsi_id_instance_data *scsi_id = ud->device.driver_data;
|
||
|
||
SBP2_DEBUG("sbp2_update");
|
||
|
||
if (sbp2_reconnect_device(scsi_id)) {
|
||
|
||
/*
|
||
* Ok, reconnect has failed. Perhaps we didn't
|
||
* reconnect fast enough. Try doing a regular login, but
|
||
* first do a logout just in case of any weirdness.
|
||
*/
|
||
sbp2_logout_device(scsi_id);
|
||
|
||
if (sbp2_login_device(scsi_id)) {
|
||
/* Login failed too, just fail, and the backend
|
||
* will call our sbp2_remove for us */
|
||
SBP2_ERR("Failed to reconnect to sbp2 device!");
|
||
return -EBUSY;
|
||
}
|
||
}
|
||
|
||
/* Set max retries to something large on the device. */
|
||
sbp2_set_busy_timeout(scsi_id);
|
||
|
||
/* Do a SBP-2 fetch agent reset. */
|
||
sbp2_agent_reset(scsi_id, 1);
|
||
|
||
/* Get the max speed and packet size that we can use. */
|
||
sbp2_max_speed_and_size(scsi_id);
|
||
|
||
/* Complete any pending commands with busy (so they get
|
||
* retried) and remove them from our queue
|
||
*/
|
||
sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY);
|
||
|
||
/* Make sure we unblock requests (since this is likely after a bus
|
||
* reset). */
|
||
scsi_unblock_requests(scsi_id->scsi_host);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This functions is called by the sbp2_probe, for each new device. We now
|
||
* allocate one scsi host for each scsi_id (unit directory). */
|
||
static struct scsi_id_instance_data *sbp2_alloc_device(struct unit_directory *ud)
|
||
{
|
||
struct sbp2scsi_host_info *hi;
|
||
struct Scsi_Host *scsi_host = NULL;
|
||
struct scsi_id_instance_data *scsi_id = NULL;
|
||
|
||
SBP2_DEBUG("sbp2_alloc_device");
|
||
|
||
scsi_id = kmalloc(sizeof(*scsi_id), GFP_KERNEL);
|
||
if (!scsi_id) {
|
||
SBP2_ERR("failed to create scsi_id");
|
||
goto failed_alloc;
|
||
}
|
||
memset(scsi_id, 0, sizeof(*scsi_id));
|
||
|
||
scsi_id->ne = ud->ne;
|
||
scsi_id->ud = ud;
|
||
scsi_id->speed_code = IEEE1394_SPEED_100;
|
||
scsi_id->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
|
||
atomic_set(&scsi_id->sbp2_login_complete, 0);
|
||
INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_inuse);
|
||
INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_completed);
|
||
INIT_LIST_HEAD(&scsi_id->scsi_list);
|
||
spin_lock_init(&scsi_id->sbp2_command_orb_lock);
|
||
scsi_id->sbp2_device_type_and_lun = SBP2_DEVICE_TYPE_LUN_UNINITIALIZED;
|
||
|
||
ud->device.driver_data = scsi_id;
|
||
|
||
hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
|
||
if (!hi) {
|
||
hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host, sizeof(*hi));
|
||
if (!hi) {
|
||
SBP2_ERR("failed to allocate hostinfo");
|
||
goto failed_alloc;
|
||
}
|
||
SBP2_DEBUG("sbp2_alloc_device: allocated hostinfo");
|
||
hi->host = ud->ne->host;
|
||
INIT_LIST_HEAD(&hi->scsi_ids);
|
||
|
||
/* Register our sbp2 status address space... */
|
||
hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host, &sbp2_ops,
|
||
SBP2_STATUS_FIFO_ADDRESS,
|
||
SBP2_STATUS_FIFO_ADDRESS +
|
||
SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(SBP2_MAX_UDS_PER_NODE+1));
|
||
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
|
||
/* Handle data movement if physical dma is not
|
||
* enabled/supportedon host controller */
|
||
hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host, &sbp2_physdma_ops,
|
||
0x0ULL, 0xfffffffcULL);
|
||
#endif
|
||
}
|
||
|
||
scsi_id->hi = hi;
|
||
|
||
list_add_tail(&scsi_id->scsi_list, &hi->scsi_ids);
|
||
|
||
/* Register our host with the SCSI stack. */
|
||
scsi_host = scsi_host_alloc(&scsi_driver_template,
|
||
sizeof (unsigned long));
|
||
if (!scsi_host) {
|
||
SBP2_ERR("failed to register scsi host");
|
||
goto failed_alloc;
|
||
}
|
||
|
||
scsi_host->hostdata[0] = (unsigned long)scsi_id;
|
||
|
||
if (!scsi_add_host(scsi_host, &ud->device)) {
|
||
scsi_id->scsi_host = scsi_host;
|
||
return scsi_id;
|
||
}
|
||
|
||
SBP2_ERR("failed to add scsi host");
|
||
scsi_host_put(scsi_host);
|
||
|
||
failed_alloc:
|
||
sbp2_remove_device(scsi_id);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static void sbp2_host_reset(struct hpsb_host *host)
|
||
{
|
||
struct sbp2scsi_host_info *hi;
|
||
struct scsi_id_instance_data *scsi_id;
|
||
|
||
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
|
||
|
||
if (hi) {
|
||
list_for_each_entry(scsi_id, &hi->scsi_ids, scsi_list)
|
||
scsi_block_requests(scsi_id->scsi_host);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* This function is where we first pull the node unique ids, and then
|
||
* allocate memory and register a SBP-2 device.
|
||
*/
|
||
static int sbp2_start_device(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
struct scsi_device *sdev;
|
||
|
||
SBP2_DEBUG("sbp2_start_device");
|
||
|
||
/* Login FIFO DMA */
|
||
scsi_id->login_response =
|
||
pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_login_response),
|
||
&scsi_id->login_response_dma);
|
||
if (!scsi_id->login_response)
|
||
goto alloc_fail;
|
||
SBP2_DMA_ALLOC("consistent DMA region for login FIFO");
|
||
|
||
/* Query logins ORB DMA */
|
||
scsi_id->query_logins_orb =
|
||
pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_orb),
|
||
&scsi_id->query_logins_orb_dma);
|
||
if (!scsi_id->query_logins_orb)
|
||
goto alloc_fail;
|
||
SBP2_DMA_ALLOC("consistent DMA region for query logins ORB");
|
||
|
||
/* Query logins response DMA */
|
||
scsi_id->query_logins_response =
|
||
pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_response),
|
||
&scsi_id->query_logins_response_dma);
|
||
if (!scsi_id->query_logins_response)
|
||
goto alloc_fail;
|
||
SBP2_DMA_ALLOC("consistent DMA region for query logins response");
|
||
|
||
/* Reconnect ORB DMA */
|
||
scsi_id->reconnect_orb =
|
||
pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb),
|
||
&scsi_id->reconnect_orb_dma);
|
||
if (!scsi_id->reconnect_orb)
|
||
goto alloc_fail;
|
||
SBP2_DMA_ALLOC("consistent DMA region for reconnect ORB");
|
||
|
||
/* Logout ORB DMA */
|
||
scsi_id->logout_orb =
|
||
pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb),
|
||
&scsi_id->logout_orb_dma);
|
||
if (!scsi_id->logout_orb)
|
||
goto alloc_fail;
|
||
SBP2_DMA_ALLOC("consistent DMA region for logout ORB");
|
||
|
||
/* Login ORB DMA */
|
||
scsi_id->login_orb =
|
||
pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_login_orb),
|
||
&scsi_id->login_orb_dma);
|
||
if (!scsi_id->login_orb) {
|
||
alloc_fail:
|
||
if (scsi_id->query_logins_response) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_query_logins_response),
|
||
scsi_id->query_logins_response,
|
||
scsi_id->query_logins_response_dma);
|
||
SBP2_DMA_FREE("query logins response DMA");
|
||
}
|
||
|
||
if (scsi_id->query_logins_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_query_logins_orb),
|
||
scsi_id->query_logins_orb,
|
||
scsi_id->query_logins_orb_dma);
|
||
SBP2_DMA_FREE("query logins ORB DMA");
|
||
}
|
||
|
||
if (scsi_id->logout_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_logout_orb),
|
||
scsi_id->logout_orb,
|
||
scsi_id->logout_orb_dma);
|
||
SBP2_DMA_FREE("logout ORB DMA");
|
||
}
|
||
|
||
if (scsi_id->reconnect_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_reconnect_orb),
|
||
scsi_id->reconnect_orb,
|
||
scsi_id->reconnect_orb_dma);
|
||
SBP2_DMA_FREE("reconnect ORB DMA");
|
||
}
|
||
|
||
if (scsi_id->login_response) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_login_response),
|
||
scsi_id->login_response,
|
||
scsi_id->login_response_dma);
|
||
SBP2_DMA_FREE("login FIFO DMA");
|
||
}
|
||
|
||
list_del(&scsi_id->scsi_list);
|
||
|
||
kfree(scsi_id);
|
||
|
||
SBP2_ERR ("Could not allocate memory for scsi_id");
|
||
|
||
return -ENOMEM;
|
||
}
|
||
SBP2_DMA_ALLOC("consistent DMA region for login ORB");
|
||
|
||
SBP2_DEBUG("New SBP-2 device inserted, SCSI ID = %x", scsi_id->ud->id);
|
||
|
||
/*
|
||
* Create our command orb pool
|
||
*/
|
||
if (sbp2util_create_command_orb_pool(scsi_id)) {
|
||
SBP2_ERR("sbp2util_create_command_orb_pool failed!");
|
||
sbp2_remove_device(scsi_id);
|
||
return -ENOMEM;
|
||
}
|
||
|
||
/* Schedule a timeout here. The reason is that we may be so close
|
||
* to a bus reset, that the device is not available for logins.
