mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 17:43:59 +00:00
ad8d75fff8
Impact: clean up Create a sub directory in include/trace called events to keep the trace point headers in their own separate directory. Only headers that declare trace points should be defined in this directory. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2657 lines
66 KiB
C
2657 lines
66 KiB
C
/*
|
|
* linux/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
|
|
*
|
|
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
|
|
* Changes to use preallocated sigqueue structures
|
|
* to allow signals to be sent reliably.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/signalfd.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <trace/events/sched.h>
|
|
|
|
#include <asm/param.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/siginfo.h>
|
|
#include "audit.h" /* audit_signal_info() */
|
|
|
|
/*
|
|
* SLAB caches for signal bits.
|
|
*/
|
|
|
|
static struct kmem_cache *sigqueue_cachep;
|
|
|
|
static void __user *sig_handler(struct task_struct *t, int sig)
|
|
{
|
|
return t->sighand->action[sig - 1].sa.sa_handler;
|
|
}
|
|
|
|
static int sig_handler_ignored(void __user *handler, int sig)
|
|
{
|
|
/* Is it explicitly or implicitly ignored? */
|
|
return handler == SIG_IGN ||
|
|
(handler == SIG_DFL && sig_kernel_ignore(sig));
|
|
}
|
|
|
|
static int sig_task_ignored(struct task_struct *t, int sig,
|
|
int from_ancestor_ns)
|
|
{
|
|
void __user *handler;
|
|
|
|
handler = sig_handler(t, sig);
|
|
|
|
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
|
|
handler == SIG_DFL && !from_ancestor_ns)
|
|
return 1;
|
|
|
|
return sig_handler_ignored(handler, sig);
|
|
}
|
|
|
|
static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
|
|
{
|
|
/*
|
|
* Blocked signals are never ignored, since the
|
|
* signal handler may change by the time it is
|
|
* unblocked.
|
|
*/
|
|
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
|
|
return 0;
|
|
|
|
if (!sig_task_ignored(t, sig, from_ancestor_ns))
|
|
return 0;
|
|
|
|
/*
|
|
* Tracers may want to know about even ignored signals.
|
|
*/
|
|
return !tracehook_consider_ignored_signal(t, sig);
|
|
}
|
|
|
|
/*
|
|
* Re-calculate pending state from the set of locally pending
|
|
* signals, globally pending signals, and blocked signals.
|
|
*/
|
|
static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
|
|
{
|
|
unsigned long ready;
|
|
long i;
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
|
|
ready |= signal->sig[i] &~ blocked->sig[i];
|
|
break;
|
|
|
|
case 4: ready = signal->sig[3] &~ blocked->sig[3];
|
|
ready |= signal->sig[2] &~ blocked->sig[2];
|
|
ready |= signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 2: ready = signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 1: ready = signal->sig[0] &~ blocked->sig[0];
|
|
}
|
|
return ready != 0;
|
|
}
|
|
|
|
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
|
|
|
|
static int recalc_sigpending_tsk(struct task_struct *t)
|
|
{
|
|
if (t->signal->group_stop_count > 0 ||
|
|
PENDING(&t->pending, &t->blocked) ||
|
|
PENDING(&t->signal->shared_pending, &t->blocked)) {
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
return 1;
|
|
}
|
|
/*
|
|
* We must never clear the flag in another thread, or in current
|
|
* when it's possible the current syscall is returning -ERESTART*.
|
|
* So we don't clear it here, and only callers who know they should do.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
|
|
* This is superfluous when called on current, the wakeup is a harmless no-op.
|
|
*/
|
|
void recalc_sigpending_and_wake(struct task_struct *t)
|
|
{
|
|
if (recalc_sigpending_tsk(t))
|
|
signal_wake_up(t, 0);
|
|
}
|
|
|
|
void recalc_sigpending(void)
|
|
{
|
|
if (unlikely(tracehook_force_sigpending()))
|
|
set_thread_flag(TIF_SIGPENDING);
|
|
else if (!recalc_sigpending_tsk(current) && !freezing(current))
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
|
|
}
|
|
|
|
/* Given the mask, find the first available signal that should be serviced. */
|
|
|
|
int next_signal(struct sigpending *pending, sigset_t *mask)
|
|
{
|
|
unsigned long i, *s, *m, x;
|
|
int sig = 0;
|
|
|
|
s = pending->signal.sig;
|
|
m = mask->sig;
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
|
|
if ((x = *s &~ *m) != 0) {
|
|
sig = ffz(~x) + i*_NSIG_BPW + 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 2: if ((x = s[0] &~ m[0]) != 0)
|
|
sig = 1;
|
|
else if ((x = s[1] &~ m[1]) != 0)
|
|
sig = _NSIG_BPW + 1;
|
|
else
|
|
break;
|
|
sig += ffz(~x);
|
|
break;
|
|
|
|
case 1: if ((x = *s &~ *m) != 0)
|
|
sig = ffz(~x) + 1;
|
|
break;
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* allocate a new signal queue record
|
|
* - this may be called without locks if and only if t == current, otherwise an
|
|
* appopriate lock must be held to stop the target task from exiting
|
|
*/
|
|
static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
|
|
int override_rlimit)
|
|
{
|
|
struct sigqueue *q = NULL;
|
|
struct user_struct *user;
|
|
|
|
/*
|
|
* We won't get problems with the target's UID changing under us
|
|
* because changing it requires RCU be used, and if t != current, the
|
|
* caller must be holding the RCU readlock (by way of a spinlock) and
|
|
* we use RCU protection here
|
|
*/
|
|
user = get_uid(__task_cred(t)->user);
|
|
atomic_inc(&user->sigpending);
|
|
if (override_rlimit ||
|
|
atomic_read(&user->sigpending) <=
|
|
t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
|
|
q = kmem_cache_alloc(sigqueue_cachep, flags);
|
|
if (unlikely(q == NULL)) {
|
|
atomic_dec(&user->sigpending);
|
|
free_uid(user);
|
|
} else {
|
|
INIT_LIST_HEAD(&q->list);
|
|
q->flags = 0;
|
|
q->user = user;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
static void __sigqueue_free(struct sigqueue *q)
|
|
{
|
|
if (q->flags & SIGQUEUE_PREALLOC)
|
|
return;
|
|
atomic_dec(&q->user->sigpending);
|
|
free_uid(q->user);
|
|
kmem_cache_free(sigqueue_cachep, q);
|
|
}
|
|
|
|
void flush_sigqueue(struct sigpending *queue)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
sigemptyset(&queue->signal);
|
|
while (!list_empty(&queue->list)) {
|
|
q = list_entry(queue->list.next, struct sigqueue , list);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all pending signals for a task.
|
|
*/
|
|
void flush_signals(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
flush_sigqueue(&t->pending);
|
|
flush_sigqueue(&t->signal->shared_pending);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
}
|
|
|
|
static void __flush_itimer_signals(struct sigpending *pending)
|
|
{
|
|
sigset_t signal, retain;
|
|
struct sigqueue *q, *n;
|
|
|
|
signal = pending->signal;
|
|
sigemptyset(&retain);
|
|
|
|
list_for_each_entry_safe(q, n, &pending->list, list) {
|
|
int sig = q->info.si_signo;
|
|
|
|
if (likely(q->info.si_code != SI_TIMER)) {
|
|
sigaddset(&retain, sig);
|
|
} else {
|
|
sigdelset(&signal, sig);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
sigorsets(&pending->signal, &signal, &retain);
|
|
}
|
|
|
|
void flush_itimer_signals(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tsk->sighand->siglock, flags);
|
|
__flush_itimer_signals(&tsk->pending);
|
|
__flush_itimer_signals(&tsk->signal->shared_pending);
|
|
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
|
|
}
|
|
|
|
void ignore_signals(struct task_struct *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < _NSIG; ++i)
|
|
t->sighand->action[i].sa.sa_handler = SIG_IGN;
|
|
|
|
flush_signals(t);
|
|
}
|
|
|
|
/*
|
|
* Flush all handlers for a task.
