linux/drivers/media/rc/nuvoton-cir.c
Heiner Kallweit af08233433 [media] media: rc: nuvoton-cir: switch chip detection message to info level
Switch the info about the detected chip type from debug to info level
as it might be useful not only for debugging purposes.

Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2015-11-19 09:37:11 -02:00

1213 lines
33 KiB
C

/*
* Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
*
* Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
* Copyright (C) 2009 Nuvoton PS Team
*
* Special thanks to Nuvoton for providing hardware, spec sheets and
* sample code upon which portions of this driver are based. Indirect
* thanks also to Maxim Levitsky, whose ene_ir driver this driver is
* modeled after.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <media/rc-core.h>
#include <linux/pci_ids.h>
#include "nuvoton-cir.h"
static const struct nvt_chip nvt_chips[] = {
{ "w83667hg", NVT_W83667HG },
{ "NCT6775F", NVT_6775F },
{ "NCT6776F", NVT_6776F },
{ "NCT6779D", NVT_6779D },
};
static inline bool is_w83667hg(struct nvt_dev *nvt)
{
return nvt->chip_ver == NVT_W83667HG;
}
/* write val to config reg */
static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
{
outb(reg, nvt->cr_efir);
outb(val, nvt->cr_efdr);
}
/* read val from config reg */
static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
{
outb(reg, nvt->cr_efir);
return inb(nvt->cr_efdr);
}
/* update config register bit without changing other bits */
static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
u8 tmp = nvt_cr_read(nvt, reg) | val;
nvt_cr_write(nvt, tmp, reg);
}
/* clear config register bit without changing other bits */
static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
u8 tmp = nvt_cr_read(nvt, reg) & ~val;
nvt_cr_write(nvt, tmp, reg);
}
/* enter extended function mode */
static inline void nvt_efm_enable(struct nvt_dev *nvt)
{
/* Enabling Extended Function Mode explicitly requires writing 2x */
outb(EFER_EFM_ENABLE, nvt->cr_efir);
outb(EFER_EFM_ENABLE, nvt->cr_efir);
}
/* exit extended function mode */
static inline void nvt_efm_disable(struct nvt_dev *nvt)
{
outb(EFER_EFM_DISABLE, nvt->cr_efir);
}
/*
* When you want to address a specific logical device, write its logical
* device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
* 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
*/
static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
{
outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
outb(ldev, nvt->cr_efdr);
}
/* write val to cir config register */
static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
{
outb(val, nvt->cir_addr + offset);
}
/* read val from cir config register */
static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
{
u8 val;
val = inb(nvt->cir_addr + offset);
return val;
}
/* write val to cir wake register */
static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
u8 val, u8 offset)
{
outb(val, nvt->cir_wake_addr + offset);
}
/* read val from cir wake config register */
static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
{
u8 val;
val = inb(nvt->cir_wake_addr + offset);
return val;
}
/* dump current cir register contents */
static void cir_dump_regs(struct nvt_dev *nvt)
{
nvt_efm_enable(nvt);
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
pr_info(" * CR CIR ACTIVE : 0x%x\n",
nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
pr_info(" * CR CIR BASE ADDR: 0x%x\n",
(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
pr_info(" * CR CIR IRQ NUM: 0x%x\n",
nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
nvt_efm_disable(nvt);
pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
}
/* dump current cir wake register contents */
static void cir_wake_dump_regs(struct nvt_dev *nvt)
{
u8 i, fifo_len;
nvt_efm_enable(nvt);
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
pr_info("%s: Dump CIR WAKE logical device registers:\n",
NVT_DRIVER_NAME);
pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
nvt_efm_disable(nvt);
pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
pr_info(" * IRCON: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
pr_info(" * IRSTS: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
pr_info(" * IREN: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
pr_info(" * FIFO CMP DEEP: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
pr_info(" * FIFO CMP TOL: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
pr_info(" * FIFO COUNT: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
pr_info(" * SLCH: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
