mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-07 13:53:24 +00:00
ecae0bd517
included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
1869 lines
43 KiB
C
1869 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 Red Hat, Inc.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-cache-metadata.h"
|
|
|
|
#include "persistent-data/dm-array.h"
|
|
#include "persistent-data/dm-bitset.h"
|
|
#include "persistent-data/dm-space-map.h"
|
|
#include "persistent-data/dm-space-map-disk.h"
|
|
#include "persistent-data/dm-transaction-manager.h"
|
|
|
|
#include <linux/device-mapper.h>
|
|
#include <linux/refcount.h>
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#define DM_MSG_PREFIX "cache metadata"
|
|
|
|
#define CACHE_SUPERBLOCK_MAGIC 06142003
|
|
#define CACHE_SUPERBLOCK_LOCATION 0
|
|
|
|
/*
|
|
* defines a range of metadata versions that this module can handle.
|
|
*/
|
|
#define MIN_CACHE_VERSION 1
|
|
#define MAX_CACHE_VERSION 2
|
|
|
|
/*
|
|
* 3 for btree insert +
|
|
* 2 for btree lookup used within space map
|
|
*/
|
|
#define CACHE_MAX_CONCURRENT_LOCKS 5
|
|
#define SPACE_MAP_ROOT_SIZE 128
|
|
|
|
enum superblock_flag_bits {
|
|
/* for spotting crashes that would invalidate the dirty bitset */
|
|
CLEAN_SHUTDOWN,
|
|
/* metadata must be checked using the tools */
|
|
NEEDS_CHECK,
|
|
};
|
|
|
|
/*
|
|
* Each mapping from cache block -> origin block carries a set of flags.
|
|
*/
|
|
enum mapping_bits {
|
|
/*
|
|
* A valid mapping. Because we're using an array we clear this
|
|
* flag for an non existant mapping.
|
|
*/
|
|
M_VALID = 1,
|
|
|
|
/*
|
|
* The data on the cache is different from that on the origin.
|
|
* This flag is only used by metadata format 1.
|
|
*/
|
|
M_DIRTY = 2
|
|
};
|
|
|
|
struct cache_disk_superblock {
|
|
__le32 csum;
|
|
__le32 flags;
|
|
__le64 blocknr;
|
|
|
|
__u8 uuid[16];
|
|
__le64 magic;
|
|
__le32 version;
|
|
|
|
__u8 policy_name[CACHE_POLICY_NAME_SIZE];
|
|
__le32 policy_hint_size;
|
|
|
|
__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
|
|
__le64 mapping_root;
|
|
__le64 hint_root;
|
|
|
|
__le64 discard_root;
|
|
__le64 discard_block_size;
|
|
__le64 discard_nr_blocks;
|
|
|
|
__le32 data_block_size;
|
|
__le32 metadata_block_size;
|
|
__le32 cache_blocks;
|
|
|
|
__le32 compat_flags;
|
|
__le32 compat_ro_flags;
|
|
__le32 incompat_flags;
|
|
|
|
__le32 read_hits;
|
|
__le32 read_misses;
|
|
__le32 write_hits;
|
|
__le32 write_misses;
|
|
|
|
__le32 policy_version[CACHE_POLICY_VERSION_SIZE];
|
|
|
|
/*
|
|
* Metadata format 2 fields.
|
|
*/
|
|
__le64 dirty_root;
|
|
} __packed;
|
|
|
|
struct dm_cache_metadata {
|
|
refcount_t ref_count;
|
|
struct list_head list;
|
|
|
|
unsigned int version;
|
|
struct block_device *bdev;
|
|
struct dm_block_manager *bm;
|
|
struct dm_space_map *metadata_sm;
|
|
struct dm_transaction_manager *tm;
|
|
|
|
struct dm_array_info info;
|
|
struct dm_array_info hint_info;
|
|
struct dm_disk_bitset discard_info;
|
|
|
|
struct rw_semaphore root_lock;
|
|
unsigned long flags;
|
|
dm_block_t root;
|
|
dm_block_t hint_root;
|
|
dm_block_t discard_root;
|
|
|
|
sector_t discard_block_size;
|
|
dm_dblock_t discard_nr_blocks;
|
|
|
|
sector_t data_block_size;
|
|
dm_cblock_t cache_blocks;
|
|
bool changed:1;
|
|
bool clean_when_opened:1;
|
|
|
|
char policy_name[CACHE_POLICY_NAME_SIZE];
|
|
unsigned int policy_version[CACHE_POLICY_VERSION_SIZE];
|
|
size_t policy_hint_size;
|
|
struct dm_cache_statistics stats;
|
|
|
|
/*
|
|
* Reading the space map root can fail, so we read it into this
|
|
* buffer before the superblock is locked and updated.
|
|
*/
|
|
__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
|
|
|
|
/*
|
|
* Set if a transaction has to be aborted but the attempt to roll
|
|
* back to the previous (good) transaction failed. The only
|
|
* metadata operation permissible in this state is the closing of
|
|
* the device.
|
|
*/
|
|
bool fail_io:1;
|
|
|
|
/*
|
|
* Metadata format 2 fields.
|
|
*/
|
|
dm_block_t dirty_root;
|
|
struct dm_disk_bitset dirty_info;
|
|
|
|
/*
|
|
* These structures are used when loading metadata. They're too
|
|
* big to put on the stack.
|
|
*/
|
|
struct dm_array_cursor mapping_cursor;
|
|
struct dm_array_cursor hint_cursor;
|
|
struct dm_bitset_cursor dirty_cursor;
|
|
};
|
|
|
|
/*
|
|
*-----------------------------------------------------------------
|
|
* superblock validator
|
|
*-----------------------------------------------------------------
|
|
*/
|
|
#define SUPERBLOCK_CSUM_XOR 9031977
|
|
|
|
static void sb_prepare_for_write(struct dm_block_validator *v,
|
|
struct dm_block *b,
|
|
size_t sb_block_size)
|
|
{
|
|
struct cache_disk_superblock *disk_super = dm_block_data(b);
|
|
|
|
disk_super->blocknr = cpu_to_le64(dm_block_location(b));
|
|
disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
|
|
sb_block_size - sizeof(__le32),
|
|
SUPERBLOCK_CSUM_XOR));
|
|
}
|
|
|
|
static int check_metadata_version(struct cache_disk_superblock *disk_super)
|
|
{
|
|
uint32_t metadata_version = le32_to_cpu(disk_super->version);
|
|
|
|
if (metadata_version < MIN_CACHE_VERSION || metadata_version > MAX_CACHE_VERSION) {
|
|
DMERR("Cache metadata version %u found, but only versions between %u and %u supported.",
|
|
metadata_version, MIN_CACHE_VERSION, MAX_CACHE_VERSION);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sb_check(struct dm_block_validator *v,
|
|
struct dm_block *b,
|
|
size_t sb_block_size)
|
|
{
|
|
struct cache_disk_superblock *disk_super = dm_block_data(b);
|
|
__le32 csum_le;
|
|
|
|
if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
|
|
DMERR("%s failed: blocknr %llu: wanted %llu",
|
|
__func__, le64_to_cpu(disk_super->blocknr),
|
|
(unsigned long long)dm_block_location(b));
|
|
return -ENOTBLK;
|
|
}
|
|
|
|
if (le64_to_cpu(disk_super->magic) != CACHE_SUPERBLOCK_MAGIC) {
|
|
DMERR("%s failed: magic %llu: wanted %llu",
|
|
__func__, le64_to_cpu(disk_super->magic),
|
|
(unsigned long long)CACHE_SUPERBLOCK_MAGIC);
|
|
return -EILSEQ;
|
|
}
|
|
|
|
csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
|
|
sb_block_size - sizeof(__le32),
|
|
SUPERBLOCK_CSUM_XOR));
|
|
if (csum_le != disk_super->csum) {
|
|
DMERR("%s failed: csum %u: wanted %u",
|
|
__func__, le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
|
|
return -EILSEQ;
|
|
}
|
|
|
|
return check_metadata_version(disk_super);
|
|
}
|
|
|
|
static struct dm_block_validator sb_validator = {
|
|
.name = "superblock",
|
|
.prepare_for_write = sb_prepare_for_write,
|
|
.check = sb_check
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static int superblock_read_lock(struct dm_cache_metadata *cmd,
|
|
struct dm_block **sblock)
|
|
{
|
|
return dm_bm_read_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
|
|
&sb_validator, sblock);
|
|
}
|
|
|
|
static int superblock_lock_zero(struct dm_cache_metadata *cmd,
|
|
struct dm_block **sblock)
|
|
{
|
|
return dm_bm_write_lock_zero(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
|
|
&sb_validator, sblock);
|
|
}
|
|
|
|
static int superblock_lock(struct dm_cache_metadata *cmd,
|
|
struct dm_block **sblock)
|
|
{
|
|
return dm_bm_write_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
|
|
&sb_validator, sblock);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static int __superblock_all_zeroes(struct dm_block_manager *bm, bool *result)
|
|
{
|
|
int r;
|
|
unsigned int i;
|
|
struct dm_block *b;
|
|
__le64 *data_le, zero = cpu_to_le64(0);
|
|
unsigned int sb_block_size = dm_bm_block_size(bm) / sizeof(__le64);
|
|
|
|
/*
|
|
* We can't use a validator here - it may be all zeroes.