|
|
*/
|
|
|
|
void
|
|
flush_signal_handlers(struct task_struct *t, int force_default)
|
|
{
|
|
int i;
|
|
struct k_sigaction *ka = &t->sighand->action[0];
|
|
for (i = _NSIG ; i != 0 ; i--) {
|
|
if (force_default || ka->sa.sa_handler != SIG_IGN)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
ka->sa.sa_flags = 0;
|
|
sigemptyset(&ka->sa.sa_mask);
|
|
ka++;
|
|
}
|
|
}
|
|
|
|
int unhandled_signal(struct task_struct *tsk, int sig)
|
|
{
|
|
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
|
|
if (is_global_init(tsk))
|
|
return 1;
|
|
if (handler != SIG_IGN && handler != SIG_DFL)
|
|
return 0;
|
|
return !tracehook_consider_fatal_signal(tsk, sig);
|
|
}
|
|
|
|
|
|
/* Notify the system that a driver wants to block all signals for this
|
|
* process, and wants to be notified if any signals at all were to be
|
|
* sent/acted upon. If the notifier routine returns non-zero, then the
|
|
* signal will be acted upon after all. If the notifier routine returns 0,
|
|
* then then signal will be blocked. Only one block per process is
|
|
* allowed. priv is a pointer to private data that the notifier routine
|
|
* can use to determine if the signal should be blocked or not. */
|
|
|
|
void
|
|
block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(¤t->sighand->siglock, flags);
|
|
current->notifier_mask = mask;
|
|
current->notifier_data = priv;
|
|
current->notifier = notifier;
|
|
spin_unlock_irqrestore(¤t->sighand->siglock, flags);
|
|
}
|
|
|
|
/* Notify the system that blocking has ended. */
|
|
|
|
void
|
|
unblock_all_signals(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(¤t->sighand->siglock, flags);
|
|
current->notifier = NULL;
|
|
current->notifier_data = NULL;
|
|
recalc_sigpending();
|
|
spin_unlock_irqrestore(¤t->sighand->siglock, flags);
|
|
}
|
|
|
|
static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
|
|
{
|
|
struct sigqueue *q, *first = NULL;
|
|
|
|
/*
|
|
* Collect the siginfo appropriate to this signal. Check if
|
|
* there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry(q, &list->list, list) {
|
|
if (q->info.si_signo == sig) {
|
|
if (first)
|
|
goto still_pending;
|
|
first = q;
|
|
}
|
|
}
|
|
|
|
sigdelset(&list->signal, sig);
|
|
|
|
if (first) {
|
|
still_pending:
|
|
list_del_init(&first->list);
|
|
copy_siginfo(info, &first->info);
|
|
__sigqueue_free(first);
|
|
} else {
|
|
/* Ok, it wasn't in the queue. This must be
|
|
a fast-pathed signal or we must have been
|
|
out of queue space. So zero out the info.
|
|
*/
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = 0;
|
|
info->si_pid = 0;
|
|
info->si_uid = 0;
|
|
}
|
|
}
|
|
|
|
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
|
|
siginfo_t *info)
|
|
{
|
|
int sig = next_signal(pending, mask);
|
|
|
|
if (sig) {
|
|
if (current->notifier) {
|
|
if (sigismember(current->notifier_mask, sig)) {
|
|
if (!(current->notifier)(current->notifier_data)) {
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
collect_signal(sig, pending, info);
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* Dequeue a signal and return the element to the caller, which is
|
|
* expected to free it.
|
|
*
|
|
* All callers have to hold the siglock.
|
|
*/
|
|
int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
|
|
{
|
|
int signr;
|
|
|
|
/* We only dequeue private signals from ourselves, we don't let
|
|
* signalfd steal them
|
|
*/
|
|
signr = __dequeue_signal(&tsk->pending, mask, info);
|
|
if (!signr) {
|
|
signr = __dequeue_signal(&tsk->signal->shared_pending,
|
|
mask, info);
|
|
/*
|
|
* itimer signal ?
|
|
*
|
|
* itimers are process shared and we restart periodic
|
|
* itimers in the signal delivery path to prevent DoS
|
|
* attacks in the high resolution timer case. This is
|
|
* compliant with the old way of self restarting
|
|
* itimers, as the SIGALRM is a legacy signal and only
|
|
* queued once. Changing the restart behaviour to
|
|
* restart the timer in the signal dequeue path is
|
|
* reducing the timer noise on heavy loaded !highres
|
|
* systems too.
|
|
*/
|
|
if (unlikely(signr == SIGALRM)) {
|
|
struct hrtimer *tmr = &tsk->signal->real_timer;
|
|
|
|
if (!hrtimer_is_queued(tmr) &&
|
|
tsk->signal->it_real_incr.tv64 != 0) {
|
|
hrtimer_forward(tmr, tmr->base->get_time(),
|
|
tsk->signal->it_real_incr);
|
|
hrtimer_restart(tmr);
|
|
}
|
|
}
|
|
}
|
|
|
|
recalc_sigpending();
|
|
if (!signr)
|
|
return 0;
|
|
|
|
if (unlikely(sig_kernel_stop(signr))) {
|
|
/*
|
|
* Set a marker that we have dequeued a stop signal. Our
|
|
* caller might release the siglock and then the pending
|
|
* stop signal it is about to process is no longer in the
|
|
* pending bitmasks, but must still be cleared by a SIGCONT
|
|
* (and overruled by a SIGKILL). So those cases clear this
|
|
* shared flag after we've set it. Note that this flag may
|
|
* remain set after the signal we return is ignored or
|
|
* handled. That doesn't matter because its only purpose
|
|
* is to alert stop-signal processing code when another
|
|
* processor has come along and cleared the flag.
|
|
*/
|
|
tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
|
|
}
|
|
if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
|
|
/*
|
|
* Release the siglock to ensure proper locking order
|
|
* of timer locks outside of siglocks. Note, we leave
|
|
* irqs disabled here, since the posix-timers code is
|
|
* about to disable them again anyway.
|
|
*/
|
|
spin_unlock(&tsk->sighand->siglock);
|
|
do_schedule_next_timer(info);
|
|
spin_lock(&tsk->sighand->siglock);
|
|
}
|
|
return signr;
|
|
}
|
|
|
|
/*
|
|
* Tell a process that it has a new active signal..
|
|
*
|
|
* NOTE! we rely on the previous spin_lock to
|
|
* lock interrupts for us! We can only be called with
|
|
* "siglock" held, and the local interrupt must
|
|
* have been disabled when that got acquired!
|
|
*
|
|
* No need to set need_resched since signal event passing
|
|
* goes through ->blocked
|
|
*/
|
|
void signal_wake_up(struct task_struct *t, int resume)
|
|
{
|
|
unsigned int mask;
|
|
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
|
|
/*
|
|
* For SIGKILL, we want to wake it up in the stopped/traced/killable
|
|
* case. We don't check t->state here because there is a race with it
|
|
* executing another processor and just now entering stopped state.
|
|
* By using wake_up_state, we ensure the process will wake up and
|
|
* handle its death signal.
|
|
*/
|
|
mask = TASK_INTERRUPTIBLE;
|
|
if (resume)
|
|
mask |= TASK_WAKEKILL;
|
|
if (!wake_up_state(t, mask))
|
|
kick_process(t);
|
|
}
|
|
|
|
/*
|
|
* Remove signals in mask from the pending set and queue.
|
|
* Returns 1 if any signals were found.
|
|
*
|
|
* All callers must be holding the siglock.
|
|
*
|
|
* This version takes a sigset mask and looks at all signals,
|
|
* not just those in the first mask word.
|
|
*/
|
|
static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
sigset_t m;
|
|
|
|
sigandsets(&m, mask, &s->signal);
|
|
if (sigisemptyset(&m))
|
|
return 0;
|
|
|
|
signandsets(&s->signal, &s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (sigismember(mask, q->info.si_signo)) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
/*
|
|
* Remove signals in mask from the pending set and queue.
|
|
* Returns 1 if any signals were found.
|
|
*
|
|
* All callers must be holding the siglock.
|
|
*/
|
|
static int rm_from_queue(unsigned long mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
|
|
if (!sigtestsetmask(&s->signal, mask))
|
|
return 0;
|
|
|
|
sigdelsetmask(&s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (q->info.si_signo < SIGRTMIN &&
|
|
(mask & sigmask(q->info.si_signo))) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Bad permissions for sending the signal
|
|
* - the caller must hold at least the RCU read lock
|
|
*/
|
|
static int check_kill_permission(int sig, struct siginfo *info,
|
|
struct task_struct *t)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
struct pid *sid;
|
|
int error;
|
|
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
|
|
return 0;
|
|
|
|
error = audit_signal_info(sig, t); /* Let audit system see the signal */
|
|
if (error)
|
|
return error;
|
|
|
|
tcred = __task_cred(t);
|
|
if ((cred->euid ^ tcred->suid) &&
|
|
(cred->euid ^ tcred->uid) &&
|
|
(cred->uid ^ tcred->suid) &&
|
|
(cred->uid ^ tcred->uid) &&
|
|
!capable(CAP_KILL)) {
|
|
switch (sig) {
|
|
case SIGCONT:
|
|
sid = task_session(t);
|
|
/*
|
|
* We don't return the error if sid == NULL. The
|
|
* task was unhashed, the caller must notice this.
|
|
*/
|
|
if (!sid || sid == task_session(current))
|
|
break;
|
|
default:
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
return security_task_kill(t, info, sig, 0);
|
|
}
|
|
|
|
/*
|
|
* Handle magic process-wide effects of stop/continue signals. Unlike
|
|
* the signal actions, these happen immediately at signal-generation
|
|
* time regardless of blocking, ignoring, or handling. This does the
|
|
* actual continuing for SIGCONT, but not the actual stopping for stop
|
|
* signals. The process stop is done as a signal action for SIG_DFL.
|
|
*
|
|
* Returns true if the signal should be actually delivered, otherwise
|
|
* it should be dropped.
|
|
*/
|
|
static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
|
|
if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
|
|
/*
|
|
* The process is in the middle of dying, nothing to do.
|
|
*/
|
|
} else if (sig_kernel_stop(sig)) {
|
|
/*
|
|
* This is a stop signal. Remove SIGCONT from all queues.
|
|
*/
|
|
rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
|
|
t = p;
|
|
do {
|
|
rm_from_queue(sigmask(SIGCONT), &t->pending);
|
|
} while_each_thread(p, t);
|
|
} else if (sig == SIGCONT) {
|
|
unsigned int why;
|
|
/*
|
|
* Remove all stop signals from all queues,
|
|
* and wake all threads.