pr_info(" * SLCL: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
pr_info(" * FIFOCON: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
pr_info(" * SRXFSTS: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
pr_info(" * SAMPLE RX FIFO: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
pr_info(" * WR FIFO DATA: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
pr_info(" * RD FIFO ONLY: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
pr_info(" * FIFO IGNORE: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
pr_info(" * IRFSM: 0x%x\n",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
pr_info("* Contents =");
for (i = 0; i < fifo_len; i++)
pr_cont(" %02x",
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
pr_cont("\n");
}
static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
{
int i;
for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
nvt->chip_ver = nvt_chips[i].chip_ver;
return nvt_chips[i].name;
}
return NULL;
}
/* detect hardware features */
static void nvt_hw_detect(struct nvt_dev *nvt)
{
const char *chip_name;
int chip_id;
nvt_efm_enable(nvt);
/* Check if we're wired for the alternate EFER setup */
nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
if (nvt->chip_major == 0xff) {
nvt->cr_efir = CR_EFIR2;
nvt->cr_efdr = CR_EFDR2;
nvt_efm_enable(nvt);
nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
}
nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
chip_id = nvt->chip_major << 8 | nvt->chip_minor;
chip_name = nvt_find_chip(nvt, chip_id);
/* warn, but still let the driver load, if we don't know this chip */
if (!chip_name)
nvt_pr(KERN_WARNING,
"unknown chip, id: 0x%02x 0x%02x, it may not work...",
nvt->chip_major, nvt->chip_minor);
else
dev_info(&nvt->pdev->dev,
"found %s or compatible: chip id: 0x%02x 0x%02x",
chip_name, nvt->chip_major, nvt->chip_minor);
nvt_efm_disable(nvt);
}
static void nvt_cir_ldev_init(struct nvt_dev *nvt)
{
u8 val, psreg, psmask, psval;
if (is_w83667hg(nvt)) {
psreg = CR_MULTIFUNC_PIN_SEL;
psmask = MULTIFUNC_PIN_SEL_MASK;
psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
} else {
psreg = CR_OUTPUT_PIN_SEL;
psmask = OUTPUT_PIN_SEL_MASK;
psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
}
/* output pin selection: enable CIR, with WB sensor enabled */
val = nvt_cr_read(nvt, psreg);
val &= psmask;
val |= psval;
nvt_cr_write(nvt, val, psreg);
/* Select CIR logical device and enable */
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
nvt->cir_addr, nvt->cir_irq);
}
static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
{
/* Select ACPI logical device, enable it and CIR Wake */
nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
/* Enable CIR Wake via PSOUT# (Pin60) */
nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
/* enable pme interrupt of cir wakeup event */
nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
/* Select CIR Wake logical device and enable */
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
nvt->cir_wake_addr, nvt->cir_wake_irq);
}
/* clear out the hardware's cir rx fifo */
static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
{
u8 val;
val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
}
/* clear out the hardware's cir wake rx fifo */
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
{
u8 val;
val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
CIR_WAKE_FIFOCON);
}
/* clear out the hardware's cir tx fifo */
static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
{
u8 val;
val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
}
/* enable RX Trigger Level Reach and Packet End interrupts */
static void nvt_set_cir_iren(struct nvt_dev *nvt)
{
u8 iren;
iren = CIR_IREN_RTR | CIR_IREN_PE;
nvt_cir_reg_write(nvt, iren, CIR_IREN);
}
static void nvt_cir_regs_init(struct nvt_dev *nvt)
{
/* set sample limit count (PE interrupt raised when reached) */
nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
/* set fifo irq trigger levels */
nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
/*
* Enable TX and RX, specify carrier on = low, off = high, and set
* sample period (currently 50us)
*/
nvt_cir_reg_write(nvt,
CIR_IRCON_TXEN | CIR_IRCON_RXEN |
CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
CIR_IRCON);
/* clear hardware rx and tx fifos */
nvt_clear_cir_fifo(nvt);
nvt_clear_tx_fifo(nvt);
/* clear any and all stray interrupts */
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
/* and finally, enable interrupts */
nvt_set_cir_iren(nvt);
}