|
||
* This can happen when the bus reset is caused by the host
|
||
* connected to the sbp2 device being removed. That host would
|
||
* have a certain amount of time to relogin before the sbp2 device
|
||
* allows someone else to login instead. One second makes sense. */
|
||
msleep_interruptible(1000);
|
||
if (signal_pending(current)) {
|
||
SBP2_WARN("aborting sbp2_start_device due to event");
|
||
sbp2_remove_device(scsi_id);
|
||
return -EINTR;
|
||
}
|
||
|
||
/*
|
||
* Login to the sbp-2 device
|
||
*/
|
||
if (sbp2_login_device(scsi_id)) {
|
||
/* Login failed, just remove the device. */
|
||
sbp2_remove_device(scsi_id);
|
||
return -EBUSY;
|
||
}
|
||
|
||
/*
|
||
* Set max retries to something large on the device
|
||
*/
|
||
sbp2_set_busy_timeout(scsi_id);
|
||
|
||
/*
|
||
* Do a SBP-2 fetch agent reset
|
||
*/
|
||
sbp2_agent_reset(scsi_id, 1);
|
||
|
||
/*
|
||
* Get the max speed and packet size that we can use
|
||
*/
|
||
sbp2_max_speed_and_size(scsi_id);
|
||
|
||
/* Add this device to the scsi layer now */
|
||
sdev = scsi_add_device(scsi_id->scsi_host, 0, scsi_id->ud->id, 0);
|
||
if (IS_ERR(sdev)) {
|
||
SBP2_ERR("scsi_add_device failed");
|
||
return PTR_ERR(sdev);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* This function removes an sbp2 device from the sbp2scsi_host_info struct.
|
||
*/
|
||
static void sbp2_remove_device(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi;
|
||
|
||
SBP2_DEBUG("sbp2_remove_device");
|
||
|
||
if (!scsi_id)
|
||
return;
|
||
|
||
hi = scsi_id->hi;
|
||
|
||
/* This will remove our scsi device aswell */
|
||
if (scsi_id->scsi_host) {
|
||
scsi_remove_host(scsi_id->scsi_host);
|
||
scsi_host_put(scsi_id->scsi_host);
|
||
}
|
||
|
||
sbp2util_remove_command_orb_pool(scsi_id);
|
||
|
||
list_del(&scsi_id->scsi_list);
|
||
|
||
if (scsi_id->login_response) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_login_response),
|
||
scsi_id->login_response,
|
||
scsi_id->login_response_dma);
|
||
SBP2_DMA_FREE("single login FIFO");
|
||
}
|
||
|
||
if (scsi_id->login_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_login_orb),
|
||
scsi_id->login_orb,
|
||
scsi_id->login_orb_dma);
|
||
SBP2_DMA_FREE("single login ORB");
|
||
}
|
||
|
||
if (scsi_id->reconnect_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_reconnect_orb),
|
||
scsi_id->reconnect_orb,
|
||
scsi_id->reconnect_orb_dma);
|
||
SBP2_DMA_FREE("single reconnect orb");
|
||
}
|
||
|
||
if (scsi_id->logout_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_logout_orb),
|
||
scsi_id->logout_orb,
|
||
scsi_id->logout_orb_dma);
|
||
SBP2_DMA_FREE("single logout orb");
|
||
}
|
||
|
||
if (scsi_id->query_logins_orb) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_query_logins_orb),
|
||
scsi_id->query_logins_orb,
|
||
scsi_id->query_logins_orb_dma);
|
||
SBP2_DMA_FREE("single query logins orb");
|
||
}
|
||
|
||
if (scsi_id->query_logins_response) {
|
||
pci_free_consistent(hi->host->pdev,
|
||
sizeof(struct sbp2_query_logins_response),
|
||
scsi_id->query_logins_response,
|
||
scsi_id->query_logins_response_dma);
|
||
SBP2_DMA_FREE("single query logins data");
|
||
}
|
||
|
||
scsi_id->ud->device.driver_data = NULL;
|
||
|
||
SBP2_DEBUG("SBP-2 device removed, SCSI ID = %d", scsi_id->ud->id);
|
||
|
||
kfree(scsi_id);
|
||
}
|
||
|
||
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
|
||
/*
|
||
* This function deals with physical dma write requests (for adapters that do not support
|
||
* physical dma in hardware). Mostly just here for debugging...
|
||
*/
|
||
static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid, int destid, quadlet_t *data,
|
||
u64 addr, size_t length, u16 flags)
|
||
{
|
||
|
||
/*
|
||
* Manually put the data in the right place.
|
||
*/
|
||
memcpy(bus_to_virt((u32)addr), data, length);
|
||
sbp2util_packet_dump(data, length, "sbp2 phys dma write by device", (u32)addr);
|
||
return(RCODE_COMPLETE);
|
||
}
|
||
|
||
/*
|
||
* This function deals with physical dma read requests (for adapters that do not support
|
||
* physical dma in hardware). Mostly just here for debugging...
|
||
*/
|
||
static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid, quadlet_t *data,
|
||
u64 addr, size_t length, u16 flags)
|
||
{
|
||
|
||
/*
|
||
* Grab data from memory and send a read response.
|
||
*/
|
||
memcpy(data, bus_to_virt((u32)addr), length);
|
||
sbp2util_packet_dump(data, length, "sbp2 phys dma read by device", (u32)addr);
|
||
return(RCODE_COMPLETE);
|
||
}
|
||
#endif
|
||
|
||
|
||
/**************************************
|
||
* SBP-2 protocol related section
|
||
**************************************/
|
||
|
||
/*
|
||
* This function determines if we should convert scsi commands for a particular sbp2 device type
|
||
*/
|
||
static __inline__ int sbp2_command_conversion_device_type(u8 device_type)
|
||
{
|
||
return (((device_type == TYPE_DISK) ||
|
||
(device_type == TYPE_SDAD) ||
|
||
(device_type == TYPE_ROM)) ? 1:0);
|
||
}
|
||
|
||
/*
|
||
* This function queries the device for the maximum concurrent logins it
|
||
* supports.
|
||
*/
|
||
static int sbp2_query_logins(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
quadlet_t data[2];
|
||
int max_logins;
|
||
int active_logins;
|
||
|
||
SBP2_DEBUG("sbp2_query_logins");
|
||
|
||
scsi_id->query_logins_orb->reserved1 = 0x0;
|
||
scsi_id->query_logins_orb->reserved2 = 0x0;
|
||
|
||
scsi_id->query_logins_orb->query_response_lo = scsi_id->query_logins_response_dma;
|
||
scsi_id->query_logins_orb->query_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
|
||
SBP2_DEBUG("sbp2_query_logins: query_response_hi/lo initialized");
|
||
|
||
scsi_id->query_logins_orb->lun_misc = ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
|
||
scsi_id->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
|
||
if (scsi_id->sbp2_device_type_and_lun != SBP2_DEVICE_TYPE_LUN_UNINITIALIZED) {
|
||
scsi_id->query_logins_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun);
|
||
SBP2_DEBUG("sbp2_query_logins: set lun to %d",
|
||
ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun));
|
||
}
|
||
SBP2_DEBUG("sbp2_query_logins: lun_misc initialized");
|
||
|
||
scsi_id->query_logins_orb->reserved_resp_length =
|
||
ORB_SET_QUERY_LOGINS_RESP_LENGTH(sizeof(struct sbp2_query_logins_response));
|
||
SBP2_DEBUG("sbp2_query_logins: reserved_resp_length initialized");
|
||
|
||
scsi_id->query_logins_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO +
|
||
SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->ud->id);
|
||
scsi_id->query_logins_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) |
|
||
SBP2_STATUS_FIFO_ADDRESS_HI);
|
||
SBP2_DEBUG("sbp2_query_logins: status FIFO initialized");
|
||
|
||
sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb));
|
||
|
||
SBP2_DEBUG("sbp2_query_logins: orb byte-swapped");
|
||
|
||
sbp2util_packet_dump(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb),
|
||
"sbp2 query logins orb", scsi_id->query_logins_orb_dma);
|
||
|
||
memset(scsi_id->query_logins_response, 0, sizeof(struct sbp2_query_logins_response));
|
||
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
|
||
|
||
SBP2_DEBUG("sbp2_query_logins: query_logins_response/status FIFO memset");
|
||
|
||
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
|
||
data[1] = scsi_id->query_logins_orb_dma;
|
||
sbp2util_cpu_to_be32_buffer(data, 8);
|
||
|
||
atomic_set(&scsi_id->sbp2_login_complete, 0);
|
||
|
||
SBP2_DEBUG("sbp2_query_logins: prepared to write");
|
||
hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8);
|
||
SBP2_DEBUG("sbp2_query_logins: written");
|
||
|
||
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, 2*HZ)) {
|
||
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
|
||
return(-EIO);
|
||
}
|
||
|
||
if (scsi_id->status_block.ORB_offset_lo != scsi_id->query_logins_orb_dma) {
|
||
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
|
||
return(-EIO);
|
||
}
|
||
|
||
if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) ||
|
||
STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) ||
|
||
STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) {
|
||
|
||
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
|
||
return(-EIO);
|
||
}
|
||
|
||
sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_response, sizeof(struct sbp2_query_logins_response));
|
||
|
||
SBP2_DEBUG("length_max_logins = %x",
|
||
(unsigned int)scsi_id->query_logins_response->length_max_logins);
|
||
|
||
SBP2_DEBUG("Query logins to SBP-2 device successful");
|
||
|
||
max_logins = RESPONSE_GET_MAX_LOGINS(scsi_id->query_logins_response->length_max_logins);
|
||
SBP2_DEBUG("Maximum concurrent logins supported: %d", max_logins);
|
||
|
||
active_logins = RESPONSE_GET_ACTIVE_LOGINS(scsi_id->query_logins_response->length_max_logins);
|
||
SBP2_DEBUG("Number of active logins: %d", active_logins);
|
||
|
||
if (active_logins >= max_logins) {
|
||
return(-EIO);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to login to a particular SBP-2 device,
|
||
* after a bus reset.