|
|
*/
|
|
r = dm_bm_read_lock(bm, CACHE_SUPERBLOCK_LOCATION, NULL, &b);
|
|
if (r)
|
|
return r;
|
|
|
|
data_le = dm_block_data(b);
|
|
*result = true;
|
|
for (i = 0; i < sb_block_size; i++) {
|
|
if (data_le[i] != zero) {
|
|
*result = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
dm_bm_unlock(b);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __setup_mapping_info(struct dm_cache_metadata *cmd)
|
|
{
|
|
struct dm_btree_value_type vt;
|
|
|
|
vt.context = NULL;
|
|
vt.size = sizeof(__le64);
|
|
vt.inc = NULL;
|
|
vt.dec = NULL;
|
|
vt.equal = NULL;
|
|
dm_array_info_init(&cmd->info, cmd->tm, &vt);
|
|
|
|
if (cmd->policy_hint_size) {
|
|
vt.size = sizeof(__le32);
|
|
dm_array_info_init(&cmd->hint_info, cmd->tm, &vt);
|
|
}
|
|
}
|
|
|
|
static int __save_sm_root(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
size_t metadata_len;
|
|
|
|
r = dm_sm_root_size(cmd->metadata_sm, &metadata_len);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
return dm_sm_copy_root(cmd->metadata_sm, &cmd->metadata_space_map_root,
|
|
metadata_len);
|
|
}
|
|
|
|
static void __copy_sm_root(struct dm_cache_metadata *cmd,
|
|
struct cache_disk_superblock *disk_super)
|
|
{
|
|
memcpy(&disk_super->metadata_space_map_root,
|
|
&cmd->metadata_space_map_root,
|
|
sizeof(cmd->metadata_space_map_root));
|
|
}
|
|
|
|
static bool separate_dirty_bits(struct dm_cache_metadata *cmd)
|
|
{
|
|
return cmd->version >= 2;
|
|
}
|
|
|
|
static int __write_initial_superblock(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
struct dm_block *sblock;
|
|
struct cache_disk_superblock *disk_super;
|
|
sector_t bdev_size = bdev_nr_sectors(cmd->bdev);
|
|
|
|
/* FIXME: see if we can lose the max sectors limit */
|
|
if (bdev_size > DM_CACHE_METADATA_MAX_SECTORS)
|
|
bdev_size = DM_CACHE_METADATA_MAX_SECTORS;
|
|
|
|
r = dm_tm_pre_commit(cmd->tm);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
/*
|
|
* dm_sm_copy_root() can fail. So we need to do it before we start
|
|
* updating the superblock.
|
|
*/
|
|
r = __save_sm_root(cmd);
|
|
if (r)
|
|
return r;
|
|
|
|
r = superblock_lock_zero(cmd, &sblock);
|
|
if (r)
|
|
return r;
|
|
|
|
disk_super = dm_block_data(sblock);
|
|
disk_super->flags = 0;
|
|
memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
|
|
disk_super->magic = cpu_to_le64(CACHE_SUPERBLOCK_MAGIC);
|
|
disk_super->version = cpu_to_le32(cmd->version);
|
|
memset(disk_super->policy_name, 0, sizeof(disk_super->policy_name));
|
|
memset(disk_super->policy_version, 0, sizeof(disk_super->policy_version));
|
|
disk_super->policy_hint_size = cpu_to_le32(0);
|
|
|
|
__copy_sm_root(cmd, disk_super);
|
|
|
|
disk_super->mapping_root = cpu_to_le64(cmd->root);
|
|
disk_super->hint_root = cpu_to_le64(cmd->hint_root);
|
|
disk_super->discard_root = cpu_to_le64(cmd->discard_root);
|
|
disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size);
|
|
disk_super->discard_nr_blocks = cpu_to_le64(from_dblock(cmd->discard_nr_blocks));
|
|
disk_super->metadata_block_size = cpu_to_le32(DM_CACHE_METADATA_BLOCK_SIZE);
|
|
disk_super->data_block_size = cpu_to_le32(cmd->data_block_size);
|
|
disk_super->cache_blocks = cpu_to_le32(0);
|
|
|
|
disk_super->read_hits = cpu_to_le32(0);
|
|
disk_super->read_misses = cpu_to_le32(0);
|
|
disk_super->write_hits = cpu_to_le32(0);
|
|
disk_super->write_misses = cpu_to_le32(0);
|
|
|
|
if (separate_dirty_bits(cmd))
|
|
disk_super->dirty_root = cpu_to_le64(cmd->dirty_root);
|
|
|
|
return dm_tm_commit(cmd->tm, sblock);
|
|
}
|
|
|
|
static int __format_metadata(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
|
|
r = dm_tm_create_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
|
|
&cmd->tm, &cmd->metadata_sm);
|
|
if (r < 0) {
|
|
DMERR("tm_create_with_sm failed");
|
|
return r;
|
|
}
|
|
|
|
__setup_mapping_info(cmd);
|
|
|
|
r = dm_array_empty(&cmd->info, &cmd->root);
|
|
if (r < 0)
|
|
goto bad;
|
|
|
|
if (separate_dirty_bits(cmd)) {
|
|
dm_disk_bitset_init(cmd->tm, &cmd->dirty_info);
|
|
r = dm_bitset_empty(&cmd->dirty_info, &cmd->dirty_root);
|
|
if (r < 0)
|
|
goto bad;
|
|
}
|
|
|
|
dm_disk_bitset_init(cmd->tm, &cmd->discard_info);
|
|
r = dm_bitset_empty(&cmd->discard_info, &cmd->discard_root);
|
|
if (r < 0)
|
|
goto bad;
|
|
|
|
cmd->discard_block_size = 0;
|
|
cmd->discard_nr_blocks = 0;
|
|
|
|
r = __write_initial_superblock(cmd);
|
|
if (r)
|
|
goto bad;
|
|
|
|
cmd->clean_when_opened = true;
|
|
return 0;
|
|
|
|
bad:
|
|
dm_tm_destroy(cmd->tm);
|
|
dm_sm_destroy(cmd->metadata_sm);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __check_incompat_features(struct cache_disk_superblock *disk_super,
|
|
struct dm_cache_metadata *cmd)
|
|
{
|
|
uint32_t incompat_flags, features;
|
|
|
|
incompat_flags = le32_to_cpu(disk_super->incompat_flags);
|
|
features = incompat_flags & ~DM_CACHE_FEATURE_INCOMPAT_SUPP;
|
|
if (features) {
|
|
DMERR("could not access metadata due to unsupported optional features (%lx).",
|
|
(unsigned long)features);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Check for read-only metadata to skip the following RDWR checks.