static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
{
/* set number of bytes needed for wake from s3 (default 65) */
nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
CIR_WAKE_FIFO_CMP_DEEP);
/* set tolerance/variance allowed per byte during wake compare */
nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
CIR_WAKE_FIFO_CMP_TOL);
/* set sample limit count (PE interrupt raised when reached) */
nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
/* set cir wake fifo rx trigger level (currently 67) */
nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
CIR_WAKE_FIFOCON);
/*
* Enable TX and RX, specific carrier on = low, off = high, and set
* sample period (currently 50us)
*/
nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
CIR_WAKE_IRCON);
/* clear cir wake rx fifo */
nvt_clear_cir_wake_fifo(nvt);
/* clear any and all stray interrupts */
nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
}
static void nvt_enable_wake(struct nvt_dev *nvt)
{
nvt_efm_enable(nvt);
nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
nvt_efm_disable(nvt);
nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
CIR_WAKE_IRCON);
nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
}
#if 0 /* Currently unused */
/* rx carrier detect only works in learning mode, must be called w/nvt_lock */
static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
{
u32 count, carrier, duration = 0;
int i;
count = nvt_cir_reg_read(nvt, CIR_FCCL) |
nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
for (i = 0; i < nvt->pkts; i++) {
if (nvt->buf[i] & BUF_PULSE_BIT)
duration += nvt->buf[i] & BUF_LEN_MASK;
}
duration *= SAMPLE_PERIOD;
if (!count || !duration) {
nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
count, duration);
return 0;
}
carrier = MS_TO_NS(count) / duration;
if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
nvt_dbg("WTF? Carrier frequency out of range!");
nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
carrier, count, duration);
return carrier;
}
#endif
/*
* set carrier frequency
*
* set carrier on 2 registers: CP & CC
* always set CP as 0x81
* set CC by SPEC, CC = 3MHz/carrier - 1
*/
static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
{
struct nvt_dev *nvt = dev->priv;
u16 val;
if (carrier == 0)
return -EINVAL;
nvt_cir_reg_write(nvt, 1, CIR_CP);
val = 3000000 / (carrier) - 1;
nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
nvt_dbg("cp: 0x%x cc: 0x%x\n",
nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
return 0;
}
/*
* nvt_tx_ir
*
* 1) clean TX fifo first (handled by AP)
* 2) copy data from user space
* 3) disable RX interrupts, enable TX interrupts: TTR & TFU
* 4) send 9 packets to TX FIFO to open TTR
* in interrupt_handler:
* 5) send all data out
* go back to write():
* 6) disable TX interrupts, re-enable RX interupts
*
* The key problem of this function is user space data may larger than
* driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
* buf, and keep current copied data buf num in cur_buf_num. But driver's buf
* number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
* set TXFCONT as 0xff, until buf_count less than 0xff.
*/
static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
{
struct nvt_dev *nvt = dev->priv;
unsigned long flags;
unsigned int i;
u8 iren;
int ret;
spin_lock_irqsave(&nvt->tx.lock, flags);
ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
nvt->tx.buf_count = (ret * sizeof(unsigned));
memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
nvt->tx.cur_buf_num = 0;
/* save currently enabled interrupts */
iren = nvt_cir_reg_read(nvt, CIR_IREN);
/* now disable all interrupts, save TFU & TTR */
nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
nvt->tx.tx_state = ST_TX_REPLY;
nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
for (i = 0; i < 9; i++)
nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
spin_unlock_irqrestore(&nvt->tx.lock, flags);
wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
spin_lock_irqsave(&nvt->tx.lock, flags);
nvt->tx.tx_state = ST_TX_NONE;
spin_unlock_irqrestore(&nvt->tx.lock, flags);
/* restore enabled interrupts to prior state */
nvt_cir_reg_write(nvt, iren, CIR_IREN);
return ret;
}
/* dump contents of the last rx buffer we got from the hw rx fifo */
static void nvt_dump_rx_buf(struct nvt_dev *nvt)
{
int i;
printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
printk(KERN_CONT "0x%02x ", nvt->buf[i]);
printk(KERN_CONT "\n");
}
/*
* Process raw data in rx driver buffer, store it in raw IR event kfifo,
* trigger decode when appropriate.