|
|
*/
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
|
|
t = p;
|
|
do {
|
|
unsigned int state;
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
|
|
/*
|
|
* If there is a handler for SIGCONT, we must make
|
|
* sure that no thread returns to user mode before
|
|
* we post the signal, in case it was the only
|
|
* thread eligible to run the signal handler--then
|
|
* it must not do anything between resuming and
|
|
* running the handler. With the TIF_SIGPENDING
|
|
* flag set, the thread will pause and acquire the
|
|
* siglock that we hold now and until we've queued
|
|
* the pending signal.
|
|
*
|
|
* Wake up the stopped thread _after_ setting
|
|
* TIF_SIGPENDING
|
|
*/
|
|
state = __TASK_STOPPED;
|
|
if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
state |= TASK_INTERRUPTIBLE;
|
|
}
|
|
wake_up_state(t, state);
|
|
} while_each_thread(p, t);
|
|
|
|
/*
|
|
* Notify the parent with CLD_CONTINUED if we were stopped.
|
|
*
|
|
* If we were in the middle of a group stop, we pretend it
|
|
* was already finished, and then continued. Since SIGCHLD
|
|
* doesn't queue we report only CLD_STOPPED, as if the next
|
|
* CLD_CONTINUED was dropped.
|
|
*/
|
|
why = 0;
|
|
if (signal->flags & SIGNAL_STOP_STOPPED)
|
|
why |= SIGNAL_CLD_CONTINUED;
|
|
else if (signal->group_stop_count)
|
|
why |= SIGNAL_CLD_STOPPED;
|
|
|
|
if (why) {
|
|
/*
|
|
* The first thread which returns from finish_stop()
|
|
* will take ->siglock, notice SIGNAL_CLD_MASK, and
|
|
* notify its parent. See get_signal_to_deliver().
|
|
*/
|
|
signal->flags = why | SIGNAL_STOP_CONTINUED;
|
|
signal->group_stop_count = 0;
|
|
signal->group_exit_code = 0;
|
|
} else {
|
|
/*
|
|
* We are not stopped, but there could be a stop
|
|
* signal in the middle of being processed after
|
|
* being removed from the queue. Clear that too.
|
|
*/
|
|
signal->flags &= ~SIGNAL_STOP_DEQUEUED;
|
|
}
|
|
}
|
|
|
|
return !sig_ignored(p, sig, from_ancestor_ns);
|
|
}
|
|
|
|
/*
|
|
* Test if P wants to take SIG. After we've checked all threads with this,
|
|
* it's equivalent to finding no threads not blocking SIG. Any threads not
|
|
* blocking SIG were ruled out because they are not running and already
|
|
* have pending signals. Such threads will dequeue from the shared queue
|
|
* as soon as they're available, so putting the signal on the shared queue
|
|
* will be equivalent to sending it to one such thread.
|
|
*/
|
|
static inline int wants_signal(int sig, struct task_struct *p)
|
|
{
|
|
if (sigismember(&p->blocked, sig))
|
|
return 0;
|
|
if (p->flags & PF_EXITING)
|
|
return 0;
|
|
if (sig == SIGKILL)
|
|
return 1;
|
|
if (task_is_stopped_or_traced(p))
|
|
return 0;
|
|
return task_curr(p) || !signal_pending(p);
|
|
}
|
|
|
|
static void complete_signal(int sig, struct task_struct *p, int group)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Now find a thread we can wake up to take the signal off the queue.
|
|
*
|
|
* If the main thread wants the signal, it gets first crack.
|
|
* Probably the least surprising to the average bear.
|
|
*/
|
|
if (wants_signal(sig, p))
|
|
t = p;
|
|
else if (!group || thread_group_empty(p))
|
|
/*
|
|
* There is just one thread and it does not need to be woken.
|
|
* It will dequeue unblocked signals before it runs again.
|
|
*/
|
|
return;
|
|
else {
|
|
/*
|
|
* Otherwise try to find a suitable thread.
|
|
*/
|
|
t = signal->curr_target;
|
|
while (!wants_signal(sig, t)) {
|
|
t = next_thread(t);
|
|
if (t == signal->curr_target)
|
|
/*
|
|
* No thread needs to be woken.
|
|
* Any eligible threads will see
|
|
* the signal in the queue soon.
|
|
*/
|
|
return;
|
|
}
|
|
signal->curr_target = t;
|
|
}
|
|
|
|
/*
|
|
* Found a killable thread. If the signal will be fatal,
|
|
* then start taking the whole group down immediately.
|
|
*/
|
|
if (sig_fatal(p, sig) &&
|
|
!(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
|
|
!sigismember(&t->real_blocked, sig) &&
|
|
(sig == SIGKILL ||
|
|
!tracehook_consider_fatal_signal(t, sig))) {
|
|
/*
|
|
* This signal will be fatal to the whole group.
|
|
*/
|
|
if (!sig_kernel_coredump(sig)) {
|
|
/*
|
|
* Start a group exit and wake everybody up.
|
|
* This way we don't have other threads
|
|
* running and doing things after a slower
|
|
* thread has the fatal signal pending.
|
|
*/
|
|
signal->flags = SIGNAL_GROUP_EXIT;
|
|
signal->group_exit_code = sig;
|
|
signal->group_stop_count = 0;
|
|
t = p;
|
|
do {
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
} while_each_thread(p, t);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The signal is already in the shared-pending queue.
|
|
* Tell the chosen thread to wake up and dequeue it.
|
|
*/
|
|
signal_wake_up(t, sig == SIGKILL);
|
|
return;
|
|
}
|
|
|
|
static inline int legacy_queue(struct sigpending *signals, int sig)
|
|
{
|
|
return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
|
|
}
|
|
|
|
static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
|
int group, int from_ancestor_ns)
|
|
{
|
|
struct sigpending *pending;
|
|
struct sigqueue *q;
|
|
|
|
trace_sched_signal_send(sig, t);
|
|
|
|
assert_spin_locked(&t->sighand->siglock);
|
|
|
|
if (!prepare_signal(sig, t, from_ancestor_ns))
|
|
return 0;
|
|
|
|
pending = group ? &t->signal->shared_pending : &t->pending;
|
|
/*
|
|
* Short-circuit ignored signals and support queuing
|
|
* exactly one non-rt signal, so that we can get more
|
|
* detailed information about the cause of the signal.
|
|
*/
|
|
if (legacy_queue(pending, sig))
|
|
return 0;
|
|
/*
|
|
* fast-pathed signals for kernel-internal things like SIGSTOP
|
|
* or SIGKILL.
|
|
*/
|
|
if (info == SEND_SIG_FORCED)
|
|
goto out_set;
|
|
|
|
/* Real-time signals must be queued if sent by sigqueue, or
|
|
some other real-time mechanism. It is implementation
|
|
defined whether kill() does so. We attempt to do so, on
|
|
the principle of least surprise, but since kill is not
|
|
allowed to fail with EAGAIN when low on memory we just
|
|
make sure at least one signal gets delivered and don't
|
|
pass on the info struct. */
|
|
|
|
q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
|
|
(is_si_special(info) ||
|
|
info->si_code >= 0)));
|
|
if (q) {
|
|
list_add_tail(&q->list, &pending->list);
|
|
switch ((unsigned long) info) {
|
|
case (unsigned long) SEND_SIG_NOINFO:
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_USER;
|
|
q->info.si_pid = task_tgid_nr_ns(current,
|
|
task_active_pid_ns(t));
|
|
q->info.si_uid = current_uid();
|
|
break;
|
|
case (unsigned long) SEND_SIG_PRIV:
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_KERNEL;
|
|
q->info.si_pid = 0;
|
|
q->info.si_uid = 0;
|
|
break;
|
|
default:
|
|
copy_siginfo(&q->info, info);
|
|
if (from_ancestor_ns)
|
|
q->info.si_pid = 0;
|
|
break;
|
|
}
|
|
} else if (!is_si_special(info)) {
|
|
if (sig >= SIGRTMIN && info->si_code != SI_USER)
|
|
/*
|
|
* Queue overflow, abort. We may abort if the signal was rt
|
|
* and sent by user using something other than kill().
|
|
*/
|
|
return -EAGAIN;
|
|
}
|
|
|
|
out_set:
|
|
signalfd_notify(t, sig);
|
|
sigaddset(&pending->signal, sig);
|
|
complete_signal(sig, t, group);
|
|
return 0;
|
|
}
|
|
|
|
static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
|
int group)
|
|
{
|
|
int from_ancestor_ns = 0;
|
|
|
|
#ifdef CONFIG_PID_NS
|
|
if (!is_si_special(info) && SI_FROMUSER(info) &&
|
|
task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0)
|
|
from_ancestor_ns = 1;
|
|
#endif
|
|
|
|
return __send_signal(sig, info, t, group, from_ancestor_ns);
|
|
}
|
|
|
|
int print_fatal_signals;
|
|
|
|
static void print_fatal_signal(struct pt_regs *regs, int signr)
|
|
{
|
|
printk("%s/%d: potentially unexpected fatal signal %d.\n",
|
|
current->comm, task_pid_nr(current), signr);
|
|
|
|
#if defined(__i386__) && !defined(__arch_um__)
|
|
printk("code at %08lx: ", regs->ip);
|
|
{
|
|
int i;
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned char insn;
|
|
|
|
__get_user(insn, (unsigned char *)(regs->ip + i));
|
|
printk("%02x ", insn);
|
|
}
|
|
}
|
|
#endif
|
|
printk("\n");
|
|
preempt_disable();
|
|
show_regs(regs);
|
|
preempt_enable();
|
|
}
|
|
|
|
static int __init setup_print_fatal_signals(char *str)
|
|
{
|
|
get_option (&str, &print_fatal_signals);
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("print-fatal-signals=", setup_print_fatal_signals);
|
|
|
|
int
|
|
__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
return send_signal(sig, info, p, 1);
|
|
}
|
|
|
|
static int
|
|
specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
|
|
{
|
|
return send_signal(sig, info, t, 0);
|
|
}
|
|
|
|
/*
|
|
* Force a signal that the process can't ignore: if necessary
|
|
* we unblock the signal and change any SIG_IGN to SIG_DFL.