|
|
*/
|
|
if (bdev_read_only(cmd->bdev))
|
|
return 0;
|
|
|
|
features = le32_to_cpu(disk_super->compat_ro_flags) & ~DM_CACHE_FEATURE_COMPAT_RO_SUPP;
|
|
if (features) {
|
|
DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
|
|
(unsigned long)features);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __open_metadata(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
struct dm_block *sblock;
|
|
struct cache_disk_superblock *disk_super;
|
|
unsigned long sb_flags;
|
|
|
|
r = superblock_read_lock(cmd, &sblock);
|
|
if (r < 0) {
|
|
DMERR("couldn't read lock superblock");
|
|
return r;
|
|
}
|
|
|
|
disk_super = dm_block_data(sblock);
|
|
|
|
/* Verify the data block size hasn't changed */
|
|
if (le32_to_cpu(disk_super->data_block_size) != cmd->data_block_size) {
|
|
DMERR("changing the data block size (from %u to %llu) is not supported",
|
|
le32_to_cpu(disk_super->data_block_size),
|
|
(unsigned long long)cmd->data_block_size);
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
r = __check_incompat_features(disk_super, cmd);
|
|
if (r < 0)
|
|
goto bad;
|
|
|
|
r = dm_tm_open_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
|
|
disk_super->metadata_space_map_root,
|
|
sizeof(disk_super->metadata_space_map_root),
|
|
&cmd->tm, &cmd->metadata_sm);
|
|
if (r < 0) {
|
|
DMERR("tm_open_with_sm failed");
|
|
goto bad;
|
|
}
|
|
|
|
__setup_mapping_info(cmd);
|
|
dm_disk_bitset_init(cmd->tm, &cmd->dirty_info);
|
|
dm_disk_bitset_init(cmd->tm, &cmd->discard_info);
|
|
sb_flags = le32_to_cpu(disk_super->flags);
|
|
cmd->clean_when_opened = test_bit(CLEAN_SHUTDOWN, &sb_flags);
|
|
dm_bm_unlock(sblock);
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
dm_bm_unlock(sblock);
|
|
return r;
|
|
}
|
|
|
|
static int __open_or_format_metadata(struct dm_cache_metadata *cmd,
|
|
bool format_device)
|
|
{
|
|
int r;
|
|
bool unformatted = false;
|
|
|
|
r = __superblock_all_zeroes(cmd->bm, &unformatted);
|
|
if (r)
|
|
return r;
|
|
|
|
if (unformatted)
|
|
return format_device ? __format_metadata(cmd) : -EPERM;
|
|
|
|
return __open_metadata(cmd);
|
|
}
|
|
|
|
static int __create_persistent_data_objects(struct dm_cache_metadata *cmd,
|
|
bool may_format_device)
|
|
{
|
|
int r;
|
|
|
|
cmd->bm = dm_block_manager_create(cmd->bdev, DM_CACHE_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
|
|
CACHE_MAX_CONCURRENT_LOCKS);
|
|
if (IS_ERR(cmd->bm)) {
|
|
DMERR("could not create block manager");
|
|
r = PTR_ERR(cmd->bm);
|
|
cmd->bm = NULL;
|
|
return r;
|
|
}
|
|
|
|
r = __open_or_format_metadata(cmd, may_format_device);
|
|
if (r) {
|
|
dm_block_manager_destroy(cmd->bm);
|
|
cmd->bm = NULL;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static void __destroy_persistent_data_objects(struct dm_cache_metadata *cmd,
|
|
bool destroy_bm)
|
|
{
|
|
dm_sm_destroy(cmd->metadata_sm);
|
|
dm_tm_destroy(cmd->tm);
|
|
if (destroy_bm)
|
|
dm_block_manager_destroy(cmd->bm);
|
|
}
|
|
|
|
typedef unsigned long (*flags_mutator)(unsigned long);
|
|
|
|
static void update_flags(struct cache_disk_superblock *disk_super,
|
|
flags_mutator mutator)
|
|
{
|
|
uint32_t sb_flags = mutator(le32_to_cpu(disk_super->flags));
|
|
|
|
disk_super->flags = cpu_to_le32(sb_flags);
|
|
}
|
|
|
|
static unsigned long set_clean_shutdown(unsigned long flags)
|
|
{
|
|
set_bit(CLEAN_SHUTDOWN, &flags);
|
|
return flags;
|
|
}
|
|
|
|
static unsigned long clear_clean_shutdown(unsigned long flags)
|
|
{
|
|
clear_bit(CLEAN_SHUTDOWN, &flags);
|
|
return flags;
|
|
}
|
|
|
|
static void read_superblock_fields(struct dm_cache_metadata *cmd,
|
|
struct cache_disk_superblock *disk_super)
|
|
{
|
|
cmd->version = le32_to_cpu(disk_super->version);
|
|
cmd->flags = le32_to_cpu(disk_super->flags);
|
|
cmd->root = le64_to_cpu(disk_super->mapping_root);
|
|
cmd->hint_root = le64_to_cpu(disk_super->hint_root);
|
|
cmd->discard_root = le64_to_cpu(disk_super->discard_root);
|
|
cmd->discard_block_size = le64_to_cpu(disk_super->discard_block_size);
|
|
cmd->discard_nr_blocks = to_dblock(le64_to_cpu(disk_super->discard_nr_blocks));
|
|
cmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
|
|
cmd->cache_blocks = to_cblock(le32_to_cpu(disk_super->cache_blocks));
|
|
strscpy(cmd->policy_name, disk_super->policy_name, sizeof(cmd->policy_name));
|
|
cmd->policy_version[0] = le32_to_cpu(disk_super->policy_version[0]);
|
|
cmd->policy_version[1] = le32_to_cpu(disk_super->policy_version[1]);
|
|
cmd->policy_version[2] = le32_to_cpu(disk_super->policy_version[2]);
|
|
cmd->policy_hint_size = le32_to_cpu(disk_super->policy_hint_size);
|
|
|
|
cmd->stats.read_hits = le32_to_cpu(disk_super->read_hits);
|
|
cmd->stats.read_misses = le32_to_cpu(disk_super->read_misses);
|
|
cmd->stats.write_hits = le32_to_cpu(disk_super->write_hits);
|
|
cmd->stats.write_misses = le32_to_cpu(disk_super->write_misses);
|
|
|
|
if (separate_dirty_bits(cmd))
|
|
cmd->dirty_root = le64_to_cpu(disk_super->dirty_root);
|
|
|
|
cmd->changed = false;
|
|
}
|
|
|
|
/*
|
|
* The mutator updates the superblock flags.
|
|
*/
|
|
static int __begin_transaction_flags(struct dm_cache_metadata *cmd,
|
|
flags_mutator mutator)
|
|
{
|
|
int r;
|
|
struct cache_disk_superblock *disk_super;
|
|
struct dm_block *sblock;
|
|
|
|
r = superblock_lock(cmd, &sblock);
|
|
if (r)
|
|
return r;
|
|
|
|
disk_super = dm_block_data(sblock);
|
|
update_flags(disk_super, mutator);
|
|
read_superblock_fields(cmd, disk_super);
|
|
dm_bm_unlock(sblock);
|
|
|
|
return dm_bm_flush(cmd->bm);
|
|
}
|
|
|
|
static int __begin_transaction(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
struct cache_disk_superblock *disk_super;
|
|
struct dm_block *sblock;
|
|
|
|
/*
|
|
* We re-read the superblock every time. Shouldn't need to do this
|
|
* really.