*
* We get IR data samples one byte at a time. If the msb is set, its a pulse,
* otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
* (default 50us) intervals for that pulse/space. A discrete signal is
* followed by a series of 0x7f packets, then either 0x7<something> or 0x80
* to signal more IR coming (repeats) or end of IR, respectively. We store
* sample data in the raw event kfifo until we see 0x7<something> (except f)
* or 0x80, at which time, we trigger a decode operation.
*/
static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
{
DEFINE_IR_RAW_EVENT(rawir);
u8 sample;
int i;
nvt_dbg_verbose("%s firing", __func__);
if (debug)
nvt_dump_rx_buf(nvt);
nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
init_ir_raw_event(&rawir);
for (i = 0; i < nvt->pkts; i++) {
sample = nvt->buf[i];
rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
* SAMPLE_PERIOD);
nvt_dbg("Storing %s with duration %d",
rawir.pulse ? "pulse" : "space", rawir.duration);
ir_raw_event_store_with_filter(nvt->rdev, &rawir);
/*
* BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
* indicates end of IR signal, but new data incoming. In both
* cases, it means we're ready to call ir_raw_event_handle
*/
if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
ir_raw_event_handle(nvt->rdev);
}
}
nvt->pkts = 0;
nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
ir_raw_event_handle(nvt->rdev);
nvt_dbg_verbose("%s done", __func__);
}
static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
{
nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
nvt->pkts = 0;
nvt_clear_cir_fifo(nvt);
ir_raw_event_reset(nvt->rdev);
}
/* copy data from hardware rx fifo into driver buffer */
static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
{
unsigned long flags;
u8 fifocount, val;
unsigned int b_idx;
bool overrun = false;
int i;
/* Get count of how many bytes to read from RX FIFO */
fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
/* if we get 0xff, probably means the logical dev is disabled */
if (fifocount == 0xff)
return;
/* watch out for a fifo overrun condition */
else if (fifocount > RX_BUF_LEN) {
overrun = true;
fifocount = RX_BUF_LEN;
}
nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
spin_lock_irqsave(&nvt->nvt_lock, flags);
b_idx = nvt->pkts;
/* This should never happen, but lets check anyway... */
if (b_idx + fifocount > RX_BUF_LEN) {
nvt_process_rx_ir_data(nvt);
b_idx = 0;
}
/* Read fifocount bytes from CIR Sample RX FIFO register */
for (i = 0; i < fifocount; i++) {
val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
nvt->buf[b_idx + i] = val;
}
nvt->pkts += fifocount;
nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
nvt_process_rx_ir_data(nvt);
if (overrun)
nvt_handle_rx_fifo_overrun(nvt);
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}
static void nvt_cir_log_irqs(u8 status, u8 iren)
{
nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
status, iren,
status & CIR_IRSTS_RDR ? " RDR" : "",
status & CIR_IRSTS_RTR ? " RTR" : "",
status & CIR_IRSTS_PE ? " PE" : "",
status & CIR_IRSTS_RFO ? " RFO" : "",
status & CIR_IRSTS_TE ? " TE" : "",
status & CIR_IRSTS_TTR ? " TTR" : "",
status & CIR_IRSTS_TFU ? " TFU" : "",
status & CIR_IRSTS_GH ? " GH" : "",
status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
}
static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
{
unsigned long flags;
bool tx_inactive;
u8 tx_state;
spin_lock_irqsave(&nvt->tx.lock, flags);
tx_state = nvt->tx.tx_state;
spin_unlock_irqrestore(&nvt->tx.lock, flags);