|
|
*
|
|
* Note: If we unblock the signal, we always reset it to SIG_DFL,
|
|
* since we do not want to have a signal handler that was blocked
|
|
* be invoked when user space had explicitly blocked it.
|
|
*
|
|
* We don't want to have recursive SIGSEGV's etc, for example,
|
|
* that is why we also clear SIGNAL_UNKILLABLE.
|
|
*/
|
|
int
|
|
force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
|
|
{
|
|
unsigned long int flags;
|
|
int ret, blocked, ignored;
|
|
struct k_sigaction *action;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
action = &t->sighand->action[sig-1];
|
|
ignored = action->sa.sa_handler == SIG_IGN;
|
|
blocked = sigismember(&t->blocked, sig);
|
|
if (blocked || ignored) {
|
|
action->sa.sa_handler = SIG_DFL;
|
|
if (blocked) {
|
|
sigdelset(&t->blocked, sig);
|
|
recalc_sigpending_and_wake(t);
|
|
}
|
|
}
|
|
if (action->sa.sa_handler == SIG_DFL)
|
|
t->signal->flags &= ~SIGNAL_UNKILLABLE;
|
|
ret = specific_send_sig_info(sig, info, t);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
force_sig_specific(int sig, struct task_struct *t)
|
|
{
|
|
force_sig_info(sig, SEND_SIG_FORCED, t);
|
|
}
|
|
|
|
/*
|
|
* Nuke all other threads in the group.
|
|
*/
|
|
void zap_other_threads(struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
p->signal->group_stop_count = 0;
|
|
|
|
for (t = next_thread(p); t != p; t = next_thread(t)) {
|
|
/*
|
|
* Don't bother with already dead threads
|
|
*/
|
|
if (t->exit_state)
|
|
continue;
|
|
|
|
/* SIGKILL will be handled before any pending SIGSTOP */
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
}
|
|
}
|
|
|
|
int __fatal_signal_pending(struct task_struct *tsk)
|
|
{
|
|
return sigismember(&tsk->pending.signal, SIGKILL);
|
|
}
|
|
EXPORT_SYMBOL(__fatal_signal_pending);
|
|
|
|
struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
|
|
rcu_read_lock();
|
|
for (;;) {
|
|
sighand = rcu_dereference(tsk->sighand);
|
|
if (unlikely(sighand == NULL))
|
|
break;
|
|
|
|
spin_lock_irqsave(&sighand->siglock, *flags);
|
|
if (likely(sighand == tsk->sighand))
|
|
break;
|
|
spin_unlock_irqrestore(&sighand->siglock, *flags);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return sighand;
|
|
}
|
|
|
|
/*
|
|
* send signal info to all the members of a group
|
|
* - the caller must hold the RCU read lock at least
|
|
*/
|
|
int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
ret = check_kill_permission(sig, info, p);
|
|
|
|
if (!ret && sig) {
|
|
ret = -ESRCH;
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = __group_send_sig_info(sig, info, p);
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __kill_pgrp_info() sends a signal to a process group: this is what the tty
|
|
* control characters do (^C, ^Z etc)
|
|
* - the caller must hold at least a readlock on tasklist_lock
|
|
*/
|
|
int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
int retval, success;
|
|
|
|
success = 0;
|
|
retval = -ESRCH;
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
int err = group_send_sig_info(sig, info, p);
|
|
success |= !err;
|
|
retval = err;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
return success ? 0 : retval;
|
|
}
|
|
|
|
int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
|
|
{
|
|
int error = -ESRCH;
|
|
struct task_struct *p;
|
|
|
|
rcu_read_lock();
|
|
retry:
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (p) {
|
|
error = group_send_sig_info(sig, info, p);
|
|
if (unlikely(error == -ESRCH))
|
|
/*
|
|
* The task was unhashed in between, try again.
|
|
* If it is dead, pid_task() will return NULL,
|
|
* if we race with de_thread() it will find the
|
|
* new leader.
|
|
*/
|
|
goto retry;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
kill_proc_info(int sig, struct siginfo *info, pid_t pid)
|
|
{
|
|
int error;
|
|
rcu_read_lock();
|
|
error = kill_pid_info(sig, info, find_vpid(pid));
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|
|
|
|
/* like kill_pid_info(), but doesn't use uid/euid of "current" */
|
|
int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
|
|
uid_t uid, uid_t euid, u32 secid)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct task_struct *p;
|
|
const struct cred *pcred;
|
|
|
|
if (!valid_signal(sig))
|
|
return ret;
|
|
|
|
read_lock(&tasklist_lock);
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (!p) {
|
|
ret = -ESRCH;
|
|
goto out_unlock;
|
|
}
|
|
pcred = __task_cred(p);
|
|
if ((info == SEND_SIG_NOINFO ||
|
|
(!is_si_special(info) && SI_FROMUSER(info))) &&
|
|
euid != pcred->suid && euid != pcred->uid &&
|
|
uid != pcred->suid && uid != pcred->uid) {
|
|
ret = -EPERM;
|
|
goto out_unlock;
|
|
}
|
|
ret = security_task_kill(p, info, sig, secid);
|
|
if (ret)
|
|
goto out_unlock;
|
|
if (sig && p->sighand) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
ret = __send_signal(sig, info, p, 1, 0);
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
|
|
|
|
/*
|
|
* kill_something_info() interprets pid in interesting ways just like kill(2).
|
|
*
|
|
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
|
|
* is probably wrong. Should make it like BSD or SYSV.
|
|
*/
|
|
|
|
static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
|
|
{
|
|
int ret;
|
|
|
|
if (pid > 0) {
|
|
rcu_read_lock();
|
|
ret = kill_pid_info(sig, info, find_vpid(pid));
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
if (pid != -1) {
|
|
ret = __kill_pgrp_info(sig, info,
|
|
pid ? find_vpid(-pid) : task_pgrp(current));
|
|
} else {
|
|
int retval = 0, count = 0;
|
|
struct task_struct * p;
|
|
|
|
for_each_process(p) {
|
|
if (task_pid_vnr(p) > 1 &&
|
|
!same_thread_group(p, current)) {
|
|
int err = group_send_sig_info(sig, info, p);
|
|
++count;
|
|
if (err != -EPERM)
|
|
retval = err;
|
|
}
|
|
}
|
|
ret = count ? retval : -ESRCH;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These are for backward compatibility with the rest of the kernel source.
|
|
*/
|
|
|
|
/*
|
|
* The caller must ensure the task can't exit.
|
|
*/
|
|
int
|
|
send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Make sure legacy kernel users don't send in bad values
|
|
* (normal paths check this in check_kill_permission).
|
|
*/
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
ret = specific_send_sig_info(sig, info, p);
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
return ret;
|
|
}
|
|
|
|
#define __si_special(priv) \
|
|
((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
|
|
|
|
int
|
|
send_sig(int sig, struct task_struct *p, int priv)
|
|
{
|
|
return send_sig_info(sig, __si_special(priv), p);
|
|
}
|
|
|
|
void
|
|
force_sig(int sig, struct task_struct *p)
|
|
{
|
|
force_sig_info(sig, SEND_SIG_PRIV, p);
|
|
}
|
|
|
|
/*
|
|
* When things go south during signal handling, we
|
|
* will force a SIGSEGV. And if the signal that caused
|
|
* the problem was already a SIGSEGV, we'll want to
|
|
* make sure we don't even try to deliver the signal..
|
|
*/
|
|
int
|
|
force_sigsegv(int sig, struct task_struct *p)
|
|
{
|
|
if (sig == SIGSEGV) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
force_sig(SIGSEGV, p);
|
|
return 0;
|
|
}
|
|
|
|
int kill_pgrp(struct pid *pid, int sig, int priv)
|
|
{
|
|
int ret;
|
|
|
|
read_lock(&tasklist_lock);
|
|
ret = __kill_pgrp_info(sig, __si_special(priv), pid);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kill_pgrp);
|
|
|
|
int kill_pid(struct pid *pid, int sig, int priv)
|
|
{
|
|
return kill_pid_info(sig, __si_special(priv), pid);
|
|
}
|
|
EXPORT_SYMBOL(kill_pid);
|
|
|
|
/*
|
|
* These functions support sending signals using preallocated sigqueue
|
|
* structures. This is needed "because realtime applications cannot
|
|
* afford to lose notifications of asynchronous events, like timer
|
|
* expirations or I/O completions". In the case of Posix Timers
|
|
* we allocate the sigqueue structure from the timer_create. If this
|
|
* allocation fails we are able to report the failure to the application
|
|
* with an EAGAIN error.