|
||
*/
|
||
static int sbp2_login_device(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
quadlet_t data[2];
|
||
|
||
SBP2_DEBUG("sbp2_login_device");
|
||
|
||
if (!scsi_id->login_orb) {
|
||
SBP2_DEBUG("sbp2_login_device: login_orb not alloc'd!");
|
||
return(-EIO);
|
||
}
|
||
|
||
if (!exclusive_login) {
|
||
if (sbp2_query_logins(scsi_id)) {
|
||
SBP2_INFO("Device does not support any more concurrent logins");
|
||
return(-EIO);
|
||
}
|
||
}
|
||
|
||
/* Set-up login ORB, assume no password */
|
||
scsi_id->login_orb->password_hi = 0;
|
||
scsi_id->login_orb->password_lo = 0;
|
||
SBP2_DEBUG("sbp2_login_device: password_hi/lo initialized");
|
||
|
||
scsi_id->login_orb->login_response_lo = scsi_id->login_response_dma;
|
||
scsi_id->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
|
||
SBP2_DEBUG("sbp2_login_device: login_response_hi/lo initialized");
|
||
|
||
scsi_id->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
|
||
scsi_id->login_orb->lun_misc |= ORB_SET_RECONNECT(0); /* One second reconnect time */
|
||
scsi_id->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(exclusive_login); /* Exclusive access to device */
|
||
scsi_id->login_orb->lun_misc |= ORB_SET_NOTIFY(1); /* Notify us of login complete */
|
||
/* Set the lun if we were able to pull it from the device's unit directory */
|
||
if (scsi_id->sbp2_device_type_and_lun != SBP2_DEVICE_TYPE_LUN_UNINITIALIZED) {
|
||
scsi_id->login_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun);
|
||
SBP2_DEBUG("sbp2_query_logins: set lun to %d",
|
||
ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun));
|
||
}
|
||
SBP2_DEBUG("sbp2_login_device: lun_misc initialized");
|
||
|
||
scsi_id->login_orb->passwd_resp_lengths =
|
||
ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
|
||
SBP2_DEBUG("sbp2_login_device: passwd_resp_lengths initialized");
|
||
|
||
scsi_id->login_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO +
|
||
SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->ud->id);
|
||
scsi_id->login_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) |
|
||
SBP2_STATUS_FIFO_ADDRESS_HI);
|
||
SBP2_DEBUG("sbp2_login_device: status FIFO initialized");
|
||
|
||
/*
|
||
* Byte swap ORB if necessary
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(scsi_id->login_orb, sizeof(struct sbp2_login_orb));
|
||
|
||
SBP2_DEBUG("sbp2_login_device: orb byte-swapped");
|
||
|
||
sbp2util_packet_dump(scsi_id->login_orb, sizeof(struct sbp2_login_orb),
|
||
"sbp2 login orb", scsi_id->login_orb_dma);
|
||
|
||
/*
|
||
* Initialize login response and status fifo
|
||
*/
|
||
memset(scsi_id->login_response, 0, sizeof(struct sbp2_login_response));
|
||
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
|
||
|
||
SBP2_DEBUG("sbp2_login_device: login_response/status FIFO memset");
|
||
|
||
/*
|
||
* Ok, let's write to the target's management agent register
|
||
*/
|
||
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
|
||
data[1] = scsi_id->login_orb_dma;
|
||
sbp2util_cpu_to_be32_buffer(data, 8);
|
||
|
||
atomic_set(&scsi_id->sbp2_login_complete, 0);
|
||
|
||
SBP2_DEBUG("sbp2_login_device: prepared to write to %08x",
|
||
(unsigned int)scsi_id->sbp2_management_agent_addr);
|
||
hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8);
|
||
SBP2_DEBUG("sbp2_login_device: written");
|
||
|
||
/*
|
||
* Wait for login status (up to 20 seconds)...
|
||
*/
|
||
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, 20*HZ)) {
|
||
SBP2_ERR("Error logging into SBP-2 device - login timed-out");
|
||
return(-EIO);
|
||
}
|
||
|
||
/*
|
||
* Sanity. Make sure status returned matches login orb.
|
||
*/
|
||
if (scsi_id->status_block.ORB_offset_lo != scsi_id->login_orb_dma) {
|
||
SBP2_ERR("Error logging into SBP-2 device - login timed-out");
|
||
return(-EIO);
|
||
}
|
||
|
||
/*
|
||
* Check status
|
||
*/
|
||
if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) ||
|
||
STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) ||
|
||
STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) {
|
||
|
||
SBP2_ERR("Error logging into SBP-2 device - login failed");
|
||
return(-EIO);
|
||
}
|
||
|
||
/*
|
||
* Byte swap the login response, for use when reconnecting or
|
||
* logging out.
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(scsi_id->login_response, sizeof(struct sbp2_login_response));
|
||
|
||
/*
|
||
* Grab our command block agent address from the login response.
|
||
*/
|
||
SBP2_DEBUG("command_block_agent_hi = %x",
|
||
(unsigned int)scsi_id->login_response->command_block_agent_hi);
|
||
SBP2_DEBUG("command_block_agent_lo = %x",
|
||
(unsigned int)scsi_id->login_response->command_block_agent_lo);
|
||
|
||
scsi_id->sbp2_command_block_agent_addr =
|
||
((u64)scsi_id->login_response->command_block_agent_hi) << 32;
|
||
scsi_id->sbp2_command_block_agent_addr |= ((u64)scsi_id->login_response->command_block_agent_lo);
|
||
scsi_id->sbp2_command_block_agent_addr &= 0x0000ffffffffffffULL;
|
||
|
||
SBP2_INFO("Logged into SBP-2 device");
|
||
|
||
return(0);
|
||
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to logout from a particular SBP-2
|
||
* device, usually called during driver unload.
|
||
*/
|
||
static int sbp2_logout_device(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
quadlet_t data[2];
|
||
int error;
|
||
|
||
SBP2_DEBUG("sbp2_logout_device");
|
||
|
||
/*
|
||
* Set-up logout ORB
|
||
*/
|
||
scsi_id->logout_orb->reserved1 = 0x0;
|
||
scsi_id->logout_orb->reserved2 = 0x0;
|
||
scsi_id->logout_orb->reserved3 = 0x0;
|
||
scsi_id->logout_orb->reserved4 = 0x0;
|
||
|
||
scsi_id->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
|
||
scsi_id->logout_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID);
|
||
|
||
/* Notify us when complete */
|
||
scsi_id->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
|
||
|
||
scsi_id->logout_orb->reserved5 = 0x0;
|
||
scsi_id->logout_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO +
|
||
SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->ud->id);
|
||
scsi_id->logout_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) |
|
||
SBP2_STATUS_FIFO_ADDRESS_HI);
|
||
|
||
/*
|
||
* Byte swap ORB if necessary
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb));
|
||
|
||
sbp2util_packet_dump(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb),
|
||
"sbp2 logout orb", scsi_id->logout_orb_dma);
|
||
|
||
/*
|
||
* Ok, let's write to the target's management agent register
|
||
*/
|
||
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
|
||
data[1] = scsi_id->logout_orb_dma;
|
||
sbp2util_cpu_to_be32_buffer(data, 8);
|
||
|
||
atomic_set(&scsi_id->sbp2_login_complete, 0);
|
||
|
||
error = hpsb_node_write(scsi_id->ne,
|
||
scsi_id->sbp2_management_agent_addr,
|
||
data, 8);
|
||
if (error)
|
||
return error;
|
||
|
||
/* Wait for device to logout...1 second. */
|
||
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, HZ))
|
||
return -EIO;
|
||
|
||
SBP2_INFO("Logged out of SBP-2 device");
|
||
|
||
return(0);
|
||
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to reconnect to a particular SBP-2
|
||
* device, after a bus reset.
|
||
*/
|
||
static int sbp2_reconnect_device(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
quadlet_t data[2];
|
||
int error;
|
||
|
||
SBP2_DEBUG("sbp2_reconnect_device");
|
||
|
||
/*
|
||
* Set-up reconnect ORB
|
||
*/
|
||
scsi_id->reconnect_orb->reserved1 = 0x0;
|
||
scsi_id->reconnect_orb->reserved2 = 0x0;
|
||
scsi_id->reconnect_orb->reserved3 = 0x0;
|
||
scsi_id->reconnect_orb->reserved4 = 0x0;
|
||
|
||
scsi_id->reconnect_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
|
||
scsi_id->reconnect_orb->login_ID_misc |=
|
||
ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID);
|
||
|
||
/* Notify us when complete */
|
||
scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
|
||
|
||
scsi_id->reconnect_orb->reserved5 = 0x0;
|
||
scsi_id->reconnect_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO +
|
||
SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->ud->id);
|
||
scsi_id->reconnect_orb->status_FIFO_hi =
|
||
(ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI);
|
||
|
||
/*
|
||
* Byte swap ORB if necessary
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb));
|
||
|
||
sbp2util_packet_dump(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb),
|
||
"sbp2 reconnect orb", scsi_id->reconnect_orb_dma);
|
||
|
||
/*
|
||
* Initialize status fifo
|
||
*/
|
||
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
|
||
|
||
/*
|
||
* Ok, let's write to the target's management agent register
|
||
*/
|
||
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
|
||
data[1] = scsi_id->reconnect_orb_dma;
|
||
sbp2util_cpu_to_be32_buffer(data, 8);
|
||
|
||
atomic_set(&scsi_id->sbp2_login_complete, 0);
|
||
|
||
error = hpsb_node_write(scsi_id->ne,
|
||
scsi_id->sbp2_management_agent_addr,
|
||
data, 8);
|
||
if (error)
|
||
return error;
|
||
|
||
/*
|
||
* Wait for reconnect status (up to 1 second)...
|
||
*/
|
||
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, HZ)) {
|
||
SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out");
|
||
return(-EIO);
|
||
}
|
||
|
||
/*
|
||
* Sanity. Make sure status returned matches reconnect orb.
|
||
*/
|
||
if (scsi_id->status_block.ORB_offset_lo != scsi_id->reconnect_orb_dma) {
|
||
SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out");
|
||
return(-EIO);
|
||
}
|
||
|
||
/*
|
||
* Check status
|
||
*/
|
||
if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) ||
|
||
STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) ||
|
||
STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) {
|
||
|
||
SBP2_ERR("Error reconnecting to SBP-2 device - reconnect failed");
|
||
return(-EIO);
|
||
}
|
||
|
||
HPSB_DEBUG("Reconnected to SBP-2 device");
|
||
|
||
return(0);
|
||
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to set the busy timeout (number of
|
||
* retries to attempt) on the sbp2 device.