|
|
*/
|
|
r = superblock_read_lock(cmd, &sblock);
|
|
if (r)
|
|
return r;
|
|
|
|
disk_super = dm_block_data(sblock);
|
|
read_superblock_fields(cmd, disk_super);
|
|
dm_bm_unlock(sblock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __commit_transaction(struct dm_cache_metadata *cmd,
|
|
flags_mutator mutator)
|
|
{
|
|
int r;
|
|
struct cache_disk_superblock *disk_super;
|
|
struct dm_block *sblock;
|
|
|
|
/*
|
|
* We need to know if the cache_disk_superblock exceeds a 512-byte sector.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct cache_disk_superblock) > 512);
|
|
|
|
if (separate_dirty_bits(cmd)) {
|
|
r = dm_bitset_flush(&cmd->dirty_info, cmd->dirty_root,
|
|
&cmd->dirty_root);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
r = dm_bitset_flush(&cmd->discard_info, cmd->discard_root,
|
|
&cmd->discard_root);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_tm_pre_commit(cmd->tm);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
r = __save_sm_root(cmd);
|
|
if (r)
|
|
return r;
|
|
|
|
r = superblock_lock(cmd, &sblock);
|
|
if (r)
|
|
return r;
|
|
|
|
disk_super = dm_block_data(sblock);
|
|
|
|
disk_super->flags = cpu_to_le32(cmd->flags);
|
|
if (mutator)
|
|
update_flags(disk_super, mutator);
|
|
|
|
disk_super->mapping_root = cpu_to_le64(cmd->root);
|
|
if (separate_dirty_bits(cmd))
|
|
disk_super->dirty_root = cpu_to_le64(cmd->dirty_root);
|
|
disk_super->hint_root = cpu_to_le64(cmd->hint_root);
|
|
disk_super->discard_root = cpu_to_le64(cmd->discard_root);
|
|
disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size);
|
|
disk_super->discard_nr_blocks = cpu_to_le64(from_dblock(cmd->discard_nr_blocks));
|
|
disk_super->cache_blocks = cpu_to_le32(from_cblock(cmd->cache_blocks));
|
|
strscpy(disk_super->policy_name, cmd->policy_name, sizeof(disk_super->policy_name));
|
|
disk_super->policy_version[0] = cpu_to_le32(cmd->policy_version[0]);
|
|
disk_super->policy_version[1] = cpu_to_le32(cmd->policy_version[1]);
|
|
disk_super->policy_version[2] = cpu_to_le32(cmd->policy_version[2]);
|
|
disk_super->policy_hint_size = cpu_to_le32(cmd->policy_hint_size);
|
|
|
|
disk_super->read_hits = cpu_to_le32(cmd->stats.read_hits);
|
|
disk_super->read_misses = cpu_to_le32(cmd->stats.read_misses);
|
|
disk_super->write_hits = cpu_to_le32(cmd->stats.write_hits);
|
|
disk_super->write_misses = cpu_to_le32(cmd->stats.write_misses);
|
|
__copy_sm_root(cmd, disk_super);
|
|
|
|
return dm_tm_commit(cmd->tm, sblock);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* The mappings are held in a dm-array that has 64-bit values stored in
|
|
* little-endian format. The index is the cblock, the high 48bits of the
|
|
* value are the oblock and the low 16 bit the flags.
|
|
*/
|
|
#define FLAGS_MASK ((1 << 16) - 1)
|
|
|
|
static __le64 pack_value(dm_oblock_t block, unsigned int flags)
|
|
{
|
|
uint64_t value = from_oblock(block);
|
|
|
|
value <<= 16;
|
|
value = value | (flags & FLAGS_MASK);
|
|
return cpu_to_le64(value);
|
|
}
|
|
|
|
static void unpack_value(__le64 value_le, dm_oblock_t *block, unsigned int *flags)
|
|
{
|
|
uint64_t value = le64_to_cpu(value_le);
|
|
uint64_t b = value >> 16;
|
|
|
|
*block = to_oblock(b);
|
|
*flags = value & FLAGS_MASK;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static struct dm_cache_metadata *metadata_open(struct block_device *bdev,
|
|
sector_t data_block_size,
|
|
bool may_format_device,
|
|
size_t policy_hint_size,
|
|
unsigned int metadata_version)
|
|
{
|
|
int r;
|
|
struct dm_cache_metadata *cmd;
|
|
|
|
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
|
|
if (!cmd) {
|
|
DMERR("could not allocate metadata struct");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
cmd->version = metadata_version;
|
|
refcount_set(&cmd->ref_count, 1);
|
|
init_rwsem(&cmd->root_lock);
|
|
cmd->bdev = bdev;
|
|
cmd->data_block_size = data_block_size;
|
|
cmd->cache_blocks = 0;
|
|
cmd->policy_hint_size = policy_hint_size;
|
|
cmd->changed = true;
|
|
cmd->fail_io = false;
|
|
|
|
r = __create_persistent_data_objects(cmd, may_format_device);
|
|
if (r) {
|
|
kfree(cmd);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
r = __begin_transaction_flags(cmd, clear_clean_shutdown);
|
|
if (r < 0) {
|
|
dm_cache_metadata_close(cmd);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
return cmd;
|
|
}
|
|
|
|
/*
|
|
* We keep a little list of ref counted metadata objects to prevent two
|
|
* different target instances creating separate bufio instances. This is
|
|
* an issue if a table is reloaded before the suspend.
|
|
*/
|
|
static DEFINE_MUTEX(table_lock);
|
|
static LIST_HEAD(table);
|
|
|
|
static struct dm_cache_metadata *lookup(struct block_device *bdev)
|
|
{
|
|
struct dm_cache_metadata *cmd;
|
|
|
|
list_for_each_entry(cmd, &table, list)
|
|
if (cmd->bdev == bdev) {
|
|
refcount_inc(&cmd->ref_count);
|
|
return cmd;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dm_cache_metadata *lookup_or_open(struct block_device *bdev,
|
|
sector_t data_block_size,
|
|
bool may_format_device,
|
|
size_t policy_hint_size,
|
|
unsigned int metadata_version)
|
|
{
|
|
struct dm_cache_metadata *cmd, *cmd2;
|
|
|
|
mutex_lock(&table_lock);
|
|
cmd = lookup(bdev);
|
|
mutex_unlock(&table_lock);
|
|
|
|
if (cmd)
|
|
return cmd;
|
|
|
|
cmd = metadata_open(bdev, data_block_size, may_format_device,
|
|
policy_hint_size, metadata_version);
|
|
if (!IS_ERR(cmd)) {
|
|
mutex_lock(&table_lock);
|
|
cmd2 = lookup(bdev);
|
|
if (cmd2) {
|
|
mutex_unlock(&table_lock);
|
|
__destroy_persistent_data_objects(cmd, true);
|
|
kfree(cmd);
|
|
return cmd2;
|
|
}
|
|
list_add(&cmd->list, &table);
|
|
mutex_unlock(&table_lock);
|
|
}
|
|
|
|
return cmd;
|
|
}
|
|
|
|
static bool same_params(struct dm_cache_metadata *cmd, sector_t data_block_size)
|
|
{
|
|
if (cmd->data_block_size != data_block_size) {
|
|
DMERR("data_block_size (%llu) different from that in metadata (%llu)",
|
|
(unsigned long long) data_block_size,
|
|
(unsigned long long) cmd->data_block_size);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev,
|
|
sector_t data_block_size,
|
|
bool may_format_device,
|
|
size_t policy_hint_size,
|
|
unsigned int metadata_version)
|
|
{
|
|
struct dm_cache_metadata *cmd = lookup_or_open(bdev, data_block_size, may_format_device,
|
|
policy_hint_size, metadata_version);
|
|
|
|
if (!IS_ERR(cmd) && !same_params(cmd, data_block_size)) {
|
|
dm_cache_metadata_close(cmd);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return cmd;
|
|
}
|
|
|
|
void dm_cache_metadata_close(struct dm_cache_metadata *cmd)
|
|
{
|
|
if (refcount_dec_and_test(&cmd->ref_count)) {
|
|
mutex_lock(&table_lock);
|
|
list_del(&cmd->list);
|
|
mutex_unlock(&table_lock);
|
|
|
|
if (!cmd->fail_io)
|
|
__destroy_persistent_data_objects(cmd, true);
|
|
kfree(cmd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Checks that the given cache block is either unmapped or clean.