|
|
*/
|
|
|
|
struct sigqueue *sigqueue_alloc(void)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
|
|
q->flags |= SIGQUEUE_PREALLOC;
|
|
return(q);
|
|
}
|
|
|
|
void sigqueue_free(struct sigqueue *q)
|
|
{
|
|
unsigned long flags;
|
|
spinlock_t *lock = ¤t->sighand->siglock;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
/*
|
|
* We must hold ->siglock while testing q->list
|
|
* to serialize with collect_signal() or with
|
|
* __exit_signal()->flush_sigqueue().
|
|
*/
|
|
spin_lock_irqsave(lock, flags);
|
|
q->flags &= ~SIGQUEUE_PREALLOC;
|
|
/*
|
|
* If it is queued it will be freed when dequeued,
|
|
* like the "regular" sigqueue.
|
|
*/
|
|
if (!list_empty(&q->list))
|
|
q = NULL;
|
|
spin_unlock_irqrestore(lock, flags);
|
|
|
|
if (q)
|
|
__sigqueue_free(q);
|
|
}
|
|
|
|
int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
|
|
{
|
|
int sig = q->info.si_signo;
|
|
struct sigpending *pending;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
|
|
ret = -1;
|
|
if (!likely(lock_task_sighand(t, &flags)))
|
|
goto ret;
|
|
|
|
ret = 1; /* the signal is ignored */
|
|
if (!prepare_signal(sig, t, 0))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
/*
|
|
* If an SI_TIMER entry is already queue just increment
|
|
* the overrun count.
|
|
*/
|
|
BUG_ON(q->info.si_code != SI_TIMER);
|
|
q->info.si_overrun++;
|
|
goto out;
|
|
}
|
|
q->info.si_overrun = 0;
|
|
|
|
signalfd_notify(t, sig);
|
|
pending = group ? &t->signal->shared_pending : &t->pending;
|
|
list_add_tail(&q->list, &pending->list);
|
|
sigaddset(&pending->signal, sig);
|
|
complete_signal(sig, t, group);
|
|
out:
|
|
unlock_task_sighand(t, &flags);
|
|
ret:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Wake up any threads in the parent blocked in wait* syscalls.
|
|
*/
|
|
static inline void __wake_up_parent(struct task_struct *p,
|
|
struct task_struct *parent)
|
|
{
|
|
wake_up_interruptible_sync(&parent->signal->wait_chldexit);
|
|
}
|
|
|
|
/*
|
|
* Let a parent know about the death of a child.
|
|
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
|
|
*
|
|
* Returns -1 if our parent ignored us and so we've switched to
|
|
* self-reaping, or else @sig.
|
|
*/
|
|
int do_notify_parent(struct task_struct *tsk, int sig)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
struct sighand_struct *psig;
|
|
int ret = sig;
|
|
|
|
BUG_ON(sig == -1);
|
|
|
|
/* do_notify_parent_cldstop should have been called instead. */
|
|
BUG_ON(task_is_stopped_or_traced(tsk));
|
|
|
|
BUG_ON(!tsk->ptrace &&
|
|
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
/*
|
|
* we are under tasklist_lock here so our parent is tied to
|
|
* us and cannot exit and release its namespace.
|
|
*
|
|
* the only it can is to switch its nsproxy with sys_unshare,
|
|
* bu uncharing pid namespaces is not allowed, so we'll always
|
|
* see relevant namespace
|
|
*
|
|
* write_lock() currently calls preempt_disable() which is the
|
|
* same as rcu_read_lock(), but according to Oleg, this is not
|
|
* correct to rely on this
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
|
|
info.si_uid = __task_cred(tsk)->uid;
|
|
rcu_read_unlock();
|
|
|
|
info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
|
|
tsk->signal->utime));
|
|
info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
|
|
tsk->signal->stime));
|
|
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
if (tsk->exit_code & 0x80)
|
|
info.si_code = CLD_DUMPED;
|
|
else if (tsk->exit_code & 0x7f)
|
|
info.si_code = CLD_KILLED;
|
|
else {
|
|
info.si_code = CLD_EXITED;
|
|
info.si_status = tsk->exit_code >> 8;
|
|
}
|
|
|
|
psig = tsk->parent->sighand;
|
|
spin_lock_irqsave(&psig->siglock, flags);
|
|
if (!tsk->ptrace && sig == SIGCHLD &&
|
|
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
|
|
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
|
|
/*
|
|
* We are exiting and our parent doesn't care. POSIX.1
|
|
* defines special semantics for setting SIGCHLD to SIG_IGN
|
|
* or setting the SA_NOCLDWAIT flag: we should be reaped
|
|
* automatically and not left for our parent's wait4 call.
|
|
* Rather than having the parent do it as a magic kind of
|
|
* signal handler, we just set this to tell do_exit that we
|
|
* can be cleaned up without becoming a zombie. Note that
|
|
* we still call __wake_up_parent in this case, because a
|
|
* blocked sys_wait4 might now return -ECHILD.
|
|
*
|
|
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
|
|
* is implementation-defined: we do (if you don't want
|
|
* it, just use SIG_IGN instead).
|
|
*/
|
|
ret = tsk->exit_signal = -1;
|
|
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
|
|
sig = -1;
|
|
}
|
|
if (valid_signal(sig) && sig > 0)
|
|
__group_send_sig_info(sig, &info, tsk->parent);
|
|
__wake_up_parent(tsk, tsk->parent);
|
|
spin_unlock_irqrestore(&psig->siglock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
struct task_struct *parent;
|
|
struct sighand_struct *sighand;
|
|
|
|
if (tsk->ptrace & PT_PTRACED)
|
|
parent = tsk->parent;
|
|
else {
|
|
tsk = tsk->group_leader;
|
|
parent = tsk->real_parent;
|
|
}
|
|
|
|
info.si_signo = SIGCHLD;
|
|
info.si_errno = 0;
|
|
/*
|
|
* see comment in do_notify_parent() abot the following 3 lines
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
|
|
info.si_uid = __task_cred(tsk)->uid;
|
|
rcu_read_unlock();
|
|
|
|
info.si_utime = cputime_to_clock_t(tsk->utime);
|
|
info.si_stime = cputime_to_clock_t(tsk->stime);
|
|
|
|
info.si_code = why;
|
|
switch (why) {
|
|
case CLD_CONTINUED:
|
|
info.si_status = SIGCONT;
|
|
break;
|
|
case CLD_STOPPED:
|
|
info.si_status = tsk->signal->group_exit_code & 0x7f;
|
|
break;
|
|
case CLD_TRAPPED:
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
sighand = parent->sighand;
|
|
spin_lock_irqsave(&sighand->siglock, flags);
|
|
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
|
|
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
|
|
__group_send_sig_info(SIGCHLD, &info, parent);
|
|
/*
|
|
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
|
|
*/
|
|
__wake_up_parent(tsk, parent);
|
|
spin_unlock_irqrestore(&sighand->siglock, flags);
|
|
}
|
|
|
|
static inline int may_ptrace_stop(void)
|
|
{
|
|
if (!likely(current->ptrace & PT_PTRACED))
|
|
return 0;
|
|
/*
|
|
* Are we in the middle of do_coredump?
|
|
* If so and our tracer is also part of the coredump stopping
|
|
* is a deadlock situation, and pointless because our tracer
|
|
* is dead so don't allow us to stop.
|
|
* If SIGKILL was already sent before the caller unlocked
|
|
* ->siglock we must see ->core_state != NULL. Otherwise it
|
|
* is safe to enter schedule().
|
|
*/
|
|
if (unlikely(current->mm->core_state) &&
|
|
unlikely(current->mm == current->parent->mm))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return nonzero if there is a SIGKILL that should be waking us up.
|
|
* Called with the siglock held.
|
|
*/
|
|
static int sigkill_pending(struct task_struct *tsk)
|
|
{
|
|
return sigismember(&tsk->pending.signal, SIGKILL) ||
|
|
sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* This must be called with current->sighand->siglock held.
|
|
*
|
|
* This should be the path for all ptrace stops.
|
|
* We always set current->last_siginfo while stopped here.
|
|
* That makes it a way to test a stopped process for
|
|
* being ptrace-stopped vs being job-control-stopped.
|
|
*
|
|
* If we actually decide not to stop at all because the tracer
|
|
* is gone, we keep current->exit_code unless clear_code.
|
|
*/
|
|
static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
|
|
{
|
|
if (arch_ptrace_stop_needed(exit_code, info)) {
|
|
/*
|
|
* The arch code has something special to do before a
|
|
* ptrace stop. This is allowed to block, e.g. for faults
|
|
* on user stack pages. We can't keep the siglock while
|
|
* calling arch_ptrace_stop, so we must release it now.
|
|
* To preserve proper semantics, we must do this before
|
|
* any signal bookkeeping like checking group_stop_count.
|
|
* Meanwhile, a SIGKILL could come in before we retake the
|
|
* siglock. That must prevent us from sleeping in TASK_TRACED.