|
||
*/
|
||
static int sbp2_set_busy_timeout(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
quadlet_t data;
|
||
|
||
SBP2_DEBUG("sbp2_set_busy_timeout");
|
||
|
||
/*
|
||
* Ok, let's write to the target's busy timeout register
|
||
*/
|
||
data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
|
||
|
||
if (hpsb_node_write(scsi_id->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4)) {
|
||
SBP2_ERR("sbp2_set_busy_timeout error");
|
||
}
|
||
|
||
return(0);
|
||
}
|
||
|
||
|
||
/*
|
||
* This function is called to parse sbp2 device's config rom unit
|
||
* directory. Used to determine things like sbp2 management agent offset,
|
||
* and command set used (SCSI or RBC).
|
||
*/
|
||
static void sbp2_parse_unit_directory(struct scsi_id_instance_data *scsi_id,
|
||
struct unit_directory *ud)
|
||
{
|
||
struct csr1212_keyval *kv;
|
||
struct csr1212_dentry *dentry;
|
||
u64 management_agent_addr;
|
||
u32 command_set_spec_id, command_set, unit_characteristics,
|
||
firmware_revision, workarounds;
|
||
int i;
|
||
|
||
SBP2_DEBUG("sbp2_parse_unit_directory");
|
||
|
||
management_agent_addr = 0x0;
|
||
command_set_spec_id = 0x0;
|
||
command_set = 0x0;
|
||
unit_characteristics = 0x0;
|
||
firmware_revision = 0x0;
|
||
|
||
/* Handle different fields in the unit directory, based on keys */
|
||
csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
|
||
switch (kv->key.id) {
|
||
case CSR1212_KV_ID_DEPENDENT_INFO:
|
||
if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET) {
|
||
/* Save off the management agent address */
|
||
management_agent_addr =
|
||
CSR1212_REGISTER_SPACE_BASE +
|
||
(kv->value.csr_offset << 2);
|
||
|
||
SBP2_DEBUG("sbp2_management_agent_addr = %x",
|
||
(unsigned int) management_agent_addr);
|
||
} else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
|
||
scsi_id->sbp2_device_type_and_lun = kv->value.immediate;
|
||
}
|
||
break;
|
||
|
||
case SBP2_COMMAND_SET_SPEC_ID_KEY:
|
||
/* Command spec organization */
|
||
command_set_spec_id = kv->value.immediate;
|
||
SBP2_DEBUG("sbp2_command_set_spec_id = %x",
|
||
(unsigned int) command_set_spec_id);
|
||
break;
|
||
|
||
case SBP2_COMMAND_SET_KEY:
|
||
/* Command set used by sbp2 device */
|
||
command_set = kv->value.immediate;
|
||
SBP2_DEBUG("sbp2_command_set = %x",
|
||
(unsigned int) command_set);
|
||
break;
|
||
|
||
case SBP2_UNIT_CHARACTERISTICS_KEY:
|
||
/*
|
||
* Unit characterisitcs (orb related stuff
|
||
* that I'm not yet paying attention to)
|
||
*/
|
||
unit_characteristics = kv->value.immediate;
|
||
SBP2_DEBUG("sbp2_unit_characteristics = %x",
|
||
(unsigned int) unit_characteristics);
|
||
break;
|
||
|
||
case SBP2_FIRMWARE_REVISION_KEY:
|
||
/* Firmware revision */
|
||
firmware_revision = kv->value.immediate;
|
||
if (force_inquiry_hack)
|
||
SBP2_INFO("sbp2_firmware_revision = %x",
|
||
(unsigned int) firmware_revision);
|
||
else SBP2_DEBUG("sbp2_firmware_revision = %x",
|
||
(unsigned int) firmware_revision);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* This is the start of our broken device checking. We try to hack
|
||
* around oddities and known defects. */
|
||
workarounds = 0x0;
|
||
|
||
/* If the vendor id is 0xa0b8 (Symbios vendor id), then we have a
|
||
* bridge with 128KB max transfer size limitation. For sanity, we
|
||
* only voice this when the current max_sectors setting
|
||
* exceeds the 128k limit. By default, that is not the case.
|
||
*
|
||
* It would be really nice if we could detect this before the scsi
|
||
* host gets initialized. That way we can down-force the
|
||
* max_sectors to account for it. That is not currently
|
||
* possible. */
|
||
if ((firmware_revision & 0xffff00) ==
|
||
SBP2_128KB_BROKEN_FIRMWARE &&
|
||
(max_sectors * 512) > (128*1024)) {
|
||
SBP2_WARN("Node " NODE_BUS_FMT ": Bridge only supports 128KB max transfer size.",
|
||
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid));
|
||
SBP2_WARN("WARNING: Current max_sectors setting is larger than 128KB (%d sectors)!",
|
||
max_sectors);
|
||
workarounds |= SBP2_BREAKAGE_128K_MAX_TRANSFER;
|
||
}
|
||
|
||
/* Check for a blacklisted set of devices that require us to force
|
||
* a 36 byte host inquiry. This can be overriden as a module param
|
||
* (to force all hosts). */
|
||
for (i = 0; i < NUM_BROKEN_INQUIRY_DEVS; i++) {
|
||
if ((firmware_revision & 0xffff00) ==
|
||
sbp2_broken_inquiry_list[i]) {
|
||
SBP2_WARN("Node " NODE_BUS_FMT ": Using 36byte inquiry workaround",
|
||
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid));
|
||
workarounds |= SBP2_BREAKAGE_INQUIRY_HACK;
|
||
break; /* No need to continue. */
|
||
}
|
||
}
|
||
|
||
/* If this is a logical unit directory entry, process the parent
|
||
* to get the values. */
|
||
if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
|
||
struct unit_directory *parent_ud =
|
||
container_of(ud->device.parent, struct unit_directory, device);
|
||
sbp2_parse_unit_directory(scsi_id, parent_ud);
|
||
} else {
|
||
scsi_id->sbp2_management_agent_addr = management_agent_addr;
|
||
scsi_id->sbp2_command_set_spec_id = command_set_spec_id;
|
||
scsi_id->sbp2_command_set = command_set;
|
||
scsi_id->sbp2_unit_characteristics = unit_characteristics;
|
||
scsi_id->sbp2_firmware_revision = firmware_revision;
|
||
scsi_id->workarounds = workarounds;
|
||
if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
|
||
scsi_id->sbp2_device_type_and_lun = ud->lun;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to determine the max speed and packet
|
||
* size we can use in our ORBs. Note, that we (the driver and host) only
|
||
* initiate the transaction. The SBP-2 device actually transfers the data
|
||
* (by reading from the DMA area we tell it). This means that the SBP-2
|
||
* device decides the actual maximum data it can transfer. We just tell it
|
||
* the speed that it needs to use, and the max_rec the host supports, and
|
||
* it takes care of the rest.
|
||
*/
|
||
static int sbp2_max_speed_and_size(struct scsi_id_instance_data *scsi_id)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
|
||
SBP2_DEBUG("sbp2_max_speed_and_size");
|
||
|
||
/* Initial setting comes from the hosts speed map */
|
||
scsi_id->speed_code = hi->host->speed_map[NODEID_TO_NODE(hi->host->node_id) * 64
|
||
+ NODEID_TO_NODE(scsi_id->ne->nodeid)];
|
||
|
||
/* Bump down our speed if the user requested it */
|
||
if (scsi_id->speed_code > max_speed) {
|
||
scsi_id->speed_code = max_speed;
|
||
SBP2_ERR("Forcing SBP-2 max speed down to %s",
|
||
hpsb_speedto_str[scsi_id->speed_code]);
|
||
}
|
||
|
||
/* Payload size is the lesser of what our speed supports and what
|
||
* our host supports. */
|
||
scsi_id->max_payload_size = min(sbp2_speedto_max_payload[scsi_id->speed_code],
|
||
(u8)(hi->host->csr.max_rec - 1));
|
||
|
||
HPSB_DEBUG("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
|
||
NODE_BUS_ARGS(hi->host, scsi_id->ne->nodeid),
|
||
hpsb_speedto_str[scsi_id->speed_code],
|
||
1 << ((u32)scsi_id->max_payload_size + 2));
|
||
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to perform a SBP-2 agent reset.
|
||
*/
|
||
static int sbp2_agent_reset(struct scsi_id_instance_data *scsi_id, int wait)
|
||
{
|
||
quadlet_t data;
|
||
u64 addr;
|
||
int retval;
|
||
|
||
SBP2_DEBUG("sbp2_agent_reset");
|
||
|
||
/*
|
||
* Ok, let's write to the target's management agent register
|
||
*/
|
||
data = ntohl(SBP2_AGENT_RESET_DATA);
|
||
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
|
||
|
||
if (wait)
|
||
retval = hpsb_node_write(scsi_id->ne, addr, &data, 4);
|
||
else
|
||
retval = sbp2util_node_write_no_wait(scsi_id->ne, addr, &data, 4);
|
||
|
||
if (retval < 0) {
|
||
SBP2_ERR("hpsb_node_write failed.\n");
|
||
return -EIO;
|
||
}
|
||
|
||
/*
|
||
* Need to make sure orb pointer is written on next command
|
||
*/
|
||
scsi_id->last_orb = NULL;
|
||
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* This function is called to create the actual command orb and s/g list
|
||
* out of the scsi command itself.
|
||
*/
|
||
static int sbp2_create_command_orb(struct scsi_id_instance_data *scsi_id,
|
||
struct sbp2_command_info *command,
|
||
unchar *scsi_cmd,
|
||
unsigned int scsi_use_sg,
|
||
unsigned int scsi_request_bufflen,
|
||
void *scsi_request_buffer,
|
||
enum dma_data_direction dma_dir)
|
||
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
struct scatterlist *sgpnt = (struct scatterlist *) scsi_request_buffer;
|
||
struct sbp2_command_orb *command_orb = &command->command_orb;
|
||
struct sbp2_unrestricted_page_table *scatter_gather_element =
|
||
&command->scatter_gather_element[0];
|
||
u32 sg_count, sg_len, orb_direction;
|
||
dma_addr_t sg_addr;
|
||
int i;
|
||
|
||
/*
|
||
* Set-up our command ORB..
|
||
*
|
||
* NOTE: We're doing unrestricted page tables (s/g), as this is
|
||
* best performance (at least with the devices I have). This means
|
||
* that data_size becomes the number of s/g elements, and
|
||
* page_size should be zero (for unrestricted).