|
|
*/
|
|
static int block_clean_combined_dirty(struct dm_cache_metadata *cmd, dm_cblock_t b,
|
|
bool *result)
|
|
{
|
|
int r;
|
|
__le64 value;
|
|
dm_oblock_t ob;
|
|
unsigned int flags;
|
|
|
|
r = dm_array_get_value(&cmd->info, cmd->root, from_cblock(b), &value);
|
|
if (r)
|
|
return r;
|
|
|
|
unpack_value(value, &ob, &flags);
|
|
*result = !((flags & M_VALID) && (flags & M_DIRTY));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int blocks_are_clean_combined_dirty(struct dm_cache_metadata *cmd,
|
|
dm_cblock_t begin, dm_cblock_t end,
|
|
bool *result)
|
|
{
|
|
int r;
|
|
*result = true;
|
|
|
|
while (begin != end) {
|
|
r = block_clean_combined_dirty(cmd, begin, result);
|
|
if (r) {
|
|
DMERR("block_clean_combined_dirty failed");
|
|
return r;
|
|
}
|
|
|
|
if (!*result) {
|
|
DMERR("cache block %llu is dirty",
|
|
(unsigned long long) from_cblock(begin));
|
|
return 0;
|
|
}
|
|
|
|
begin = to_cblock(from_cblock(begin) + 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int blocks_are_clean_separate_dirty(struct dm_cache_metadata *cmd,
|
|
dm_cblock_t begin, dm_cblock_t end,
|
|
bool *result)
|
|
{
|
|
int r;
|
|
bool dirty_flag;
|
|
*result = true;
|
|
|
|
if (from_cblock(cmd->cache_blocks) == 0)
|
|
/* Nothing to do */
|
|
return 0;
|
|
|
|
r = dm_bitset_cursor_begin(&cmd->dirty_info, cmd->dirty_root,
|
|
from_cblock(cmd->cache_blocks), &cmd->dirty_cursor);
|
|
if (r) {
|
|
DMERR("%s: dm_bitset_cursor_begin for dirty failed", __func__);
|
|
return r;
|
|
}
|
|
|
|
r = dm_bitset_cursor_skip(&cmd->dirty_cursor, from_cblock(begin));
|
|
if (r) {
|
|
DMERR("%s: dm_bitset_cursor_skip for dirty failed", __func__);
|
|
dm_bitset_cursor_end(&cmd->dirty_cursor);
|
|
return r;
|
|
}
|
|
|
|
while (begin != end) {
|
|
/*
|
|
* We assume that unmapped blocks have their dirty bit
|
|
* cleared.
|
|
*/
|
|
dirty_flag = dm_bitset_cursor_get_value(&cmd->dirty_cursor);
|
|
if (dirty_flag) {
|
|
DMERR("%s: cache block %llu is dirty", __func__,
|
|
(unsigned long long) from_cblock(begin));
|
|
dm_bitset_cursor_end(&cmd->dirty_cursor);
|
|
*result = false;
|
|
return 0;
|
|
}
|
|
|
|
begin = to_cblock(from_cblock(begin) + 1);
|
|
if (begin == end)
|
|
break;
|
|
|
|
r = dm_bitset_cursor_next(&cmd->dirty_cursor);
|
|
if (r) {
|
|
DMERR("%s: dm_bitset_cursor_next for dirty failed", __func__);
|
|
dm_bitset_cursor_end(&cmd->dirty_cursor);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
dm_bitset_cursor_end(&cmd->dirty_cursor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int blocks_are_unmapped_or_clean(struct dm_cache_metadata *cmd,
|
|
dm_cblock_t begin, dm_cblock_t end,
|
|
bool *result)
|
|
{
|
|
if (separate_dirty_bits(cmd))
|
|
return blocks_are_clean_separate_dirty(cmd, begin, end, result);
|
|
else
|
|
return blocks_are_clean_combined_dirty(cmd, begin, end, result);
|
|
}
|
|
|
|
static bool cmd_write_lock(struct dm_cache_metadata *cmd)
|
|
{
|
|
down_write(&cmd->root_lock);
|
|
if (cmd->fail_io || dm_bm_is_read_only(cmd->bm)) {
|
|
up_write(&cmd->root_lock);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define WRITE_LOCK(cmd) \
|
|
do { \
|
|
if (!cmd_write_lock((cmd))) \
|
|
return -EINVAL; \
|
|
} while (0)
|
|
|
|
#define WRITE_LOCK_VOID(cmd) \
|
|
do { \
|
|
if (!cmd_write_lock((cmd))) \
|
|
return; \
|
|
} while (0)
|
|
|
|
#define WRITE_UNLOCK(cmd) \
|
|
up_write(&(cmd)->root_lock)
|
|
|
|
static bool cmd_read_lock(struct dm_cache_metadata *cmd)
|
|
{
|
|
down_read(&cmd->root_lock);
|
|
if (cmd->fail_io) {
|
|
up_read(&cmd->root_lock);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define READ_LOCK(cmd) \
|
|
do { \
|
|
if (!cmd_read_lock((cmd))) \
|
|
return -EINVAL; \
|
|
} while (0)
|
|
|
|
#define READ_LOCK_VOID(cmd) \
|
|
do { \
|
|
if (!cmd_read_lock((cmd))) \
|
|
return; \
|
|
} while (0)
|
|
|
|
#define READ_UNLOCK(cmd) \
|
|
up_read(&(cmd)->root_lock)
|
|
|
|
int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size)
|
|
{
|
|
int r;
|
|
bool clean;
|
|
__le64 null_mapping = pack_value(0, 0);
|
|
|
|
WRITE_LOCK(cmd);
|
|
__dm_bless_for_disk(&null_mapping);
|
|
|
|
if (from_cblock(new_cache_size) < from_cblock(cmd->cache_blocks)) {
|
|
r = blocks_are_unmapped_or_clean(cmd, new_cache_size, cmd->cache_blocks, &clean);
|
|
if (r) {
|
|
__dm_unbless_for_disk(&null_mapping);
|
|
goto out;
|
|
}
|
|
|
|
if (!clean) {
|
|
DMERR("unable to shrink cache due to dirty blocks");
|
|
r = -EINVAL;
|
|
__dm_unbless_for_disk(&null_mapping);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
r = dm_array_resize(&cmd->info, cmd->root, from_cblock(cmd->cache_blocks),
|
|
from_cblock(new_cache_size),
|
|
&null_mapping, &cmd->root);
|
|
if (r)
|
|
goto out;
|
|
|
|
if (separate_dirty_bits(cmd)) {
|
|
r = dm_bitset_resize(&cmd->dirty_info, cmd->dirty_root,
|
|
from_cblock(cmd->cache_blocks), from_cblock(new_cache_size),
|
|
false, &cmd->dirty_root);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