|
|
* So after regaining the lock, we must check for SIGKILL.
|
|
*/
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
arch_ptrace_stop(exit_code, info);
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (sigkill_pending(current))
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If there is a group stop in progress,
|
|
* we must participate in the bookkeeping.
|
|
*/
|
|
if (current->signal->group_stop_count > 0)
|
|
--current->signal->group_stop_count;
|
|
|
|
current->last_siginfo = info;
|
|
current->exit_code = exit_code;
|
|
|
|
/* Let the debugger run. */
|
|
__set_current_state(TASK_TRACED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_lock(&tasklist_lock);
|
|
if (may_ptrace_stop()) {
|
|
do_notify_parent_cldstop(current, CLD_TRAPPED);
|
|
/*
|
|
* Don't want to allow preemption here, because
|
|
* sys_ptrace() needs this task to be inactive.
|
|
*
|
|
* XXX: implement read_unlock_no_resched().
|
|
*/
|
|
preempt_disable();
|
|
read_unlock(&tasklist_lock);
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
} else {
|
|
/*
|
|
* By the time we got the lock, our tracer went away.
|
|
* Don't drop the lock yet, another tracer may come.
|
|
*/
|
|
__set_current_state(TASK_RUNNING);
|
|
if (clear_code)
|
|
current->exit_code = 0;
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
/*
|
|
* While in TASK_TRACED, we were considered "frozen enough".
|
|
* Now that we woke up, it's crucial if we're supposed to be
|
|
* frozen that we freeze now before running anything substantial.
|
|
*/
|
|
try_to_freeze();
|
|
|
|
/*
|
|
* We are back. Now reacquire the siglock before touching
|
|
* last_siginfo, so that we are sure to have synchronized with
|
|
* any signal-sending on another CPU that wants to examine it.
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->last_siginfo = NULL;
|
|
|
|
/*
|
|
* Queued signals ignored us while we were stopped for tracing.
|
|
* So check for any that we should take before resuming user mode.
|
|
* This sets TIF_SIGPENDING, but never clears it.
|
|
*/
|
|
recalc_sigpending_tsk(current);
|
|
}
|
|
|
|
void ptrace_notify(int exit_code)
|
|
{
|
|
siginfo_t info;
|
|
|
|
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
|
|
|
|
memset(&info, 0, sizeof info);
|
|
info.si_signo = SIGTRAP;
|
|
info.si_code = exit_code;
|
|
info.si_pid = task_pid_vnr(current);
|
|
info.si_uid = current_uid();
|
|
|
|
/* Let the debugger run. */
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
ptrace_stop(exit_code, 1, &info);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
static void
|
|
finish_stop(int stop_count)
|
|
{
|
|
/*
|
|
* If there are no other threads in the group, or if there is
|
|
* a group stop in progress and we are the last to stop,
|
|
* report to the parent. When ptraced, every thread reports itself.
|
|
*/
|
|
if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, CLD_STOPPED);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
do {
|
|
schedule();
|
|
} while (try_to_freeze());
|
|
/*
|
|
* Now we don't run again until continued.
|
|
*/
|
|
current->exit_code = 0;
|
|
}
|
|
|
|
/*
|
|
* This performs the stopping for SIGSTOP and other stop signals.
|
|
* We have to stop all threads in the thread group.
|
|
* Returns nonzero if we've actually stopped and released the siglock.
|
|
* Returns zero if we didn't stop and still hold the siglock.
|
|
*/
|
|
static int do_signal_stop(int signr)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
int stop_count;
|
|
|
|
if (sig->group_stop_count > 0) {
|
|
/*
|
|
* There is a group stop in progress. We don't need to
|
|
* start another one.
|
|
*/
|
|
stop_count = --sig->group_stop_count;
|
|
} else {
|
|
struct task_struct *t;
|
|
|
|
if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
|
|
unlikely(signal_group_exit(sig)))
|
|
return 0;
|
|
/*
|
|
* There is no group stop already in progress.
|
|
* We must initiate one now.
|
|
*/
|
|
sig->group_exit_code = signr;
|
|
|
|
stop_count = 0;
|
|
for (t = next_thread(current); t != current; t = next_thread(t))
|
|
/*
|
|
* Setting state to TASK_STOPPED for a group
|
|
* stop is always done with the siglock held,
|
|
* so this check has no races.
|
|
*/
|
|
if (!(t->flags & PF_EXITING) &&
|
|
!task_is_stopped_or_traced(t)) {
|
|
stop_count++;
|
|
signal_wake_up(t, 0);
|
|
}
|
|
sig->group_stop_count = stop_count;
|
|
}
|
|
|
|
if (stop_count == 0)
|
|
sig->flags = SIGNAL_STOP_STOPPED;
|
|
current->exit_code = sig->group_exit_code;
|
|
__set_current_state(TASK_STOPPED);
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
finish_stop(stop_count);
|
|
return 1;
|
|
}
|
|
|
|
static int ptrace_signal(int signr, siginfo_t *info,
|
|
struct pt_regs *regs, void *cookie)
|
|
{
|
|
if (!(current->ptrace & PT_PTRACED))
|
|
return signr;
|
|
|
|
ptrace_signal_deliver(regs, cookie);
|
|
|
|
/* Let the debugger run. */
|
|
ptrace_stop(signr, 0, info);
|
|
|
|
/* We're back. Did the debugger cancel the sig? */
|
|
signr = current->exit_code;
|
|
if (signr == 0)
|
|
return signr;
|
|
|
|
current->exit_code = 0;
|
|
|
|
/* Update the siginfo structure if the signal has
|
|
changed. If the debugger wanted something
|
|
specific in the siginfo structure then it should
|
|
have updated *info via PTRACE_SETSIGINFO. */
|
|
if (signr != info->si_signo) {
|
|
info->si_signo = signr;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
info->si_pid = task_pid_vnr(current->parent);
|
|
info->si_uid = task_uid(current->parent);
|
|
}
|
|
|
|
/* If the (new) signal is now blocked, requeue it. */
|
|
if (sigismember(¤t->blocked, signr)) {
|
|
specific_send_sig_info(signr, info, current);
|
|
signr = 0;
|
|
}
|
|
|
|
return signr;
|
|
}
|
|
|
|
int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
|
|
struct pt_regs *regs, void *cookie)
|
|
{
|
|
struct sighand_struct *sighand = current->sighand;
|
|
struct signal_struct *signal = current->signal;
|
|
int signr;
|
|
|
|
relock:
|
|
/*
|
|
* We'll jump back here after any time we were stopped in TASK_STOPPED.
|
|
* While in TASK_STOPPED, we were considered "frozen enough".
|
|
* Now that we woke up, it's crucial if we're supposed to be
|
|
* frozen that we freeze now before running anything substantial.
|
|
*/
|
|
try_to_freeze();
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
/*
|
|
* Every stopped thread goes here after wakeup. Check to see if
|
|
* we should notify the parent, prepare_signal(SIGCONT) encodes
|
|
* the CLD_ si_code into SIGNAL_CLD_MASK bits.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
|
|
int why = (signal->flags & SIGNAL_STOP_CONTINUED)
|
|
? CLD_CONTINUED : CLD_STOPPED;
|
|
signal->flags &= ~SIGNAL_CLD_MASK;
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
if (unlikely(!tracehook_notify_jctl(1, why)))
|
|
goto relock;
|
|
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current->group_leader, why);
|
|
read_unlock(&tasklist_lock);
|
|
goto relock;
|
|
}
|
|
|
|
for (;;) {
|
|
struct k_sigaction *ka;
|
|
|
|
if (unlikely(signal->group_stop_count > 0) &&
|
|
do_signal_stop(0))
|
|
goto relock;
|
|
|
|
/*
|
|
* Tracing can induce an artifical signal and choose sigaction.
|
|
* The return value in @signr determines the default action,
|
|
* but @info->si_signo is the signal number we will report.
|
|
*/
|
|
signr = tracehook_get_signal(current, regs, info, return_ka);
|
|
if (unlikely(signr < 0))
|
|
goto relock;
|
|
if (unlikely(signr != 0))
|
|
ka = return_ka;
|
|
else {
|
|
signr = dequeue_signal(current, ¤t->blocked,
|
|
info);
|
|
|
|
if (!signr)
|
|
break; /* will return 0 */
|
|
|
|
if (signr != SIGKILL) {
|
|
signr = ptrace_signal(signr, info,
|
|
regs, cookie);
|
|
if (!signr)
|
|
continue;
|
|
}
|
|
|
|
ka = &sighand->action[signr-1];
|
|
}
|
|
|
|
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
|
|
continue;
|
|
if (ka->sa.sa_handler != SIG_DFL) {
|
|
/* Run the handler. */
|
|
*return_ka = *ka;
|
|
|
|
if (ka->sa.sa_flags & SA_ONESHOT)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
|
|
break; /* will return non-zero "signr" value */
|
|
}
|
|
|
|
/*
|
|
* Now we are doing the default action for this signal.
|
|
*/
|
|
if (sig_kernel_ignore(signr)) /* Default is nothing. */
|
|
continue;
|
|
|
|
/*
|
|
* Global init gets no signals it doesn't want.
|
|
* Container-init gets no signals it doesn't want from same
|
|
* container.