|
||
*/
|
||
command_orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
|
||
command_orb->next_ORB_lo = 0x0;
|
||
command_orb->misc = ORB_SET_MAX_PAYLOAD(scsi_id->max_payload_size);
|
||
command_orb->misc |= ORB_SET_SPEED(scsi_id->speed_code);
|
||
command_orb->misc |= ORB_SET_NOTIFY(1); /* Notify us when complete */
|
||
|
||
/*
|
||
* Get the direction of the transfer. If the direction is unknown, then use our
|
||
* goofy table as a back-up.
|
||
*/
|
||
switch (dma_dir) {
|
||
case DMA_NONE:
|
||
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
|
||
break;
|
||
case DMA_TO_DEVICE:
|
||
orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
|
||
break;
|
||
case DMA_FROM_DEVICE:
|
||
orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
|
||
break;
|
||
case DMA_BIDIRECTIONAL:
|
||
default:
|
||
SBP2_ERR("SCSI data transfer direction not specified. "
|
||
"Update the SBP2 direction table in sbp2.h if "
|
||
"necessary for your application");
|
||
__scsi_print_command(scsi_cmd);
|
||
orb_direction = sbp2scsi_direction_table[*scsi_cmd];
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* Set-up our pagetable stuff... unfortunately, this has become
|
||
* messier than I'd like. Need to clean this up a bit. ;-)
|
||
*/
|
||
if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
|
||
|
||
SBP2_DEBUG("No data transfer");
|
||
|
||
/*
|
||
* Handle no data transfer
|
||
*/
|
||
command_orb->data_descriptor_hi = 0x0;
|
||
command_orb->data_descriptor_lo = 0x0;
|
||
command_orb->misc |= ORB_SET_DIRECTION(1);
|
||
|
||
} else if (scsi_use_sg) {
|
||
|
||
SBP2_DEBUG("Use scatter/gather");
|
||
|
||
/*
|
||
* Special case if only one element (and less than 64KB in size)
|
||
*/
|
||
if ((scsi_use_sg == 1) && (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
|
||
|
||
SBP2_DEBUG("Only one s/g element");
|
||
command->dma_dir = dma_dir;
|
||
command->dma_size = sgpnt[0].length;
|
||
command->dma_type = CMD_DMA_PAGE;
|
||
command->cmd_dma = pci_map_page(hi->host->pdev,
|
||
sgpnt[0].page,
|
||
sgpnt[0].offset,
|
||
command->dma_size,
|
||
command->dma_dir);
|
||
SBP2_DMA_ALLOC("single page scatter element");
|
||
|
||
command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
|
||
command_orb->data_descriptor_lo = command->cmd_dma;
|
||
command_orb->misc |= ORB_SET_DATA_SIZE(command->dma_size);
|
||
command_orb->misc |= ORB_SET_DIRECTION(orb_direction);
|
||
|
||
} else {
|
||
int count = pci_map_sg(hi->host->pdev, sgpnt, scsi_use_sg, dma_dir);
|
||
SBP2_DMA_ALLOC("scatter list");
|
||
|
||
command->dma_size = scsi_use_sg;
|
||
command->dma_dir = dma_dir;
|
||
command->sge_buffer = sgpnt;
|
||
|
||
/* use page tables (s/g) */
|
||
command_orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
|
||
command_orb->misc |= ORB_SET_DIRECTION(orb_direction);
|
||
command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
|
||
command_orb->data_descriptor_lo = command->sge_dma;
|
||
|
||
/*
|
||
* Loop through and fill out our sbp-2 page tables
|
||
* (and split up anything too large)
|
||
*/
|
||
for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
|
||
sg_len = sg_dma_len(sgpnt);
|
||
sg_addr = sg_dma_address(sgpnt);
|
||
while (sg_len) {
|
||
scatter_gather_element[sg_count].segment_base_lo = sg_addr;
|
||
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
|
||
scatter_gather_element[sg_count].length_segment_base_hi =
|
||
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
|
||
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
|
||
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
|
||
} else {
|
||
scatter_gather_element[sg_count].length_segment_base_hi =
|
||
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
|
||
sg_len = 0;
|
||
}
|
||
sg_count++;
|
||
}
|
||
}
|
||
|
||
/* Number of page table (s/g) elements */
|
||
command_orb->misc |= ORB_SET_DATA_SIZE(sg_count);
|
||
|
||
sbp2util_packet_dump(scatter_gather_element,
|
||
(sizeof(struct sbp2_unrestricted_page_table)) * sg_count,
|
||
"sbp2 s/g list", command->sge_dma);
|
||
|
||
/*
|
||
* Byte swap page tables if necessary
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(scatter_gather_element,
|
||
(sizeof(struct sbp2_unrestricted_page_table)) *
|
||
sg_count);
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
SBP2_DEBUG("No scatter/gather");
|
||
|
||
command->dma_dir = dma_dir;
|
||
command->dma_size = scsi_request_bufflen;
|
||
command->dma_type = CMD_DMA_SINGLE;
|
||
command->cmd_dma = pci_map_single (hi->host->pdev, scsi_request_buffer,
|
||
command->dma_size,
|
||
command->dma_dir);
|
||
SBP2_DMA_ALLOC("single bulk");
|
||
|
||
/*
|
||
* Handle case where we get a command w/o s/g enabled (but
|
||
* check for transfers larger than 64K)
|
||
*/
|
||
if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) {
|
||
|
||
command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
|
||
command_orb->data_descriptor_lo = command->cmd_dma;
|
||
command_orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen);
|
||
command_orb->misc |= ORB_SET_DIRECTION(orb_direction);
|
||
|
||
/*
|
||
* Sanity, in case our direction table is not
|
||
* up-to-date
|
||
*/
|
||
if (!scsi_request_bufflen) {
|
||
command_orb->data_descriptor_hi = 0x0;
|
||
command_orb->data_descriptor_lo = 0x0;
|
||
command_orb->misc |= ORB_SET_DIRECTION(1);
|
||
}
|
||
|
||
} else {
|
||
/*
|
||
* Need to turn this into page tables, since the
|
||
* buffer is too large.
|
||
*/
|
||
command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
|
||
command_orb->data_descriptor_lo = command->sge_dma;
|
||
|
||
/* Use page tables (s/g) */
|
||
command_orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
|
||
command_orb->misc |= ORB_SET_DIRECTION(orb_direction);
|
||
|
||
/*
|
||
* fill out our sbp-2 page tables (and split up
|
||
* the large buffer)
|
||
*/
|
||
sg_count = 0;
|
||
sg_len = scsi_request_bufflen;
|
||
sg_addr = command->cmd_dma;
|
||
while (sg_len) {
|
||
scatter_gather_element[sg_count].segment_base_lo = sg_addr;
|
||
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
|
||
scatter_gather_element[sg_count].length_segment_base_hi =
|
||
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
|
||
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
|
||
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
|
||
} else {
|
||
scatter_gather_element[sg_count].length_segment_base_hi =
|
||
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
|
||
sg_len = 0;
|
||
}
|
||
sg_count++;
|
||
}
|
||
|
||
/* Number of page table (s/g) elements */
|
||
command_orb->misc |= ORB_SET_DATA_SIZE(sg_count);
|
||
|
||
sbp2util_packet_dump(scatter_gather_element,
|
||
(sizeof(struct sbp2_unrestricted_page_table)) * sg_count,
|
||
"sbp2 s/g list", command->sge_dma);
|
||
|
||
/*
|
||
* Byte swap page tables if necessary
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(scatter_gather_element,
|
||
(sizeof(struct sbp2_unrestricted_page_table)) *
|
||
sg_count);
|
||
|
||
}
|
||
|
||
}
|
||
|
||
/*
|
||
* Byte swap command ORB if necessary
|
||
*/
|
||
sbp2util_cpu_to_be32_buffer(command_orb, sizeof(struct sbp2_command_orb));
|
||
|
||
/*
|
||
* Put our scsi command in the command ORB
|
||
*/
|
||
memset(command_orb->cdb, 0, 12);
|
||
memcpy(command_orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
|
||
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to begin a regular SBP-2 command.
|
||
*/
|
||
static int sbp2_link_orb_command(struct scsi_id_instance_data *scsi_id,
|
||
struct sbp2_command_info *command)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
struct sbp2_command_orb *command_orb = &command->command_orb;
|
||
struct node_entry *ne = scsi_id->ne;
|
||
u64 addr;
|
||
|
||
outstanding_orb_incr;
|
||
SBP2_ORB_DEBUG("sending command orb %p, total orbs = %x",
|
||
command_orb, global_outstanding_command_orbs);
|
||
|
||
pci_dma_sync_single_for_device(hi->host->pdev, command->command_orb_dma,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
pci_dma_sync_single_for_device(hi->host->pdev, command->sge_dma,
|
||
sizeof(command->scatter_gather_element),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
/*
|
||
* Check to see if there are any previous orbs to use
|
||
*/
|
||
if (scsi_id->last_orb == NULL) {
|
||
quadlet_t data[2];
|
||
|
||
/*
|
||
* Ok, let's write to the target's management agent register
|
||
*/
|
||
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_ORB_POINTER_OFFSET;
|
||
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
|
||
data[1] = command->command_orb_dma;
|
||
sbp2util_cpu_to_be32_buffer(data, 8);
|
||
|
||
SBP2_ORB_DEBUG("write command agent, command orb %p", command_orb);
|
||
|
||
if (sbp2util_node_write_no_wait(ne, addr, data, 8) < 0) {
|
||
SBP2_ERR("sbp2util_node_write_no_wait failed.\n");
|
||
return -EIO;
|
||
}
|
||
|
||
SBP2_ORB_DEBUG("write command agent complete");
|
||
|
||
scsi_id->last_orb = command_orb;
|
||
scsi_id->last_orb_dma = command->command_orb_dma;
|
||
|
||
} else {
|
||
quadlet_t data;
|
||
|
||
/*
|
||
* We have an orb already sent (maybe or maybe not
|
||
* processed) that we can append this orb to. So do so,
|
||
* and ring the doorbell. Have to be very careful
|
||
* modifying these next orb pointers, as they are accessed
|
||
* both by the sbp2 device and us.