|
|
cmd->cache_blocks = new_cache_size;
|
|
cmd->changed = true;
|
|
|
|
out:
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd,
|
|
sector_t discard_block_size,
|
|
dm_dblock_t new_nr_entries)
|
|
{
|
|
int r;
|
|
|
|
WRITE_LOCK(cmd);
|
|
r = dm_bitset_resize(&cmd->discard_info,
|
|
cmd->discard_root,
|
|
from_dblock(cmd->discard_nr_blocks),
|
|
from_dblock(new_nr_entries),
|
|
false, &cmd->discard_root);
|
|
if (!r) {
|
|
cmd->discard_block_size = discard_block_size;
|
|
cmd->discard_nr_blocks = new_nr_entries;
|
|
}
|
|
|
|
cmd->changed = true;
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __set_discard(struct dm_cache_metadata *cmd, dm_dblock_t b)
|
|
{
|
|
return dm_bitset_set_bit(&cmd->discard_info, cmd->discard_root,
|
|
from_dblock(b), &cmd->discard_root);
|
|
}
|
|
|
|
static int __clear_discard(struct dm_cache_metadata *cmd, dm_dblock_t b)
|
|
{
|
|
return dm_bitset_clear_bit(&cmd->discard_info, cmd->discard_root,
|
|
from_dblock(b), &cmd->discard_root);
|
|
}
|
|
|
|
static int __discard(struct dm_cache_metadata *cmd,
|
|
dm_dblock_t dblock, bool discard)
|
|
{
|
|
int r;
|
|
|
|
r = (discard ? __set_discard : __clear_discard)(cmd, dblock);
|
|
if (r)
|
|
return r;
|
|
|
|
cmd->changed = true;
|
|
return 0;
|
|
}
|
|
|
|
int dm_cache_set_discard(struct dm_cache_metadata *cmd,
|
|
dm_dblock_t dblock, bool discard)
|
|
{
|
|
int r;
|
|
|
|
WRITE_LOCK(cmd);
|
|
r = __discard(cmd, dblock, discard);
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __load_discards(struct dm_cache_metadata *cmd,
|
|
load_discard_fn fn, void *context)
|
|
{
|
|
int r = 0;
|
|
uint32_t b;
|
|
struct dm_bitset_cursor c;
|
|
|
|
if (from_dblock(cmd->discard_nr_blocks) == 0)
|
|
/* nothing to do */
|
|
return 0;
|
|
|
|
if (cmd->clean_when_opened) {
|
|
r = dm_bitset_flush(&cmd->discard_info, cmd->discard_root, &cmd->discard_root);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_bitset_cursor_begin(&cmd->discard_info, cmd->discard_root,
|
|
from_dblock(cmd->discard_nr_blocks), &c);
|
|
if (r)
|
|
return r;
|
|
|
|
for (b = 0; ; b++) {
|
|
r = fn(context, cmd->discard_block_size, to_dblock(b),
|
|
dm_bitset_cursor_get_value(&c));
|
|
if (r)
|
|
break;
|
|
|
|
if (b >= (from_dblock(cmd->discard_nr_blocks) - 1))
|
|
break;
|
|
|
|
r = dm_bitset_cursor_next(&c);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
dm_bitset_cursor_end(&c);
|
|
|
|
} else {
|
|
for (b = 0; b < from_dblock(cmd->discard_nr_blocks); b++) {
|
|
r = fn(context, cmd->discard_block_size, to_dblock(b), false);
|
|
if (r)
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_load_discards(struct dm_cache_metadata *cmd,
|
|
load_discard_fn fn, void *context)
|
|
{
|
|
int r;
|
|
|
|
READ_LOCK(cmd);
|
|
r = __load_discards(cmd, fn, context);
|
|
READ_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_size(struct dm_cache_metadata *cmd, dm_cblock_t *result)
|
|
{
|
|
READ_LOCK(cmd);
|
|
*result = cmd->cache_blocks;
|
|
READ_UNLOCK(cmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __remove(struct dm_cache_metadata *cmd, dm_cblock_t cblock)
|
|
{
|
|
int r;
|
|
__le64 value = pack_value(0, 0);
|
|
|
|
__dm_bless_for_disk(&value);
|
|
r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock),
|
|
&value, &cmd->root);
|
|
if (r)
|
|
return r;
|
|
|
|
cmd->changed = true;
|
|
return 0;
|
|
}
|
|
|
|
int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock)
|
|
{
|
|
int r;
|
|
|
|
WRITE_LOCK(cmd);
|
|
r = __remove(cmd, cblock);
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __insert(struct dm_cache_metadata *cmd,
|
|
dm_cblock_t cblock, dm_oblock_t oblock)
|
|
{
|
|
int r;
|
|
__le64 value = pack_value(oblock, M_VALID);
|
|
|
|
__dm_bless_for_disk(&value);
|
|
|
|
r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock),
|
|
&value, &cmd->root);
|
|
if (r)
|
|
return r;
|
|
|
|
cmd->changed = true;
|
|
return 0;
|
|
}
|
|
|
|
int dm_cache_insert_mapping(struct dm_cache_metadata *cmd,
|
|
dm_cblock_t cblock, dm_oblock_t oblock)
|
|
{
|
|
int r;
|
|
|
|
WRITE_LOCK(cmd);
|
|
r = __insert(cmd, cblock, oblock);
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
struct thunk {
|
|
load_mapping_fn fn;
|
|
void *context;
|
|
|
|
struct dm_cache_metadata *cmd;
|
|
bool respect_dirty_flags;
|
|
bool hints_valid;
|
|
};
|
|
|
|
static bool policy_unchanged(struct dm_cache_metadata *cmd,
|
|
struct dm_cache_policy *policy)
|
|
{
|
|
const char *policy_name = dm_cache_policy_get_name(policy);
|
|
const unsigned int *policy_version = dm_cache_policy_get_version(policy);
|
|
size_t policy_hint_size = dm_cache_policy_get_hint_size(policy);
|
|
|
|
/*
|
|
* Ensure policy names match.
|
|
*/
|
|
if (strncmp(cmd->policy_name, policy_name, sizeof(cmd->policy_name)))
|
|
return false;
|
|
|
|
/*
|
|
* Ensure policy major versions match.
|
|
*/
|
|
if (cmd->policy_version[0] != policy_version[0])
|
|
return false;
|
|
|
|
/*
|
|
* Ensure policy hint sizes match.