|
|
*
|
|
* Note that if global/container-init sees a sig_kernel_only()
|
|
* signal here, the signal must have been generated internally
|
|
* or must have come from an ancestor namespace. In either
|
|
* case, the signal cannot be dropped.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
|
|
!sig_kernel_only(signr))
|
|
continue;
|
|
|
|
if (sig_kernel_stop(signr)) {
|
|
/*
|
|
* The default action is to stop all threads in
|
|
* the thread group. The job control signals
|
|
* do nothing in an orphaned pgrp, but SIGSTOP
|
|
* always works. Note that siglock needs to be
|
|
* dropped during the call to is_orphaned_pgrp()
|
|
* because of lock ordering with tasklist_lock.
|
|
* This allows an intervening SIGCONT to be posted.
|
|
* We need to check for that and bail out if necessary.
|
|
*/
|
|
if (signr != SIGSTOP) {
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/* signals can be posted during this window */
|
|
|
|
if (is_current_pgrp_orphaned())
|
|
goto relock;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
}
|
|
|
|
if (likely(do_signal_stop(info->si_signo))) {
|
|
/* It released the siglock. */
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* We didn't actually stop, due to a race
|
|
* with SIGCONT or something like that.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Anything else is fatal, maybe with a core dump.
|
|
*/
|
|
current->flags |= PF_SIGNALED;
|
|
|
|
if (sig_kernel_coredump(signr)) {
|
|
if (print_fatal_signals)
|
|
print_fatal_signal(regs, info->si_signo);
|
|
/*
|
|
* If it was able to dump core, this kills all
|
|
* other threads in the group and synchronizes with
|
|
* their demise. If we lost the race with another
|
|
* thread getting here, it set group_exit_code
|
|
* first and our do_group_exit call below will use
|
|
* that value and ignore the one we pass it.
|
|
*/
|
|
do_coredump(info->si_signo, info->si_signo, regs);
|
|
}
|
|
|
|
/*
|
|
* Death signals, no core dump.
|
|
*/
|
|
do_group_exit(info->si_signo);
|
|
/* NOTREACHED */
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
return signr;
|
|
}
|
|
|
|
void exit_signals(struct task_struct *tsk)
|
|
{
|
|
int group_stop = 0;
|
|
struct task_struct *t;
|
|
|
|
if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
|
|
tsk->flags |= PF_EXITING;
|
|
return;
|
|
}
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
/*
|
|
* From now this task is not visible for group-wide signals,
|
|
* see wants_signal(), do_signal_stop().
|
|
*/
|
|
tsk->flags |= PF_EXITING;
|
|
if (!signal_pending(tsk))
|
|
goto out;
|
|
|
|
/* It could be that __group_complete_signal() choose us to
|
|
* notify about group-wide signal. Another thread should be
|
|
* woken now to take the signal since we will not.
|
|
*/
|
|
for (t = tsk; (t = next_thread(t)) != tsk; )
|
|
if (!signal_pending(t) && !(t->flags & PF_EXITING))
|
|
recalc_sigpending_and_wake(t);
|
|
|
|
if (unlikely(tsk->signal->group_stop_count) &&
|
|
!--tsk->signal->group_stop_count) {
|
|
tsk->signal->flags = SIGNAL_STOP_STOPPED;
|
|
group_stop = 1;
|
|
}
|
|
out:
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(tsk, CLD_STOPPED);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(recalc_sigpending);
|
|
EXPORT_SYMBOL_GPL(dequeue_signal);
|
|
EXPORT_SYMBOL(flush_signals);
|
|
EXPORT_SYMBOL(force_sig);
|
|
EXPORT_SYMBOL(send_sig);
|
|
EXPORT_SYMBOL(send_sig_info);
|
|
EXPORT_SYMBOL(sigprocmask);
|
|
EXPORT_SYMBOL(block_all_signals);
|
|
EXPORT_SYMBOL(unblock_all_signals);
|
|
|
|
|
|
/*
|
|
* System call entry points.
|
|
*/
|
|
|
|
SYSCALL_DEFINE0(restart_syscall)
|
|
{
|
|
struct restart_block *restart = ¤t_thread_info()->restart_block;
|
|
return restart->fn(restart);
|
|
}
|
|
|
|
long do_no_restart_syscall(struct restart_block *param)
|
|
{
|
|
return -EINTR;
|
|
}
|
|
|
|
/*
|
|
* We don't need to get the kernel lock - this is all local to this
|
|
* particular thread.. (and that's good, because this is _heavily_
|
|
* used by various programs)
|
|
*/
|
|
|
|
/*
|
|
* This is also useful for kernel threads that want to temporarily
|
|
* (or permanently) block certain signals.
|
|
*
|
|
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
|
|
* interface happily blocks "unblockable" signals like SIGKILL
|
|
* and friends.
|
|
*/
|
|
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
|
|
{
|
|
int error;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (oldset)
|
|
*oldset = current->blocked;
|
|
|
|
error = 0;
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigorsets(¤t->blocked, ¤t->blocked, set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
signandsets(¤t->blocked, ¤t->blocked, set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
current->blocked = *set;
|
|
break;
|
|
default:
|
|
error = -EINVAL;
|
|
}
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
|
|
sigset_t __user *, oset, size_t, sigsetsize)
|
|
{
|
|
int error = -EINVAL;
|
|
sigset_t old_set, new_set;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
goto out;
|
|
|
|
if (set) {
|
|
error = -EFAULT;
|
|
if (copy_from_user(&new_set, set, sizeof(*set)))
|
|
goto out;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, &old_set);
|
|
if (error)
|
|
goto out;
|
|
if (oset)
|
|
goto set_old;
|
|
} else if (oset) {
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old_set = current->blocked;
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
set_old:
|
|
error = -EFAULT;
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
long do_sigpending(void __user *set, unsigned long sigsetsize)
|
|
{
|
|
long error = -EINVAL;
|
|
sigset_t pending;
|
|
|
|
if (sigsetsize > sizeof(sigset_t))
|
|
goto out;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sigorsets(&pending, ¤t->pending.signal,
|
|
¤t->signal->shared_pending.signal);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/* Outside the lock because only this thread touches it. */
|
|
sigandsets(&pending, ¤t->blocked, &pending);
|
|
|
|
error = -EFAULT;
|
|
if (!copy_to_user(set, &pending, sigsetsize))
|
|
error = 0;
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
|
|
{
|
|
return do_sigpending(set, sigsetsize);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
|
|
|
|
int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
|
|
{
|
|
int err;
|
|
|
|
if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
if (from->si_code < 0)
|
|
return __copy_to_user(to, from, sizeof(siginfo_t))
|
|
? -EFAULT : 0;
|
|
/*
|
|
* If you change siginfo_t structure, please be sure
|
|
* this code is fixed accordingly.
|
|
* Please remember to update the signalfd_copyinfo() function
|
|
* inside fs/signalfd.c too, in case siginfo_t changes.
|
|
* It should never copy any pad contained in the structure
|
|
* to avoid security leaks, but must copy the generic
|
|
* 3 ints plus the relevant union member.
|
|
*/
|
|
err = __put_user(from->si_signo, &to->si_signo);
|
|
err |= __put_user(from->si_errno, &to->si_errno);
|
|
err |= __put_user((short)from->si_code, &to->si_code);
|
|
switch (from->si_code & __SI_MASK) {
|
|
case __SI_KILL:
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
break;
|
|
case __SI_TIMER:
|
|
err |= __put_user(from->si_tid, &to->si_tid);
|
|
err |= __put_user(from->si_overrun, &to->si_overrun);
|
|
err |= __put_user(from->si_ptr, &to->si_ptr);
|
|
break;
|
|
case __SI_POLL:
|
|
err |= __put_user(from->si_band, &to->si_band);
|
|
err |= __put_user(from->si_fd, &to->si_fd);
|
|
break;
|
|
case __SI_FAULT:
|
|
err |= __put_user(from->si_addr, &to->si_addr);
|
|
#ifdef __ARCH_SI_TRAPNO
|
|
err |= __put_user(from->si_trapno, &to->si_trapno);
|
|
#endif
|
|
break;
|
|
case __SI_CHLD:
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
err |= __put_user(from->si_status, &to->si_status);
|
|
err |= __put_user(from->si_utime, &to->si_utime);
|
|
err |= __put_user(from->si_stime, &to->si_stime);
|
|
break;
|
|
case __SI_RT: /* This is not generated by the kernel as of now. */
|
|
case __SI_MESGQ: /* But this is */
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
err |= __put_user(from->si_ptr, &to->si_ptr);
|
|
break;
|
|
default: /* this is just in case for now ... */
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#endif
|
|
|
|
SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
|
|
siginfo_t __user *, uinfo, const struct timespec __user *, uts,
|
|
size_t, sigsetsize)
|
|
{
|
|
int ret, sig;
|
|
sigset_t these;
|
|
struct timespec ts;
|
|
siginfo_t info;
|
|
long timeout = 0;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Invert the set of allowed signals to get those we
|
|
* want to block.