|
||
*/
|
||
scsi_id->last_orb->next_ORB_lo =
|
||
cpu_to_be32(command->command_orb_dma);
|
||
/* Tells hardware that this pointer is valid */
|
||
scsi_id->last_orb->next_ORB_hi = 0x0;
|
||
pci_dma_sync_single_for_device(hi->host->pdev, scsi_id->last_orb_dma,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
|
||
/*
|
||
* Ring the doorbell
|
||
*/
|
||
data = cpu_to_be32(command->command_orb_dma);
|
||
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_DOORBELL_OFFSET;
|
||
|
||
SBP2_ORB_DEBUG("ring doorbell, command orb %p", command_orb);
|
||
|
||
if (sbp2util_node_write_no_wait(ne, addr, &data, 4) < 0) {
|
||
SBP2_ERR("sbp2util_node_write_no_wait failed");
|
||
return(-EIO);
|
||
}
|
||
|
||
scsi_id->last_orb = command_orb;
|
||
scsi_id->last_orb_dma = command->command_orb_dma;
|
||
|
||
}
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to begin a regular SBP-2 command.
|
||
*/
|
||
static int sbp2_send_command(struct scsi_id_instance_data *scsi_id,
|
||
struct scsi_cmnd *SCpnt,
|
||
void (*done)(struct scsi_cmnd *))
|
||
{
|
||
unchar *cmd = (unchar *) SCpnt->cmnd;
|
||
unsigned int request_bufflen = SCpnt->request_bufflen;
|
||
struct sbp2_command_info *command;
|
||
|
||
SBP2_DEBUG("sbp2_send_command");
|
||
#if (CONFIG_IEEE1394_SBP2_DEBUG >= 2) || defined(CONFIG_IEEE1394_SBP2_PACKET_DUMP)
|
||
printk("[scsi command]\n ");
|
||
scsi_print_command(SCpnt);
|
||
#endif
|
||
SBP2_DEBUG("SCSI transfer size = %x", request_bufflen);
|
||
SBP2_DEBUG("SCSI s/g elements = %x", (unsigned int)SCpnt->use_sg);
|
||
|
||
/*
|
||
* Allocate a command orb and s/g structure
|
||
*/
|
||
command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done);
|
||
if (!command) {
|
||
return(-EIO);
|
||
}
|
||
|
||
/*
|
||
* The scsi stack sends down a request_bufflen which does not match the
|
||
* length field in the scsi cdb. This causes some sbp2 devices to
|
||
* reject this inquiry command. Fix the request_bufflen.
|
||
*/
|
||
if (*cmd == INQUIRY) {
|
||
if (force_inquiry_hack || scsi_id->workarounds & SBP2_BREAKAGE_INQUIRY_HACK)
|
||
request_bufflen = cmd[4] = 0x24;
|
||
else
|
||
request_bufflen = cmd[4];
|
||
}
|
||
|
||
/*
|
||
* Now actually fill in the comamnd orb and sbp2 s/g list
|
||
*/
|
||
sbp2_create_command_orb(scsi_id, command, cmd, SCpnt->use_sg,
|
||
request_bufflen, SCpnt->request_buffer,
|
||
SCpnt->sc_data_direction);
|
||
/*
|
||
* Update our cdb if necessary (to handle sbp2 RBC command set
|
||
* differences). This is where the command set hacks go! =)
|
||
*/
|
||
sbp2_check_sbp2_command(scsi_id, command->command_orb.cdb);
|
||
|
||
sbp2util_packet_dump(&command->command_orb, sizeof(struct sbp2_command_orb),
|
||
"sbp2 command orb", command->command_orb_dma);
|
||
|
||
/*
|
||
* Initialize status fifo
|
||
*/
|
||
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
|
||
|
||
/*
|
||
* Link up the orb, and ring the doorbell if needed
|
||
*/
|
||
sbp2_link_orb_command(scsi_id, command);
|
||
|
||
return(0);
|
||
}
|
||
|
||
|
||
/*
|
||
* This function deals with command set differences between Linux scsi
|
||
* command set and sbp2 RBC command set.
|
||
*/
|
||
static void sbp2_check_sbp2_command(struct scsi_id_instance_data *scsi_id, unchar *cmd)
|
||
{
|
||
unchar new_cmd[16];
|
||
u8 device_type = SBP2_DEVICE_TYPE (scsi_id->sbp2_device_type_and_lun);
|
||
|
||
SBP2_DEBUG("sbp2_check_sbp2_command");
|
||
|
||
switch (*cmd) {
|
||
|
||
case READ_6:
|
||
|
||
if (sbp2_command_conversion_device_type(device_type)) {
|
||
|
||
SBP2_DEBUG("Convert READ_6 to READ_10");
|
||
|
||
/*
|
||
* Need to turn read_6 into read_10
|
||
*/
|
||
new_cmd[0] = 0x28;
|
||
new_cmd[1] = (cmd[1] & 0xe0);
|
||
new_cmd[2] = 0x0;
|
||
new_cmd[3] = (cmd[1] & 0x1f);
|
||
new_cmd[4] = cmd[2];
|
||
new_cmd[5] = cmd[3];
|
||
new_cmd[6] = 0x0;
|
||
new_cmd[7] = 0x0;
|
||
new_cmd[8] = cmd[4];
|
||
new_cmd[9] = cmd[5];
|
||
|
||
memcpy(cmd, new_cmd, 10);
|
||
|
||
}
|
||
|
||
break;
|
||
|
||
case WRITE_6:
|
||
|
||
if (sbp2_command_conversion_device_type(device_type)) {
|
||
|
||
SBP2_DEBUG("Convert WRITE_6 to WRITE_10");
|
||
|
||
/*
|
||
* Need to turn write_6 into write_10
|
||
*/
|
||
new_cmd[0] = 0x2a;
|
||
new_cmd[1] = (cmd[1] & 0xe0);
|
||
new_cmd[2] = 0x0;
|
||
new_cmd[3] = (cmd[1] & 0x1f);
|
||
new_cmd[4] = cmd[2];
|
||
new_cmd[5] = cmd[3];
|
||
new_cmd[6] = 0x0;
|
||
new_cmd[7] = 0x0;
|
||
new_cmd[8] = cmd[4];
|
||
new_cmd[9] = cmd[5];
|
||
|
||
memcpy(cmd, new_cmd, 10);
|
||
|
||
}
|
||
|
||
break;
|
||
|
||
case MODE_SENSE:
|
||
|
||
if (sbp2_command_conversion_device_type(device_type)) {
|
||
|
||
SBP2_DEBUG("Convert MODE_SENSE_6 to MODE_SENSE_10");
|
||
|
||
/*
|
||
* Need to turn mode_sense_6 into mode_sense_10
|
||
*/
|
||
new_cmd[0] = 0x5a;
|
||
new_cmd[1] = cmd[1];
|
||
new_cmd[2] = cmd[2];
|
||
new_cmd[3] = 0x0;
|
||
new_cmd[4] = 0x0;
|
||
new_cmd[5] = 0x0;
|
||
new_cmd[6] = 0x0;
|
||
new_cmd[7] = 0x0;
|
||
new_cmd[8] = cmd[4];
|
||
new_cmd[9] = cmd[5];
|
||
|
||
memcpy(cmd, new_cmd, 10);
|
||
|
||
}
|
||
|
||
break;
|
||
|
||
case MODE_SELECT:
|
||
|
||
/*
|
||
* TODO. Probably need to change mode select to 10 byte version
|
||
*/
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Translates SBP-2 status into SCSI sense data for check conditions
|
||
*/
|
||
static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status, unchar *sense_data)
|
||
{
|
||
SBP2_DEBUG("sbp2_status_to_sense_data");
|
||
|
||
/*
|
||
* Ok, it's pretty ugly... ;-)
|
||
*/
|
||
sense_data[0] = 0x70;
|
||
sense_data[1] = 0x0;
|
||
sense_data[2] = sbp2_status[9];
|
||
sense_data[3] = sbp2_status[12];
|
||
sense_data[4] = sbp2_status[13];
|
||
sense_data[5] = sbp2_status[14];
|
||
sense_data[6] = sbp2_status[15];
|
||
sense_data[7] = 10;
|
||
sense_data[8] = sbp2_status[16];
|
||
sense_data[9] = sbp2_status[17];
|
||
sense_data[10] = sbp2_status[18];
|
||
sense_data[11] = sbp2_status[19];
|
||
sense_data[12] = sbp2_status[10];
|
||
sense_data[13] = sbp2_status[11];
|
||
sense_data[14] = sbp2_status[20];
|
||
sense_data[15] = sbp2_status[21];
|
||
|
||
return(sbp2_status[8] & 0x3f); /* return scsi status */
|
||
}
|
||
|
||
/*
|
||
* This function is called after a command is completed, in order to do any necessary SBP-2
|
||
* response data translations for the SCSI stack
|
||
*/
|
||
static void sbp2_check_sbp2_response(struct scsi_id_instance_data *scsi_id,
|
||
struct scsi_cmnd *SCpnt)
|
||
{
|
||
u8 *scsi_buf = SCpnt->request_buffer;
|
||
u8 device_type = SBP2_DEVICE_TYPE (scsi_id->sbp2_device_type_and_lun);
|
||
|
||
SBP2_DEBUG("sbp2_check_sbp2_response");
|
||
|
||
switch (SCpnt->cmnd[0]) {
|
||
|
||
case INQUIRY:
|
||
|
||
/*
|
||
* If scsi_id->sbp2_device_type_and_lun is uninitialized, then fill
|
||
* this information in from the inquiry response data. Lun is set to zero.