tx_inactive = (tx_state == ST_TX_NONE);
return tx_inactive;
}
/* interrupt service routine for incoming and outgoing CIR data */
static irqreturn_t nvt_cir_isr(int irq, void *data)
{
struct nvt_dev *nvt = data;
u8 status, iren, cur_state;
unsigned long flags;
nvt_dbg_verbose("%s firing", __func__);
nvt_efm_enable(nvt);
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
nvt_efm_disable(nvt);
/*
* Get IR Status register contents. Write 1 to ack/clear
*
* bit: reg name - description
* 7: CIR_IRSTS_RDR - RX Data Ready
* 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
* 5: CIR_IRSTS_PE - Packet End
* 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
* 3: CIR_IRSTS_TE - TX FIFO Empty
* 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
* 1: CIR_IRSTS_TFU - TX FIFO Underrun
* 0: CIR_IRSTS_GH - Min Length Detected
*/
status = nvt_cir_reg_read(nvt, CIR_IRSTS);
if (!status) {
nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
return IRQ_NONE;
}
/* ack/clear all irq flags we've got */
nvt_cir_reg_write(nvt, status, CIR_IRSTS);
nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
iren = nvt_cir_reg_read(nvt, CIR_IREN);
if (!iren) {
nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
return IRQ_NONE;
}
nvt_cir_log_irqs(status, iren);
if (status & CIR_IRSTS_RTR) {
/* FIXME: add code for study/learn mode */
/* We only do rx if not tx'ing */
if (nvt_cir_tx_inactive(nvt))
nvt_get_rx_ir_data(nvt);
}
if (status & CIR_IRSTS_PE) {
if (nvt_cir_tx_inactive(nvt))
nvt_get_rx_ir_data(nvt);
spin_lock_irqsave(&nvt->nvt_lock, flags);
cur_state = nvt->study_state;
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
if (cur_state == ST_STUDY_NONE)
nvt_clear_cir_fifo(nvt);
}
if (status & CIR_IRSTS_TE)
nvt_clear_tx_fifo(nvt);
if (status & CIR_IRSTS_TTR) {
unsigned int pos, count;
u8 tmp;
spin_lock_irqsave(&nvt->tx.lock, flags);
pos = nvt->tx.cur_buf_num;
count = nvt->tx.buf_count;
/* Write data into the hardware tx fifo while pos < count */
if (pos < count) {
nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
nvt->tx.cur_buf_num++;
/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
} else {
tmp = nvt_cir_reg_read(nvt, CIR_IREN);
nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
}
spin_unlock_irqrestore(&nvt->tx.lock, flags);
}
if (status & CIR_IRSTS_TFU) {
spin_lock_irqsave(&nvt->tx.lock, flags);
if (nvt->tx.tx_state == ST_TX_REPLY) {
nvt->tx.tx_state = ST_TX_REQUEST;
wake_up(&nvt->tx.queue);
}
spin_unlock_irqrestore(&nvt->tx.lock, flags);
}
nvt_dbg_verbose("%s done", __func__);
return IRQ_HANDLED;
}
/* Interrupt service routine for CIR Wake */
static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
{
u8 status, iren, val;
struct nvt_dev *nvt = data;
unsigned long flags;
nvt_dbg_wake("%s firing", __func__);
status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
if (!status)
return IRQ_NONE;
if (status & CIR_WAKE_IRSTS_IR_PENDING)
nvt_clear_cir_wake_fifo(nvt);
nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
/* Interrupt may be shared with CIR, bail if Wake not enabled */
iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
if (!iren) {
nvt_dbg_wake("%s exiting, wake not enabled", __func__);
return IRQ_HANDLED;
}
if ((status & CIR_WAKE_IRSTS_PE) &&
(nvt->wake_state == ST_WAKE_START)) {
while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
nvt_dbg("setting wake up key: 0x%x", val);
}
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
spin_lock_irqsave(&nvt->nvt_lock, flags);
nvt->wake_state = ST_WAKE_FINISH;