|
|
*/
|
|
sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
signotset(&these);
|
|
|
|
if (uts) {
|
|
if (copy_from_user(&ts, uts, sizeof(ts)))
|
|
return -EFAULT;
|
|
if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
|
|
|| ts.tv_sec < 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sig = dequeue_signal(current, &these, &info);
|
|
if (!sig) {
|
|
timeout = MAX_SCHEDULE_TIMEOUT;
|
|
if (uts)
|
|
timeout = (timespec_to_jiffies(&ts)
|
|
+ (ts.tv_sec || ts.tv_nsec));
|
|
|
|
if (timeout) {
|
|
/* None ready -- temporarily unblock those we're
|
|
* interested while we are sleeping in so that we'll
|
|
* be awakened when they arrive. */
|
|
current->real_blocked = current->blocked;
|
|
sigandsets(¤t->blocked, ¤t->blocked, &these);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
timeout = schedule_timeout_interruptible(timeout);
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sig = dequeue_signal(current, &these, &info);
|
|
current->blocked = current->real_blocked;
|
|
siginitset(¤t->real_blocked, 0);
|
|
recalc_sigpending();
|
|
}
|
|
}
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
if (sig) {
|
|
ret = sig;
|
|
if (uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
} else {
|
|
ret = -EAGAIN;
|
|
if (timeout)
|
|
ret = -EINTR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
|
|
{
|
|
struct siginfo info;
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_USER;
|
|
info.si_pid = task_tgid_vnr(current);
|
|
info.si_uid = current_uid();
|
|
|
|
return kill_something_info(sig, &info, pid);
|
|
}
|
|
|
|
static int do_tkill(pid_t tgid, pid_t pid, int sig)
|
|
{
|
|
int error;
|
|
struct siginfo info;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
|
|
error = -ESRCH;
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_TKILL;
|
|
info.si_pid = task_tgid_vnr(current);
|
|
info.si_uid = current_uid();
|
|
|
|
rcu_read_lock();
|
|
p = find_task_by_vpid(pid);
|
|
if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
|
|
error = check_kill_permission(sig, &info, p);
|
|
/*
|
|
* The null signal is a permissions and process existence
|
|
* probe. No signal is actually delivered.
|
|
*
|
|
* If lock_task_sighand() fails we pretend the task dies
|
|
* after receiving the signal. The window is tiny, and the
|
|
* signal is private anyway.
|
|
*/
|
|
if (!error && sig && lock_task_sighand(p, &flags)) {
|
|
error = specific_send_sig_info(sig, &info, p);
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* sys_tgkill - send signal to one specific thread
|
|
* @tgid: the thread group ID of the thread
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
*
|
|
* This syscall also checks the @tgid and returns -ESRCH even if the PID
|
|
* exists but it's not belonging to the target process anymore. This
|
|
* method solves the problem of threads exiting and PIDs getting reused.
|
|
*/
|
|
SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(tgid, pid, sig);
|
|
}
|
|
|
|
/*
|
|
* Send a signal to only one task, even if it's a CLONE_THREAD task.
|
|
*/
|
|
SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(0, pid, sig);
|
|
}
|
|
|
|
SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
Nor can they impersonate a kill(), which adds source info. */
|
|
if (info.si_code >= 0)
|
|
return -EPERM;
|
|
info.si_signo = sig;
|
|
|
|
/* POSIX.1b doesn't mention process groups. */
|
|
return kill_proc_info(sig, &info, pid);
|
|
}
|
|
|
|
int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
|
|
{
|
|
struct task_struct *t = current;
|
|
struct k_sigaction *k;
|
|
sigset_t mask;
|
|
|
|
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
|
|
return -EINVAL;
|
|
|
|
k = &t->sighand->action[sig-1];
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (oact)
|
|
*oact = *k;
|
|
|
|
if (act) {
|
|
sigdelsetmask(&act->sa.sa_mask,
|
|
sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
*k = *act;
|
|
/*
|
|
* POSIX 3.3.1.3:
|
|
* "Setting a signal action to SIG_IGN for a signal that is
|
|
* pending shall cause the pending signal to be discarded,
|
|
* whether or not it is blocked."
|
|
*
|
|
* "Setting a signal action to SIG_DFL for a signal that is
|
|
* pending and whose default action is to ignore the signal
|
|
* (for example, SIGCHLD), shall cause the pending signal to
|
|
* be discarded, whether or not it is blocked"
|
|
*/
|
|
if (sig_handler_ignored(sig_handler(t, sig), sig)) {
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, sig);
|
|
rm_from_queue_full(&mask, &t->signal->shared_pending);
|
|
do {
|
|
rm_from_queue_full(&mask, &t->pending);
|
|
t = next_thread(t);
|
|
} while (t != current);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
|
|
{
|
|
stack_t oss;
|
|
int error;
|
|
|
|
if (uoss) {
|
|
oss.ss_sp = (void __user *) current->sas_ss_sp;
|
|
oss.ss_size = current->sas_ss_size;
|
|
oss.ss_flags = sas_ss_flags(sp);
|
|
}
|
|
|
|
if (uss) {
|
|
void __user *ss_sp;
|
|
size_t ss_size;
|
|
int ss_flags;
|
|
|
|
error = -EFAULT;
|
|
if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
|
|
|| __get_user(ss_sp, &uss->ss_sp)
|
|
|| __get_user(ss_flags, &uss->ss_flags)
|
|
|| __get_user(ss_size, &uss->ss_size))
|
|
goto out;
|
|
|
|
error = -EPERM;
|
|
if (on_sig_stack(sp))
|
|
goto out;
|
|
|
|
error = -EINVAL;
|
|
/*
|
|
*
|
|
* Note - this code used to test ss_flags incorrectly
|
|
* old code may have been written using ss_flags==0
|
|
* to mean ss_flags==SS_ONSTACK (as this was the only
|
|
* way that worked) - this fix preserves that older
|
|
* mechanism
|
|
*/
|
|
if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
|
|
goto out;
|
|
|
|
if (ss_flags == SS_DISABLE) {
|
|
ss_size = 0;
|
|
ss_sp = NULL;
|
|
} else {
|
|
error = -ENOMEM;
|
|
if (ss_size < MINSIGSTKSZ)
|
|
goto out;
|
|
}
|
|
|
|
current->sas_ss_sp = (unsigned long) ss_sp;
|
|
current->sas_ss_size = ss_size;
|
|
}
|
|
|
|
if (uoss) {
|
|
error = -EFAULT;
|
|
if (copy_to_user(uoss, &oss, sizeof(oss)))
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPENDING
|
|
|
|
SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
|
|
{
|
|
return do_sigpending(set, sizeof(*set));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
|
|
/* Some platforms have their own version with special arguments others
|
|
support only sys_rt_sigprocmask. */
|
|
|
|
SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
|
|
old_sigset_t __user *, oset)
|
|
{
|
|
int error;
|
|
old_sigset_t old_set, new_set;
|
|
|
|
if (set) {
|
|
error = -EFAULT;
|
|
if (copy_from_user(&new_set, set, sizeof(*set)))
|
|
goto out;
|
|
new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old_set = current->blocked.sig[0];
|
|
|
|
error = 0;
|
|
switch (how) {
|
|
default:
|
|
error = -EINVAL;
|
|
break;
|
|
case SIG_BLOCK:
|
|
sigaddsetmask(¤t->blocked, new_set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigdelsetmask(¤t->blocked, new_set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
current->blocked.sig[0] = new_set;
|
|
break;
|
|
}
|
|
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
if (error)
|
|
goto out;
|
|
if (oset)
|
|
goto set_old;
|
|
} else if (oset) {
|
|
old_set = current->blocked.sig[0];
|
|
set_old:
|
|
error = -EFAULT;
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
|
|
|
|
#ifdef __ARCH_WANT_SYS_RT_SIGACTION
|
|
SYSCALL_DEFINE4(rt_sigaction, int, sig,
|
|
const struct sigaction __user *, act,
|
|
struct sigaction __user *, oact,
|
|
size_t, sigsetsize)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret = -EINVAL;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
goto out;
|
|
|
|
if (act) {
|
|
if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
|
|
return -EFAULT;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SGETMASK
|
|
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigprocmask.
|
|
*/
|
|
SYSCALL_DEFINE0(sgetmask)
|
|
{
|
|
/* SMP safe */
|
|
return current->blocked.sig[0];
|
|
}
|
|
|
|
SYSCALL_DEFINE1(ssetmask, int, newmask)
|
|
{
|
|
int old;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old = current->blocked.sig[0];
|
|
|
|
siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
|
|
sigmask(SIGSTOP)));
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
return old;
|
|
}
|
|
#endif /* __ARCH_WANT_SGETMASK */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGNAL
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigaction.
|
|
*/
|
|
SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
new_sa.sa.sa_handler = handler;
|
|
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
|
|
sigemptyset(&new_sa.sa.sa_mask);
|
|
|
|
ret = do_sigaction(sig, &new_sa, &old_sa);
|
|
|
|
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGNAL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_PAUSE
|
|
|
|
SYSCALL_DEFINE0(pause)
|
|
{
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
schedule();
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
|
|
SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
|
|
{
|
|
sigset_t newset;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&newset, unewset, sizeof(newset)))
|
|
return -EFAULT;
|
|
sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->saved_sigmask = current->blocked;
|
|
current->blocked = newset;
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
schedule();
|
|
set_restore_sigmask();
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
|
|
|
|
__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
void __init signals_init(void)
|
|
{
|
|
sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
|
|
}
|