|
||
*/
|
||
if (scsi_id->sbp2_device_type_and_lun == SBP2_DEVICE_TYPE_LUN_UNINITIALIZED) {
|
||
SBP2_DEBUG("Creating sbp2_device_type_and_lun from scsi inquiry data");
|
||
scsi_id->sbp2_device_type_and_lun = (scsi_buf[0] & 0x1f) << 16;
|
||
}
|
||
|
||
/*
|
||
* Make sure data length is ok. Minimum length is 36 bytes
|
||
*/
|
||
if (scsi_buf[4] == 0) {
|
||
scsi_buf[4] = 36 - 5;
|
||
}
|
||
|
||
/*
|
||
* Check for Simple Direct Access Device and change it to TYPE_DISK
|
||
*/
|
||
if ((scsi_buf[0] & 0x1f) == TYPE_SDAD) {
|
||
SBP2_DEBUG("Changing TYPE_SDAD to TYPE_DISK");
|
||
scsi_buf[0] &= 0xe0;
|
||
}
|
||
|
||
/*
|
||
* Fix ansi revision and response data format
|
||
*/
|
||
scsi_buf[2] |= 2;
|
||
scsi_buf[3] = (scsi_buf[3] & 0xf0) | 2;
|
||
|
||
break;
|
||
|
||
case MODE_SENSE:
|
||
|
||
if (sbp2_command_conversion_device_type(device_type)) {
|
||
|
||
SBP2_DEBUG("Modify mode sense response (10 byte version)");
|
||
|
||
scsi_buf[0] = scsi_buf[1]; /* Mode data length */
|
||
scsi_buf[1] = scsi_buf[2]; /* Medium type */
|
||
scsi_buf[2] = scsi_buf[3]; /* Device specific parameter */
|
||
scsi_buf[3] = scsi_buf[7]; /* Block descriptor length */
|
||
memcpy(scsi_buf + 4, scsi_buf + 8, scsi_buf[0]);
|
||
}
|
||
|
||
break;
|
||
|
||
case MODE_SELECT:
|
||
|
||
/*
|
||
* TODO. Probably need to change mode select to 10 byte version
|
||
*/
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* This function deals with status writes from the SBP-2 device
|
||
*/
|
||
static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid, int destid,
|
||
quadlet_t *data, u64 addr, size_t length, u16 fl)
|
||
{
|
||
struct sbp2scsi_host_info *hi;
|
||
struct scsi_id_instance_data *scsi_id = NULL, *scsi_id_tmp;
|
||
u32 id;
|
||
struct scsi_cmnd *SCpnt = NULL;
|
||
u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
|
||
struct sbp2_command_info *command;
|
||
|
||
SBP2_DEBUG("sbp2_handle_status_write");
|
||
|
||
sbp2util_packet_dump(data, length, "sbp2 status write by device", (u32)addr);
|
||
|
||
if (!host) {
|
||
SBP2_ERR("host is NULL - this is bad!");
|
||
return(RCODE_ADDRESS_ERROR);
|
||
}
|
||
|
||
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
|
||
|
||
if (!hi) {
|
||
SBP2_ERR("host info is NULL - this is bad!");
|
||
return(RCODE_ADDRESS_ERROR);
|
||
}
|
||
|
||
/*
|
||
* Find our scsi_id structure by looking at the status fifo address written to by
|
||
* the sbp2 device.
|
||
*/
|
||
id = SBP2_STATUS_FIFO_OFFSET_TO_ENTRY((u32)(addr - SBP2_STATUS_FIFO_ADDRESS));
|
||
list_for_each_entry(scsi_id_tmp, &hi->scsi_ids, scsi_list) {
|
||
if (scsi_id_tmp->ne->nodeid == nodeid && scsi_id_tmp->ud->id == id) {
|
||
scsi_id = scsi_id_tmp;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!scsi_id) {
|
||
SBP2_ERR("scsi_id is NULL - device is gone?");
|
||
return(RCODE_ADDRESS_ERROR);
|
||
}
|
||
|
||
/*
|
||
* Put response into scsi_id status fifo...
|
||
*/
|
||
memcpy(&scsi_id->status_block, data, length);
|
||
|
||
/*
|
||
* Byte swap first two quadlets (8 bytes) of status for processing
|
||
*/
|
||
sbp2util_be32_to_cpu_buffer(&scsi_id->status_block, 8);
|
||
|
||
/*
|
||
* Handle command ORB status here if necessary. First, need to match status with command.
|
||
*/
|
||
command = sbp2util_find_command_for_orb(scsi_id, scsi_id->status_block.ORB_offset_lo);
|
||
if (command) {
|
||
|
||
SBP2_DEBUG("Found status for command ORB");
|
||
pci_dma_sync_single_for_cpu(hi->host->pdev, command->command_orb_dma,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
pci_dma_sync_single_for_cpu(hi->host->pdev, command->sge_dma,
|
||
sizeof(command->scatter_gather_element),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
|
||
SBP2_ORB_DEBUG("matched command orb %p", &command->command_orb);
|
||
outstanding_orb_decr;
|
||
|
||
/*
|
||
* Matched status with command, now grab scsi command pointers and check status
|
||
*/
|
||
SCpnt = command->Current_SCpnt;
|
||
sbp2util_mark_command_completed(scsi_id, command);
|
||
|
||
if (SCpnt) {
|
||
|
||
/*
|
||
* See if the target stored any scsi status information
|
||
*/
|
||
if (STATUS_GET_LENGTH(scsi_id->status_block.ORB_offset_hi_misc) > 1) {
|
||
/*
|
||
* Translate SBP-2 status to SCSI sense data
|
||
*/
|
||
SBP2_DEBUG("CHECK CONDITION");
|
||
scsi_status = sbp2_status_to_sense_data((unchar *)&scsi_id->status_block, SCpnt->sense_buffer);
|
||
}
|
||
|
||
/*
|
||
* Check to see if the dead bit is set. If so, we'll have to initiate
|
||
* a fetch agent reset.
|
||
*/
|
||
if (STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc)) {
|
||
|
||
/*
|
||
* Initiate a fetch agent reset.
|
||
*/
|
||
SBP2_DEBUG("Dead bit set - initiating fetch agent reset");
|
||
sbp2_agent_reset(scsi_id, 0);
|
||
}
|
||
|
||
SBP2_ORB_DEBUG("completing command orb %p", &command->command_orb);
|
||
}
|
||
|
||
/*
|
||
* Check here to see if there are no commands in-use. If there are none, we can
|
||
* null out last orb so that next time around we write directly to the orb pointer...
|
||
* Quick start saves one 1394 bus transaction.
|
||
*/
|
||
if (list_empty(&scsi_id->sbp2_command_orb_inuse)) {
|
||
scsi_id->last_orb = NULL;
|
||
}
|
||
|
||
} else {
|
||
|
||
/*
|
||
* It's probably a login/logout/reconnect status.
|
||
*/
|
||
if ((scsi_id->login_orb_dma == scsi_id->status_block.ORB_offset_lo) ||
|
||
(scsi_id->query_logins_orb_dma == scsi_id->status_block.ORB_offset_lo) ||
|
||
(scsi_id->reconnect_orb_dma == scsi_id->status_block.ORB_offset_lo) ||
|
||
(scsi_id->logout_orb_dma == scsi_id->status_block.ORB_offset_lo)) {
|
||
atomic_set(&scsi_id->sbp2_login_complete, 1);
|
||
}
|
||
}
|
||
|
||
if (SCpnt) {
|
||
|
||
/* Complete the SCSI command. */
|
||
SBP2_DEBUG("Completing SCSI command");
|
||
sbp2scsi_complete_command(scsi_id, scsi_status, SCpnt,
|
||
command->Current_done);
|
||
SBP2_ORB_DEBUG("command orb completed");
|
||
}
|
||
|
||
return(RCODE_COMPLETE);
|
||
}
|
||
|
||
|
||
/**************************************
|
||
* SCSI interface related section
|
||
**************************************/
|
||
|
||
/*
|
||
* This routine is the main request entry routine for doing I/O. It is
|
||
* called from the scsi stack directly.
|
||
*/
|
||
static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
|
||
void (*done)(struct scsi_cmnd *))
|
||
{
|
||
struct scsi_id_instance_data *scsi_id =
|
||
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
|
||
struct sbp2scsi_host_info *hi;
|
||
|
||
SBP2_DEBUG("sbp2scsi_queuecommand");
|
||
|
||
/*
|
||
* If scsi_id is null, it means there is no device in this slot,
|
||
* so we should return selection timeout.
|
||
*/
|
||
if (!scsi_id) {
|
||
SCpnt->result = DID_NO_CONNECT << 16;
|
||
done (SCpnt);
|
||
return 0;
|
||
}
|
||
|
||
hi = scsi_id->hi;
|
||
|
||
if (!hi) {
|
||
SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!");
|
||
SCpnt->result = DID_NO_CONNECT << 16;
|
||
done (SCpnt);
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* Until we handle multiple luns, just return selection time-out
|
||
* to any IO directed at non-zero LUNs
|
||
*/
|
||
if (SCpnt->device->lun) {
|
||
SCpnt->result = DID_NO_CONNECT << 16;
|
||
done (SCpnt);
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* Check for request sense command, and handle it here
|
||
* (autorequest sense)
|
||
*/
|
||
if (SCpnt->cmnd[0] == REQUEST_SENSE) {
|
||
SBP2_DEBUG("REQUEST_SENSE");
|
||
memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen);
|
||
memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer));
|
||
sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done);
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* Check to see if we are in the middle of a bus reset.
|
||
*/
|
||
if (!hpsb_node_entry_valid(scsi_id->ne)) {
|
||
SBP2_ERR("Bus reset in progress - rejecting command");
|
||
SCpnt->result = DID_BUS_BUSY << 16;
|
||
done (SCpnt);
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* Try and send our SCSI command
|
||
*/
|
||
if (sbp2_send_command(scsi_id, SCpnt, done)) {
|
||
SBP2_ERR("Error sending SCSI command");
|
||
sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
|
||
SCpnt, done);
|
||
}
|
||
|
||
return(0);
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to complete all outstanding SBP-2
|
||
* commands (in case of resets, etc.).
|
||
*/
|
||
static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id,
|
||
u32 status)
|
||
{
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
struct list_head *lh;
|
||
struct sbp2_command_info *command;
|
||
|
||
SBP2_DEBUG("sbp2scsi_complete_all_commands");
|
||
|
||
while (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
|
||
SBP2_DEBUG("Found pending command to complete");
|
||
lh = scsi_id->sbp2_command_orb_inuse.next;
|
||
command = list_entry(lh, struct sbp2_command_info, list);
|
||
pci_dma_sync_single_for_cpu(hi->host->pdev, command->command_orb_dma,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
pci_dma_sync_single_for_cpu(hi->host->pdev, command->sge_dma,
|
||
sizeof(command->scatter_gather_element),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
sbp2util_mark_command_completed(scsi_id, command);
|
||
if (command->Current_SCpnt) {
|
||
command->Current_SCpnt->result = status << 16;
|
||
command->Current_done(command->Current_SCpnt);
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* This function is called in order to complete a regular SBP-2 command.