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}
nvt_dbg_wake("%s done", __func__);
return IRQ_HANDLED;
}
static void nvt_enable_cir(struct nvt_dev *nvt)
{
/* set function enable flags */
nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
CIR_IRCON);
nvt_efm_enable(nvt);
/* enable the CIR logical device */
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
nvt_efm_disable(nvt);
/* clear all pending interrupts */
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
/* enable interrupts */
nvt_set_cir_iren(nvt);
}
static void nvt_disable_cir(struct nvt_dev *nvt)
{
/* disable CIR interrupts */
nvt_cir_reg_write(nvt, 0, CIR_IREN);
/* clear any and all pending interrupts */
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
/* clear all function enable flags */
nvt_cir_reg_write(nvt, 0, CIR_IRCON);
/* clear hardware rx and tx fifos */
nvt_clear_cir_fifo(nvt);
nvt_clear_tx_fifo(nvt);
nvt_efm_enable(nvt);
/* disable the CIR logical device */
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
nvt_efm_disable(nvt);
}
static int nvt_open(struct rc_dev *dev)
{
struct nvt_dev *nvt = dev->priv;
unsigned long flags;
spin_lock_irqsave(&nvt->nvt_lock, flags);
nvt_enable_cir(nvt);
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
return 0;
}
static void nvt_close(struct rc_dev *dev)
{
struct nvt_dev *nvt = dev->priv;
unsigned long flags;
spin_lock_irqsave(&nvt->nvt_lock, flags);
nvt_disable_cir(nvt);
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}
/* Allocate memory, probe hardware, and initialize everything */
static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
{
struct nvt_dev *nvt;
struct rc_dev *rdev;
int ret = -ENOMEM;
nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
if (!nvt)
return ret;
/* input device for IR remote (and tx) */
rdev = rc_allocate_device();
if (!rdev)
goto exit_free_dev_rdev;
ret = -ENODEV;
/* activate pnp device */
if (pnp_activate_dev(pdev) < 0) {
dev_err(&pdev->dev, "Could not activate PNP device!\n");
goto exit_free_dev_rdev;
}
/* validate pnp resources */
if (!pnp_port_valid(pdev, 0) ||
pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
dev_err(&pdev->dev, "IR PNP Port not valid!\n");
goto exit_free_dev_rdev;
}
if (!pnp_irq_valid(pdev, 0)) {
dev_err(&pdev->dev, "PNP IRQ not valid!\n");
goto exit_free_dev_rdev;
}
if (!pnp_port_valid(pdev, 1) ||
pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
goto exit_free_dev_rdev;
}
nvt->cir_addr = pnp_port_start(pdev, 0);
nvt->cir_irq = pnp_irq(pdev, 0);
nvt->cir_wake_addr = pnp_port_start(pdev, 1);
/* irq is always shared between cir and cir wake */
nvt->cir_wake_irq = nvt->cir_irq;
nvt->cr_efir = CR_EFIR;
nvt->cr_efdr = CR_EFDR;
spin_lock_init(&nvt->nvt_lock);
spin_lock_init(&nvt->tx.lock);
pnp_set_drvdata(pdev, nvt);
nvt->pdev = pdev;
init_waitqueue_head(&nvt->tx.queue);
nvt_hw_detect(nvt);
/* Initialize CIR & CIR Wake Logical Devices */
nvt_efm_enable(nvt);
nvt_cir_ldev_init(nvt);
nvt_cir_wake_ldev_init(nvt);
nvt_efm_disable(nvt);
/* Initialize CIR & CIR Wake Config Registers */
nvt_cir_regs_init(nvt);
nvt_cir_wake_regs_init(nvt);
/* Set up the rc device */
rdev->priv = nvt;
rdev->driver_type = RC_DRIVER_IR_RAW;
rdev->allowed_protocols = RC_BIT_ALL;
rdev->open = nvt_open;
rdev->close = nvt_close;
rdev->tx_ir = nvt_tx_ir;
rdev->s_tx_carrier = nvt_set_tx_carrier;
rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
rdev->input_phys = "nuvoton/cir0";
rdev->input_id.bustype = BUS_HOST;
rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