|
|
*/
|
|
if (cmd->policy_hint_size != policy_hint_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hints_array_initialized(struct dm_cache_metadata *cmd)
|
|
{
|
|
return cmd->hint_root && cmd->policy_hint_size;
|
|
}
|
|
|
|
static bool hints_array_available(struct dm_cache_metadata *cmd,
|
|
struct dm_cache_policy *policy)
|
|
{
|
|
return cmd->clean_when_opened && policy_unchanged(cmd, policy) &&
|
|
hints_array_initialized(cmd);
|
|
}
|
|
|
|
static int __load_mapping_v1(struct dm_cache_metadata *cmd,
|
|
uint64_t cb, bool hints_valid,
|
|
struct dm_array_cursor *mapping_cursor,
|
|
struct dm_array_cursor *hint_cursor,
|
|
load_mapping_fn fn, void *context)
|
|
{
|
|
int r = 0;
|
|
|
|
__le64 mapping;
|
|
__le32 hint = 0;
|
|
|
|
__le64 *mapping_value_le;
|
|
__le32 *hint_value_le;
|
|
|
|
dm_oblock_t oblock;
|
|
unsigned int flags;
|
|
bool dirty = true;
|
|
|
|
dm_array_cursor_get_value(mapping_cursor, (void **) &mapping_value_le);
|
|
memcpy(&mapping, mapping_value_le, sizeof(mapping));
|
|
unpack_value(mapping, &oblock, &flags);
|
|
|
|
if (flags & M_VALID) {
|
|
if (hints_valid) {
|
|
dm_array_cursor_get_value(hint_cursor, (void **) &hint_value_le);
|
|
memcpy(&hint, hint_value_le, sizeof(hint));
|
|
}
|
|
if (cmd->clean_when_opened)
|
|
dirty = flags & M_DIRTY;
|
|
|
|
r = fn(context, oblock, to_cblock(cb), dirty,
|
|
le32_to_cpu(hint), hints_valid);
|
|
if (r) {
|
|
DMERR("policy couldn't load cache block %llu",
|
|
(unsigned long long) from_cblock(to_cblock(cb)));
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __load_mapping_v2(struct dm_cache_metadata *cmd,
|
|
uint64_t cb, bool hints_valid,
|
|
struct dm_array_cursor *mapping_cursor,
|
|
struct dm_array_cursor *hint_cursor,
|
|
struct dm_bitset_cursor *dirty_cursor,
|
|
load_mapping_fn fn, void *context)
|
|
{
|
|
int r = 0;
|
|
|
|
__le64 mapping;
|
|
__le32 hint = 0;
|
|
|
|
__le64 *mapping_value_le;
|
|
__le32 *hint_value_le;
|
|
|
|
dm_oblock_t oblock;
|
|
unsigned int flags;
|
|
bool dirty = true;
|
|
|
|
dm_array_cursor_get_value(mapping_cursor, (void **) &mapping_value_le);
|
|
memcpy(&mapping, mapping_value_le, sizeof(mapping));
|
|
unpack_value(mapping, &oblock, &flags);
|
|
|
|
if (flags & M_VALID) {
|
|
if (hints_valid) {
|
|
dm_array_cursor_get_value(hint_cursor, (void **) &hint_value_le);
|
|
memcpy(&hint, hint_value_le, sizeof(hint));
|
|
}
|
|
if (cmd->clean_when_opened)
|
|
dirty = dm_bitset_cursor_get_value(dirty_cursor);
|
|
|
|
r = fn(context, oblock, to_cblock(cb), dirty,
|
|
le32_to_cpu(hint), hints_valid);
|
|
if (r) {
|
|
DMERR("policy couldn't load cache block %llu",
|
|
(unsigned long long) from_cblock(to_cblock(cb)));
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __load_mappings(struct dm_cache_metadata *cmd,
|
|
struct dm_cache_policy *policy,
|
|
load_mapping_fn fn, void *context)
|
|
{
|
|
int r;
|
|
uint64_t cb;
|
|
|
|
bool hints_valid = hints_array_available(cmd, policy);
|
|
|
|
if (from_cblock(cmd->cache_blocks) == 0)
|
|
/* Nothing to do */
|
|
return 0;
|
|
|
|
r = dm_array_cursor_begin(&cmd->info, cmd->root, &cmd->mapping_cursor);
|
|
if (r)
|
|
return r;
|
|
|
|
if (hints_valid) {
|
|
r = dm_array_cursor_begin(&cmd->hint_info, cmd->hint_root, &cmd->hint_cursor);
|
|
if (r) {
|
|
dm_array_cursor_end(&cmd->mapping_cursor);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
if (separate_dirty_bits(cmd)) {
|
|
r = dm_bitset_cursor_begin(&cmd->dirty_info, cmd->dirty_root,
|
|
from_cblock(cmd->cache_blocks),
|
|
&cmd->dirty_cursor);
|
|
if (r) {
|
|
dm_array_cursor_end(&cmd->hint_cursor);
|
|
dm_array_cursor_end(&cmd->mapping_cursor);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
for (cb = 0; ; cb++) {
|
|
if (separate_dirty_bits(cmd))
|
|
r = __load_mapping_v2(cmd, cb, hints_valid,
|
|
&cmd->mapping_cursor,
|
|
&cmd->hint_cursor,
|
|
&cmd->dirty_cursor,
|
|
fn, context);
|
|
else
|
|
r = __load_mapping_v1(cmd, cb, hints_valid,
|
|
&cmd->mapping_cursor, &cmd->hint_cursor,
|
|
fn, context);
|
|
if (r)
|
|
goto out;
|
|
|
|
/*
|
|
* We need to break out before we move the cursors.
|
|
*/
|
|
if (cb >= (from_cblock(cmd->cache_blocks) - 1))
|
|
break;
|
|
|
|
r = dm_array_cursor_next(&cmd->mapping_cursor);
|
|
if (r) {
|
|
DMERR("dm_array_cursor_next for mapping failed");
|
|
goto out;
|
|
}
|
|
|
|
if (hints_valid) {
|
|
r = dm_array_cursor_next(&cmd->hint_cursor);
|
|
if (r) {
|
|
dm_array_cursor_end(&cmd->hint_cursor);
|
|
hints_valid = false;
|
|
}
|
|
}
|
|
|
|
if (separate_dirty_bits(cmd)) {
|
|
r = dm_bitset_cursor_next(&cmd->dirty_cursor);
|
|
if (r) {
|
|
DMERR("dm_bitset_cursor_next for dirty failed");
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
dm_array_cursor_end(&cmd->mapping_cursor);
|
|
if (hints_valid)
|
|
dm_array_cursor_end(&cmd->hint_cursor);
|
|
|
|
if (separate_dirty_bits(cmd))
|
|
dm_bitset_cursor_end(&cmd->dirty_cursor);
|
|
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_load_mappings(struct dm_cache_metadata *cmd,
|
|
struct dm_cache_policy *policy,
|
|
load_mapping_fn fn, void *context)
|
|
{
|
|
int r;
|
|
|
|
READ_LOCK(cmd);
|
|
r = __load_mappings(cmd, policy, fn, context);
|
|
READ_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __dump_mapping(void *context, uint64_t cblock, void *leaf)
|
|
{
|
|
__le64 value;
|
|
dm_oblock_t oblock;
|
|
unsigned int flags;
|
|
|
|
memcpy(&value, leaf, sizeof(value));
|
|
unpack_value(value, &oblock, &flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __dump_mappings(struct dm_cache_metadata *cmd)
|
|
{
|
|
return dm_array_walk(&cmd->info, cmd->root, __dump_mapping, NULL);
|
|
}
|
|
|
|
void dm_cache_dump(struct dm_cache_metadata *cmd)
|
|
{
|
|
READ_LOCK_VOID(cmd);
|
|
__dump_mappings(cmd);
|
|
READ_UNLOCK(cmd);
|
|
}
|
|
|
|
int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
|
|
READ_LOCK(cmd);
|
|
r = cmd->changed;
|
|
READ_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __dirty(struct dm_cache_metadata *cmd, dm_cblock_t cblock, bool dirty)
|
|
{
|
|
int r;
|
|
unsigned int flags;
|
|
dm_oblock_t oblock;
|
|
__le64 value;
|
|
|
|
r = dm_array_get_value(&cmd->info, cmd->root, from_cblock(cblock), &value);
|
|
if (r)
|
|
return r;
|
|
|
|
unpack_value(value, &oblock, &flags);
|
|
|
|
if (((flags & M_DIRTY) && dirty) || (!(flags & M_DIRTY) && !dirty))
|
|
/* nothing to be done */
|
|
return 0;
|
|
|
|
value = pack_value(oblock, (flags & ~M_DIRTY) | (dirty ? M_DIRTY : 0));
|
|
__dm_bless_for_disk(&value);
|
|
|
|
r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock),
|
|
&value, &cmd->root);
|
|
if (r)
|
|
return r;
|
|
|
|
cmd->changed = true;
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int __set_dirty_bits_v1(struct dm_cache_metadata *cmd, unsigned int nr_bits, unsigned long *bits)