|
||
*
|
||
* This can be called in interrupt context.
|
||
*/
|
||
static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
|
||
u32 scsi_status, struct scsi_cmnd *SCpnt,
|
||
void (*done)(struct scsi_cmnd *))
|
||
{
|
||
unsigned long flags;
|
||
|
||
SBP2_DEBUG("sbp2scsi_complete_command");
|
||
|
||
/*
|
||
* Sanity
|
||
*/
|
||
if (!SCpnt) {
|
||
SBP2_ERR("SCpnt is NULL");
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* If a bus reset is in progress and there was an error, don't
|
||
* complete the command, just let it get retried at the end of the
|
||
* bus reset.
|
||
*/
|
||
if (!hpsb_node_entry_valid(scsi_id->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
|
||
SBP2_ERR("Bus reset in progress - retry command later");
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Switch on scsi status
|
||
*/
|
||
switch (scsi_status) {
|
||
case SBP2_SCSI_STATUS_GOOD:
|
||
SCpnt->result = DID_OK;
|
||
break;
|
||
|
||
case SBP2_SCSI_STATUS_BUSY:
|
||
SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
|
||
SCpnt->result = DID_BUS_BUSY << 16;
|
||
break;
|
||
|
||
case SBP2_SCSI_STATUS_CHECK_CONDITION:
|
||
SBP2_DEBUG("SBP2_SCSI_STATUS_CHECK_CONDITION");
|
||
SCpnt->result = CHECK_CONDITION << 1;
|
||
|
||
/*
|
||
* Debug stuff
|
||
*/
|
||
#if CONFIG_IEEE1394_SBP2_DEBUG >= 1
|
||
scsi_print_command(SCpnt);
|
||
scsi_print_sense("bh", SCpnt);
|
||
#endif
|
||
|
||
break;
|
||
|
||
case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
|
||
SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
|
||
SCpnt->result = DID_NO_CONNECT << 16;
|
||
scsi_print_command(SCpnt);
|
||
break;
|
||
|
||
case SBP2_SCSI_STATUS_CONDITION_MET:
|
||
case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
|
||
case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
|
||
SBP2_ERR("Bad SCSI status = %x", scsi_status);
|
||
SCpnt->result = DID_ERROR << 16;
|
||
scsi_print_command(SCpnt);
|
||
break;
|
||
|
||
default:
|
||
SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
|
||
SCpnt->result = DID_ERROR << 16;
|
||
}
|
||
|
||
/*
|
||
* Take care of any sbp2 response data mucking here (RBC stuff, etc.)
|
||
*/
|
||
if (SCpnt->result == DID_OK) {
|
||
sbp2_check_sbp2_response(scsi_id, SCpnt);
|
||
}
|
||
|
||
/*
|
||
* If a bus reset is in progress and there was an error, complete
|
||
* the command as busy so that it will get retried.
|
||
*/
|
||
if (!hpsb_node_entry_valid(scsi_id->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
|
||
SBP2_ERR("Completing command with busy (bus reset)");
|
||
SCpnt->result = DID_BUS_BUSY << 16;
|
||
}
|
||
|
||
/*
|
||
* If a unit attention occurs, return busy status so it gets
|
||
* retried... it could have happened because of a 1394 bus reset
|
||
* or hot-plug...
|
||
*/
|
||
#if 0
|
||
if ((scsi_status == SBP2_SCSI_STATUS_CHECK_CONDITION) &&
|
||
(SCpnt->sense_buffer[2] == UNIT_ATTENTION)) {
|
||
SBP2_DEBUG("UNIT ATTENTION - return busy");
|
||
SCpnt->result = DID_BUS_BUSY << 16;
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Tell scsi stack that we're done with this command
|
||
*/
|
||
spin_lock_irqsave(scsi_id->scsi_host->host_lock,flags);
|
||
done (SCpnt);
|
||
spin_unlock_irqrestore(scsi_id->scsi_host->host_lock,flags);
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
static int sbp2scsi_slave_configure (struct scsi_device *sdev)
|
||
{
|
||
blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
* Called by scsi stack when something has really gone wrong. Usually
|
||
* called when a command has timed-out for some reason.
|
||
*/
|
||
static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
|
||
{
|
||
struct scsi_id_instance_data *scsi_id =
|
||
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
|
||
struct sbp2scsi_host_info *hi = scsi_id->hi;
|
||
struct sbp2_command_info *command;
|
||
|
||
SBP2_ERR("aborting sbp2 command");
|
||
scsi_print_command(SCpnt);
|
||
|
||
if (scsi_id) {
|
||
|
||
/*
|
||
* Right now, just return any matching command structures
|
||
* to the free pool.
|
||
*/
|
||
command = sbp2util_find_command_for_SCpnt(scsi_id, SCpnt);
|
||
if (command) {
|
||
SBP2_DEBUG("Found command to abort");
|
||
pci_dma_sync_single_for_cpu(hi->host->pdev,
|
||
command->command_orb_dma,
|
||
sizeof(struct sbp2_command_orb),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
pci_dma_sync_single_for_cpu(hi->host->pdev,
|
||
command->sge_dma,
|
||
sizeof(command->scatter_gather_element),
|
||
PCI_DMA_BIDIRECTIONAL);
|
||
sbp2util_mark_command_completed(scsi_id, command);
|
||
if (command->Current_SCpnt) {
|
||
command->Current_SCpnt->result = DID_ABORT << 16;
|
||
command->Current_done(command->Current_SCpnt);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Initiate a fetch agent reset.
|
||
*/
|
||
sbp2_agent_reset(scsi_id, 0);
|
||
sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY);
|
||
}
|
||
|
||
return(SUCCESS);
|
||
}
|
||
|
||
/*
|
||
* Called by scsi stack when something has really gone wrong.
|
||
*/
|
||
static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
|
||
{
|
||
struct scsi_id_instance_data *scsi_id =
|
||
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
|
||
|
||
SBP2_ERR("reset requested");
|
||
|
||
if (scsi_id) {
|
||
SBP2_ERR("Generating sbp2 fetch agent reset");
|
||
sbp2_agent_reset(scsi_id, 0);
|
||
}
|
||
|
||
return(SUCCESS);
|
||
}
|
||
|
||
static const char *sbp2scsi_info (struct Scsi_Host *host)
|
||
{
|
||
return "SCSI emulation for IEEE-1394 SBP-2 Devices";
|
||
}
|
||
|
||
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, char *buf)
|
||
{
|
||
struct scsi_device *sdev;
|
||
struct scsi_id_instance_data *scsi_id;
|
||
int lun;
|
||
|
||
if (!(sdev = to_scsi_device(dev)))
|
||
return 0;
|
||
|
||
if (!(scsi_id = (struct scsi_id_instance_data *)sdev->host->hostdata[0]))
|
||
return 0;
|
||
|
||
if (scsi_id->sbp2_device_type_and_lun == SBP2_DEVICE_TYPE_LUN_UNINITIALIZED)
|
||
lun = 0;
|
||
else
|
||
lun = ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun);
|
||
|
||
return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)scsi_id->ne->guid,
|
||
scsi_id->ud->id, lun);
|
||
}
|
||
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
|
||
|
||
static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
|
||
&dev_attr_ieee1394_id,
|
||
NULL
|
||
};
|
||
|
||
MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
|
||
MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
|
||
MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
|
||
MODULE_LICENSE("GPL");
|
||
|
||
/* SCSI host template */
|
||
static struct scsi_host_template scsi_driver_template = {
|
||
.module = THIS_MODULE,
|
||
.name = "SBP-2 IEEE-1394",
|
||
.proc_name = SBP2_DEVICE_NAME,
|
||
.info = sbp2scsi_info,
|
||
.queuecommand = sbp2scsi_queuecommand,
|
||
.eh_abort_handler = sbp2scsi_abort,
|
||
.eh_device_reset_handler = sbp2scsi_reset,
|
||
.eh_bus_reset_handler = sbp2scsi_reset,
|
||
.eh_host_reset_handler = sbp2scsi_reset,
|
||
.slave_configure = sbp2scsi_slave_configure,
|
||
.this_id = -1,
|
||
.sg_tablesize = SG_ALL,
|
||
.use_clustering = ENABLE_CLUSTERING,
|
||
.cmd_per_lun = SBP2_MAX_CMDS,
|
||
.can_queue = SBP2_MAX_CMDS,
|
||
.emulated = 1,
|
||
.sdev_attrs = sbp2_sysfs_sdev_attrs,
|
||
};
|
||
|
||
static int sbp2_module_init(void)
|
||
{
|
||
int ret;
|
||
|
||
SBP2_DEBUG("sbp2_module_init");
|
||
|
||
printk(KERN_INFO "sbp2: %s\n", version);
|
||
|
||
/* Module load debug option to force one command at a time (serializing I/O) */
|
||
if (serialize_io) {
|
||
SBP2_ERR("Driver forced to serialize I/O (serialize_io = 1)");
|
||
scsi_driver_template.can_queue = 1;
|
||
scsi_driver_template.cmd_per_lun = 1;
|
||
}
|
||
|
||
/* Set max sectors (module load option). Default is 255 sectors. */
|
||
scsi_driver_template.max_sectors = max_sectors;
|
||
|
||
|
||
/* Register our high level driver with 1394 stack */
|
||
hpsb_register_highlevel(&sbp2_highlevel);
|
||
|
||
ret = hpsb_register_protocol(&sbp2_driver);
|
||
if (ret) {
|
||
SBP2_ERR("Failed to register protocol");
|
||
hpsb_unregister_highlevel(&sbp2_highlevel);
|
||
return ret;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void __exit sbp2_module_exit(void)
|
||
{
|
||
SBP2_DEBUG("sbp2_module_exit");
|
||
|
||
hpsb_unregister_protocol(&sbp2_driver);
|
||
|
||
hpsb_unregister_highlevel(&sbp2_highlevel);
|
||
}
|
||
|
||
module_init(sbp2_module_init);
|
||
module_exit(sbp2_module_exit);
|