rdev->input_id.product = nvt->chip_major;
rdev->input_id.version = nvt->chip_minor;
rdev->dev.parent = &pdev->dev;
rdev->driver_name = NVT_DRIVER_NAME;
rdev->map_name = RC_MAP_RC6_MCE;
rdev->timeout = MS_TO_NS(100);
/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
#if 0
rdev->min_timeout = XYZ;
rdev->max_timeout = XYZ;
/* tx bits */
rdev->tx_resolution = XYZ;
#endif
nvt->rdev = rdev;
ret = rc_register_device(rdev);
if (ret)
goto exit_free_dev_rdev;
ret = -EBUSY;
/* now claim resources */
if (!devm_request_region(&pdev->dev, nvt->cir_addr,
CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
goto exit_unregister_device;
if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
goto exit_unregister_device;
if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
goto exit_unregister_device;
if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq,
nvt_cir_wake_isr, IRQF_SHARED,
NVT_DRIVER_NAME, (void *)nvt))
goto exit_unregister_device;
device_init_wakeup(&pdev->dev, true);
nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
if (debug) {
cir_dump_regs(nvt);
cir_wake_dump_regs(nvt);
}
return 0;
exit_unregister_device:
rc_unregister_device(rdev);
rdev = NULL;
exit_free_dev_rdev:
rc_free_device(rdev);
return ret;
}
static void nvt_remove(struct pnp_dev *pdev)
{
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
unsigned long flags;
spin_lock_irqsave(&nvt->nvt_lock, flags);
/* disable CIR */
nvt_cir_reg_write(nvt, 0, CIR_IREN);
nvt_disable_cir(nvt);
/* enable CIR Wake (for IR power-on) */
nvt_enable_wake(nvt);
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
rc_unregister_device(nvt->rdev);
}
static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
{
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
unsigned long flags;
nvt_dbg("%s called", __func__);
/* zero out misc state tracking */
spin_lock_irqsave(&nvt->nvt_lock, flags);
nvt->study_state = ST_STUDY_NONE;
nvt->wake_state = ST_WAKE_NONE;
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
spin_lock_irqsave(&nvt->tx.lock, flags);
nvt->tx.tx_state = ST_TX_NONE;
spin_unlock_irqrestore(&nvt->tx.lock, flags);
/* disable all CIR interrupts */
nvt_cir_reg_write(nvt, 0, CIR_IREN);
nvt_efm_enable(nvt);
/* disable cir logical dev */
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
nvt_efm_disable(nvt);
/* make sure wake is enabled */
nvt_enable_wake(nvt);
return 0;
}
static int nvt_resume(struct pnp_dev *pdev)
{
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
nvt_dbg("%s called", __func__);
/* open interrupt */
nvt_set_cir_iren(nvt);
/* Enable CIR logical device */
nvt_efm_enable(nvt);
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
nvt_efm_disable(nvt);
nvt_cir_regs_init(nvt);
nvt_cir_wake_regs_init(nvt);
return 0;
}
static void nvt_shutdown(struct pnp_dev *pdev)
{
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
nvt_enable_wake(nvt);
}
static const struct pnp_device_id nvt_ids[] = {
{ "WEC0530", 0 }, /* CIR */
{ "NTN0530", 0 }, /* CIR for new chip's pnp id*/
{ "", 0 },
};
static struct pnp_driver nvt_driver = {
.name = NVT_DRIVER_NAME,
.id_table = nvt_ids,
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
.probe = nvt_probe,
.remove = nvt_remove,
.suspend = nvt_suspend,
.resume = nvt_resume,
.shutdown = nvt_shutdown,
};
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging output");
MODULE_DEVICE_TABLE(pnp, nvt_ids);
MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
MODULE_LICENSE("GPL");
module_pnp_driver(nvt_driver);