mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-07 13:53:24 +00:00
a8b242d77b
Compilers optimize conditional operators at will, but often bpf programmers want to force compilers to keep the same operator in asm as it's written in C. Introduce bpf_cmp_likely/unlikely(var1, conditional_op, var2) macros that can be used as: - if (seen >= 1000) + if (bpf_cmp_unlikely(seen, >=, 1000)) The macros take advantage of BPF assembly that is C like. The macros check the sign of variable 'seen' and emits either signed or unsigned compare. For example: int a; bpf_cmp_unlikely(a, >, 0) will be translated to 'if rX s> 0 goto' in BPF assembly. unsigned int a; bpf_cmp_unlikely(a, >, 0) will be translated to 'if rX > 0 goto' in BPF assembly. C type conversions coupled with comparison operator are tricky. int i = -1; unsigned int j = 1; if (i < j) // this is false. long i = -1; unsigned int j = 1; if (i < j) // this is true. Make sure BPF program is compiled with -Wsign-compare then the macros will catch the mistake. The macros check LHS (left hand side) only to figure out the sign of compare. 'if 0 < rX goto' is not allowed in the assembly, so the users have to use a variable on LHS anyway. The patch updates few tests to demonstrate the use of the macros. The macro allows to use BPF_JSET in C code, since LLVM doesn't generate it at present. For example: if (i & j) compiles into r0 &= r1; if r0 == 0 goto while if (bpf_cmp_unlikely(i, &, j)) compiles into if r0 & r1 goto Note that the macros has to be careful with RHS assembly predicate. Since: u64 __rhs = 1ull << 42; asm goto("if r0 < %[rhs] goto +1" :: [rhs] "ri" (__rhs)); LLVM will silently truncate 64-bit constant into s32 imm. Note that [lhs] "r"((short)LHS) the type cast is a workaround for LLVM issue. When LHS is exactly 32-bit LLVM emits redundant <<=32, >>=32 to zero upper 32-bits. When LHS is 64 or 16 or 8-bit variable there are no shifts. When LHS is 32-bit the (u64) cast doesn't help. Hence use (short) cast. It does _not_ truncate the variable before it's assigned to a register. Traditional likely()/unlikely() macros that use __builtin_expect(!!(x), 1 or 0) have no effect on these macros, hence macros implement the logic manually. bpf_cmp_unlikely() macro preserves compare operator as-is while bpf_cmp_likely() macro flips the compare. Consider two cases: A. for() { if (foo >= 10) { bar += foo; } other code; } B. for() { if (foo >= 10) break; other code; } It's ok to use either bpf_cmp_likely or bpf_cmp_unlikely macros in both cases, but consider that 'break' is effectively 'goto out_of_the_loop'. Hence it's better to use bpf_cmp_unlikely in the B case. While 'bar += foo' is better to keep as 'fallthrough' == likely code path in the A case. When it's written as: A. for() { if (bpf_cmp_likely(foo, >=, 10)) { bar += foo; } other code; } B. for() { if (bpf_cmp_unlikely(foo, >=, 10)) break; other code; } The assembly will look like: A. for() { if r1 < 10 goto L1; bar += foo; L1: other code; } B. for() { if r1 >= 10 goto L2; other code; } L2: The bpf_cmp_likely vs bpf_cmp_unlikely changes basic block layout, hence it will greatly influence the verification process. The number of processed instructions will be different, since the verifier walks the fallthrough first. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/bpf/20231226191148.48536-3-alexei.starovoitov@gmail.com |
||
---|---|---|
.. | ||
accounting | ||
arch | ||
bootconfig | ||
bpf | ||
build | ||
certs | ||
cgroup | ||
counter | ||
crypto/ccp | ||
debugging | ||
edid | ||
firewire | ||
firmware | ||
gpio | ||
hv | ||
iio | ||
include | ||
kvm/kvm_stat | ||
laptop | ||
leds | ||
lib | ||
memory-model | ||
mm | ||
net/ynl | ||
objtool | ||
pci | ||
pcmcia | ||
perf | ||
power | ||
rcu | ||
scripts | ||
spi | ||
testing | ||
thermal | ||
time | ||
tracing | ||
usb | ||
verification | ||
virtio | ||
wmi | ||
workqueue | ||
Makefile |