|
|
{
|
|
int r;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < nr_bits; i++) {
|
|
r = __dirty(cmd, to_cblock(i), test_bit(i, bits));
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int is_dirty_callback(uint32_t index, bool *value, void *context)
|
|
{
|
|
unsigned long *bits = context;
|
|
*value = test_bit(index, bits);
|
|
return 0;
|
|
}
|
|
|
|
static int __set_dirty_bits_v2(struct dm_cache_metadata *cmd, unsigned int nr_bits, unsigned long *bits)
|
|
{
|
|
int r = 0;
|
|
|
|
/* nr_bits is really just a sanity check */
|
|
if (nr_bits != from_cblock(cmd->cache_blocks)) {
|
|
DMERR("dirty bitset is wrong size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = dm_bitset_del(&cmd->dirty_info, cmd->dirty_root);
|
|
if (r)
|
|
return r;
|
|
|
|
cmd->changed = true;
|
|
return dm_bitset_new(&cmd->dirty_info, &cmd->dirty_root, nr_bits, is_dirty_callback, bits);
|
|
}
|
|
|
|
int dm_cache_set_dirty_bits(struct dm_cache_metadata *cmd,
|
|
unsigned int nr_bits,
|
|
unsigned long *bits)
|
|
{
|
|
int r;
|
|
|
|
WRITE_LOCK(cmd);
|
|
if (separate_dirty_bits(cmd))
|
|
r = __set_dirty_bits_v2(cmd, nr_bits, bits);
|
|
else
|
|
r = __set_dirty_bits_v1(cmd, nr_bits, bits);
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd,
|
|
struct dm_cache_statistics *stats)
|
|
{
|
|
READ_LOCK_VOID(cmd);
|
|
*stats = cmd->stats;
|
|
READ_UNLOCK(cmd);
|
|
}
|
|
|
|
void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd,
|
|
struct dm_cache_statistics *stats)
|
|
{
|
|
WRITE_LOCK_VOID(cmd);
|
|
cmd->stats = *stats;
|
|
WRITE_UNLOCK(cmd);
|
|
}
|
|
|
|
int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown)
|
|
{
|
|
int r = -EINVAL;
|
|
flags_mutator mutator = (clean_shutdown ? set_clean_shutdown :
|
|
clear_clean_shutdown);
|
|
|
|
WRITE_LOCK(cmd);
|
|
if (cmd->fail_io)
|
|
goto out;
|
|
|
|
r = __commit_transaction(cmd, mutator);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = __begin_transaction(cmd);
|
|
out:
|
|
WRITE_UNLOCK(cmd);
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd,
|
|
dm_block_t *result)
|
|
{
|
|
int r = -EINVAL;
|
|
|
|
READ_LOCK(cmd);
|
|
if (!cmd->fail_io)
|
|
r = dm_sm_get_nr_free(cmd->metadata_sm, result);
|
|
READ_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd,
|
|
dm_block_t *result)
|
|
{
|
|
int r = -EINVAL;
|
|
|
|
READ_LOCK(cmd);
|
|
if (!cmd->fail_io)
|
|
r = dm_sm_get_nr_blocks(cmd->metadata_sm, result);
|
|
READ_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static int get_hint(uint32_t index, void *value_le, void *context)
|
|
{
|
|
uint32_t value;
|
|
struct dm_cache_policy *policy = context;
|
|
|
|
value = policy_get_hint(policy, to_cblock(index));
|
|
*((__le32 *) value_le) = cpu_to_le32(value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It's quicker to always delete the hint array, and recreate with
|
|
* dm_array_new().
|
|
*/
|
|
static int write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy)
|
|
{
|
|
int r;
|
|
size_t hint_size;
|
|
const char *policy_name = dm_cache_policy_get_name(policy);
|
|
const unsigned int *policy_version = dm_cache_policy_get_version(policy);
|
|
|
|
if (!policy_name[0] ||
|
|
(strlen(policy_name) > sizeof(cmd->policy_name) - 1))
|
|
return -EINVAL;
|
|
|
|
strscpy(cmd->policy_name, policy_name, sizeof(cmd->policy_name));
|
|
memcpy(cmd->policy_version, policy_version, sizeof(cmd->policy_version));
|
|
|
|
hint_size = dm_cache_policy_get_hint_size(policy);
|
|
if (!hint_size)
|
|
return 0; /* short-circuit hints initialization */
|
|
cmd->policy_hint_size = hint_size;
|
|
|
|
if (cmd->hint_root) {
|
|
r = dm_array_del(&cmd->hint_info, cmd->hint_root);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return dm_array_new(&cmd->hint_info, &cmd->hint_root,
|
|
from_cblock(cmd->cache_blocks),
|
|
get_hint, policy);
|
|
}
|
|
|
|
int dm_cache_write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy)
|
|
{
|
|
int r;
|
|
|
|
WRITE_LOCK(cmd);
|
|
r = write_hints(cmd, policy);
|
|
WRITE_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd, bool *result)
|
|
{
|
|
int r;
|
|
|
|
READ_LOCK(cmd);
|
|
r = blocks_are_unmapped_or_clean(cmd, 0, cmd->cache_blocks, result);
|
|
READ_UNLOCK(cmd);
|
|
|
|
return r;
|
|
}
|
|
|
|
void dm_cache_metadata_set_read_only(struct dm_cache_metadata *cmd)
|
|
{
|
|
WRITE_LOCK_VOID(cmd);
|
|
dm_bm_set_read_only(cmd->bm);
|
|
WRITE_UNLOCK(cmd);
|
|
}
|
|
|
|
void dm_cache_metadata_set_read_write(struct dm_cache_metadata *cmd)
|
|
{
|
|
WRITE_LOCK_VOID(cmd);
|
|
dm_bm_set_read_write(cmd->bm);
|
|
WRITE_UNLOCK(cmd);
|
|
}
|
|
|
|
int dm_cache_metadata_set_needs_check(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r;
|
|
struct dm_block *sblock;
|
|
struct cache_disk_superblock *disk_super;
|
|
|
|
WRITE_LOCK(cmd);
|
|
set_bit(NEEDS_CHECK, &cmd->flags);
|
|
|
|
r = superblock_lock(cmd, &sblock);
|
|
if (r) {
|
|
DMERR("couldn't read superblock");
|
|
goto out;
|
|
}
|
|
|
|
disk_super = dm_block_data(sblock);
|
|
disk_super->flags = cpu_to_le32(cmd->flags);
|
|
|
|
dm_bm_unlock(sblock);
|
|
|
|
out:
|
|
WRITE_UNLOCK(cmd);
|
|
return r;
|
|
}
|
|
|
|
int dm_cache_metadata_needs_check(struct dm_cache_metadata *cmd, bool *result)
|
|
{
|
|
READ_LOCK(cmd);
|
|
*result = !!test_bit(NEEDS_CHECK, &cmd->flags);
|
|
READ_UNLOCK(cmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_cache_metadata_abort(struct dm_cache_metadata *cmd)
|
|
{
|
|
int r = -EINVAL;
|
|
struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
|
|
|
|
/* fail_io is double-checked with cmd->root_lock held below */
|
|
if (unlikely(cmd->fail_io))
|
|
return r;
|
|
|
|
/*
|
|
* Replacement block manager (new_bm) is created and old_bm destroyed outside of
|
|
* cmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
|
|
* shrinker associated with the block manager's bufio client vs cmd root_lock).
|
|
* - must take shrinker_mutex without holding cmd->root_lock
|
|
*/
|
|
new_bm = dm_block_manager_create(cmd->bdev, DM_CACHE_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
|
|
CACHE_MAX_CONCURRENT_LOCKS);
|
|
|
|
WRITE_LOCK(cmd);
|
|
if (cmd->fail_io) {
|
|
WRITE_UNLOCK(cmd);
|
|
goto out;
|
|
}
|
|
|
|
__destroy_persistent_data_objects(cmd, false);
|
|
old_bm = cmd->bm;
|
|
if (IS_ERR(new_bm)) {
|
|
DMERR("could not create block manager during abort");
|
|
cmd->bm = NULL;
|
|
r = PTR_ERR(new_bm);
|
|
goto out_unlock;
|
|
}
|
|
|
|
cmd->bm = new_bm;
|
|
r = __open_or_format_metadata(cmd, false);
|
|
if (r) {
|
|
cmd->bm = NULL;
|
|
goto out_unlock;
|
|
}
|
|
new_bm = NULL;
|
|
out_unlock:
|
|
if (r)
|
|
cmd->fail_io = true;
|
|
WRITE_UNLOCK(cmd);
|
|
dm_block_manager_destroy(old_bm);
|
|
out:
|
|
if (new_bm && !IS_ERR(new_bm))
|
|
dm_block_manager_destroy(new_bm);
|
|
|
|
return r;
|
|
}
|